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Abstract

In this paper we propose a simple model to forecast industrial production in
Italy up to 6 months ahead. We show that the forecasts produced using the
model outperform some popular forecasts as well as those stemming from an
ARIMA model used as a benchmark and those from some single equation
alternative models. We show how the use of these forecasts can improve the
estimate of a cyclical indicator and the early detection of turning points for
the manufacturing sector. This is of paramount importance for short-term
economic analysis.

Keywords: Forecasting, VAR Models, Industrial production, Cyclical in-
dicators.
JEL classification: C53, C32, E32.



1 Introduction
Forecasting the industrial production index is an important issue in short-
term economic analysis. This is still true in contemporary developed economies
where services are gaining increasing weight. In fact, the industrial sector is
still important in explaining aggregate fluctuations, also because some of the
services activities (business services) are closely linked to the industrial ones.
The interest in the topic is witnessed by the continuous effort devoted to in-
vestigating it (see, e.g., Bodo et al., 2000; Huh, 1998; Marchetti and Parigi,
2000; Osborn et al., 1999). In addition, forecasts of industrial production
can be useful in more general forecasting models. Finally, cyclical indicators
of the manufacturing sector may be derived from the industrial production
index series: this is commonly done by applying signal extraction techniques,
and accurate forecasts of the series to be filtered are useful in order to obtain
reliable estimates of the most recent observations.
From a general standpoint it should be said that most of the existing

models in Italy offer an early estimation (nowcast) of the industrial produc-
tion, rather than a true forecast. Indeed, the official indicator is released by
the Italian National Statistical Institute (ISTAT) 45 days after the end of the
reference month, so that a two-step ahead prediction is necessary to achieve
a nowcast of the indicator itself. This is the case, in particular, for two highly
reputed predictions released monthly by CSC and IRS,1 respectively. In the
second half of month t (when the official indicator is available up to month
t − 2), CSC releases a preliminary survey-based estimate of month t and a
revised estimate for month t− 1. A similar dissemination scheme is followed
also by IRS, which however uses an econometric model based on electricity
consumption to produce its projections; at the half of month t a preliminary
estimate of the same month is released, and a final one is published at the
beginning of month t+ 1.
In this paper, we propose a simple model able to produce satisfactory

forecasts of the industrial production index well beyond the two-step ahead
nowcasts. We show that the projections deriving from our model can well
compete with the two aforementioned accredited forecasts in terms of predic-
tive ability within the two-step ahead horizon, and offer reliable results up to
six months ahead. In a spirit similar to McGuckin et al. (2001), we also show

1CSC (Centro Studi Confindustria) is the research department of Confindustria, the
Confederation of Italian Industry. IRS (Istituto per la Ricerca Sociale) is an independent
no-profit social research centre. Speaking of “models” when referring to CSC projections
is, strictly speaking, inappropriate, given that they are derived from surveys. However, for
brevity we will refer to the different forecasting devices as “models”. This should cause
no confusion.
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how our projections can be used successfully to reduce uncertainty in the es-
timation of a cyclical indicator for the manufacturing sector derived from the
industrial production series. This allows us also to improve substantially on
the timely detection of turning points in the level of manufacturing activity.
We actually think that this is a major result of this paper. Though the em-
pirical analysis is carried out on Italian data, we feel that the implications
are far reaching and the arguments developed in the paper are potentially of
interest to an international audience.
The paper is organized as follows. The next Section presents the model:

its forecasting ability is evaluated and compared with that of the other models
in Section 3. The use of our forecasts to improve trend-cycle estimates and
to reduce the delay with which turning points are detected, are discussed
in detail in Section 4. The last Section concludes. Three appendices report
some preliminary data analysis and estimation details.

2 The forecasting model
Econometric models already available in Italy to forecast industrial produc-
tion mainly use coincident indicators of industrial activity, such as electricity
consumption (see e.g. Marchetti and Parigi, 2000), which have the advantage
of an earlier release with respect to the industrial production index, making
it possible to formulate up to two-period ahead predictions (i.e., nowcasts).
However, the goal of obtaining genuine forecasts of the industrial production
index (IPI ), makes it necessary to forecast the official figures at least three
months ahead. This is why it might be sensible to give priority, in the search
of variables which will be used in the forecasting model, to those character-
ized by a leading pattern. A comprehensive analysis of the properties of many
Italian economic time series has been carried out by Altissimo et al. (1999).
In part using the results contained in that paper, and after restriction of a
considerably higher number of candidates, we find that two variables seem
particularly interesting as potential predictors of the industrial production in
Italy: the ISAE business surveys series2 on future production prospects (PP)
and the quantity of goods transported by railways (TON ).3 The first variable

2See Pappalardo (1998) and the references therein for a description of early uses of ISAE
(former ISCO) business surveys in forecasting models of the Italian industrial production.

3The industrial production index (IPI ) is released monthly by ISTAT, the Ital-
ian National Statistical Institute. Press releases and recent data can be found
at http://www.istat.it. Future production prospects (forecasts, PP) are released
monthly by ISAE, the Institute for Studies and Economic Analyses. Recent data and
updates can be found at http://www.isae.it/english.html. The time series for tons
of goods transported by railways (TON ) and its updates are kindly provided by Ferrovie
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represents industrial entrepreneurs’ opinions about future production. More
precisely, the entrepreneurs are asked if they expect the production of their
own firm to increase (+), to remain stable (=), or to decrease (—) in the fol-
lowing three-four months. The answers are conventionally synthesized using
a balance, i.e. the share of “+” less the share of “—” answers. The variable
(PP ) obtained in this way is therefore bounded in the interval [—100, +100],
and it is a natural candidate in a forecasting model of the industrial produc-
tion index, given its timely availability, its explicit link with the variable to
be forecast, and its expected lead with respect to the industrial production
series. The usefulness of the second variable in a forecasting model is due to
the fact that the merchandises transported by rail are mainly intermediate
goods and raw materials used as inputs by manufacturing industries. In-
deed, this variable is characterized by a fairly stable lead over the industrial
production index, as well as by a short delay in its availability.
A log transformation is used for the series IPI and TON while PP is

rendered unbounded using the transform − log [200/(PP + 100)− 1] .4 None
of the variables is seasonally adjusted.
Despite being extensively studied, nevertheless the Italian industrial pro-

duction index is not an easy series to forecast, even considering seasonal
differences (see Figure 1). An explicit goal of this study is that of finding a
simple but reliable model to forecast the monthly Italian industrial produc-
tion index up to six steps ahead.
On the one hand, empirical evidence on the forecasting performance of

nonlinear models is mixed (see e.g. Clements and Krolzig, 1998; Huh, 1998;
Marchetti and Parigi, 2000; Simpson et al., 2001). Franses and van Dijk
(2001) suggest that linear models with simple seasonal components offer ad-
vantages over more complicated ones in terms of their short-term forecasting
accuracy. On the other hand, we feel that the single-equation framework
often used to forecast the industrial production index (see e.g. Marchetti
and Parigi, 2000; Simpson et al., 2001) offers an oversimplified option that
does not allow for multi-step dynamic forecasts. For all these reasons our
investigation rests on the well established VAR framework.
Given that we use seasonal time series, an aspect that deserves special

attention is the parameterization of the VAR. Even if we test for unit roots in
our series,5 we adopt the rather practical strategy of modelling seasonal dif-
ferences. The reason for this choice is threefold. First, following the standard
short-term economic analysis practice we are mostly interested in forecasting

dello Stato, the Italian State railways company.
4For ease of exposition we avoid creating further acronyms and, from now on, we

maintain the same names for the transformed variables. This should create no confusion.
5The results are reported in appendix A.
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Figure 1: Log-industrial production index (above) and its seasonal differences
(below).

the annual growth rates, not the levels of the series. Second, not much is
known about the effects on forecasting performance deriving from imposing
all the seasonal roots at unity when they are not all present in the observed
time series: to the best of our knowledge, the empirical evidence does not
offer a definitive answer, though there are indications that filtering out only
the correct unit roots in general does not produce superior forecasts (see e.g.
Clements and Hendry, 1997; Gustavsson and Nordström, 1999; Lyhagen and
Löf, 2001; Osborn et al., 1999; Paap et al., 1997). In particular, Lyhagen
and Löf (2001) suggest that when the model is not known and the aim of
the modeling exercise is forecasting, a VAR in annual differences may be a
better choice than a seasonal error correction model based on seasonal unit
roots pre-testing. Last, but by no means least, differencing partially protects
forecasting from sudden structural changes (Clements and Hendry, 1999),
and we share the view that “[...] the current recommendation for the choice
of a single model for forecasting seasonal economic time series up to a year
ahead is that the annual difference specification should be the default choice”
(Osborn, 2002, p.430).6 The matter here is the balance between the reduc-
tion in forecast errors bias and the increase in variance: however this aspect
can not be assessed a priori.

6Of course we are aware that, to the extent that annual differences induce non-
invertibility, “protection” against breaks is somewhat reduced (see Osborn, 2002).
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As far as model selection is concerned, we rely on the general-to-specific
approach and we start from a fairly heavily parameterized VAR with 14 lags
and some deterministic components. In particular, we simplify the model
sequentially by excluding non significant lags, starting from the least sig-
nificant, while checking at each simplification step the statistical properties
of the residuals. Though seasonal differences do effectively filter out most
of the seasonal component of the series, nevertheless they still show slowly
decreasing autocorrelations which make it difficult to find a valid (subset)
reduction of the starting model (see Krolzig, 2001). In order to obtain quasi-
orthogonal regressors so to ease the reduction process, we reparameterize our
unrestricted stationary VAR into the isomorphic form

∆∆12yt = β∆12yt−1 +
13

j=1

γj∆∆12yt−j + φdt + εt (1)

where ∆ = (1 − L), ∆12 = (1 − L12), L is the usual lag operator such
that Lpzt = zt−p, yt = (IPIt, TONt, PPt)�, and dt are the deterministic
components that include, besides the constant and three specific impulse
dummies (1991:08, 1995:08, and 1992:11) to correct for particularly large
residuals,7 a dichotomous variable that takes the value 1 in August when
production prospects (PP ) in July are positive and a similar variable when
they are negative; other two dichotomous variables are specified along the
same lines for December (having November as reference month for PP ).8

This approach represents an attempt to take into account possible interac-
tions between seasonal variations and the business cycle in industrial pro-
duction. These interactions can be theoretically justified by economic theory
(see e.g. Cecchetti et al., 1997), and can produce observable implications.
Furthermore, it is very well known that in Italy it is common practice for
the industrial firms to adjust production to demand by prolonging (shorten-
ing) summer and Christmas holidays when demand is low (high). We find
successful not to include the seasonal dummies in the model (the p-value of
the test for the exclusion of all the seasonals, except the special dummies
for August and December, is 0.9999). Finally, dt includes also ∆12 log(TDt)
and ∆12 log(TDt−1), with TDt the number of trading days in month t. As
is well known, the number of trading days significantly influences manufac-
turing activity. While the use of ∆12 log(TDt) is widespread in models for

7The first two are related to the industrial production index, while the third is intended
to correct an outlier in the production prospects (PP ) series.

8Strictly speaking, the use of these dummies is such that the model is no longer a VAR.
However, given the rather special role of these variables, for brevity we prefer to continue
denoting our model as “VAR”.
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industrial production, the insertion of ∆12 log(TDt−1) is fairly non-standard.
However, in the presence of particularly unfavorable (favorable) trading days
configurations, it is legitimate to expect that firms tend to compensate lower
(higher) realized production in the following month: therefore we expect the
parameters attached to ∆12 log(TDt) and ∆12 log(TDt−1) to have opposite
signs. Indeed, the estimated coefficients of ∆12 log(TDt) and ∆12 log(TDt−1)
in our VAR confirm our expectation and are both highly significant.9

The unrestricted VAR is sequentially simplified to obtain a more par-
simonious parameterization. Even if the (subset) restricted VAR is more
parsimonious than the starting one, nevertheless it is still rather heavily pa-
rameterized including the lagged terms in annual differences and the lags
from 1 to 5, lag 9, and lags from 12 to 13 for the terms in ∆∆12. The
p-value of the reduction is 0.675, which indicates that no significant infor-
mation is lost in the sequential simplification process. The main statistics
and diagnostics of the VAR estimated over the period 1988:03-1998:12 are
reported in Table 1.10 The tests for parameter constancy, calculated over the
forecast evaluation sample (1999:01-2001:12, see next section), do not reject
structural stability.
The final model we use monthly to actually produce the forecasts is fur-

ther simplified by eliminating non significant deterministic elements from
individual equations.11

3 Forecast evaluation
In this section we evaluate the forecasting ability of our VAR as compared
to an ARIMA model, to some simple but efficient single-equation alterna-
tives, and to the forecasts released by CSC and IRS over a fairly long period
(1999:01-2001:12).12 Since our aim is to produce forecasts up to 6 months
ahead, the forecasting performance comparison with CSC and IRS is re-
ported for completeness and is justified on the grounds that we want to
obtain a model that on the very short horizons behaves at least as well as
those of these two honored forecasters. Given that we are especially inter-
ested in forecasting industrial production annual growth rates, all forecasts

9The coefficients (t-values) attached to ∆12 log(TDt) and ∆12 log(TDt−1) in the equa-
tion for industrial production are 0.474 (8.75) and -0.271 (-3.63), respectively.
10The results have been obtained using Pc-Give 10.1 (see Doornik and Hendry, 2001).
11This further simplification and the procedure to routinely produce the forecasts are

implemented in WinRATS 5.00 (see Doan, 2000).
12Time series of past CSC forecasts have been obtained from the Confindustria Web-

site (http://www.confindustria.it) and start from 1998:3. IRS forecasts have been
retrieved from the articles published in the financial newspaper Il Sole 24 Ore.
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Table 1: Main VAR diagnostics: estimation period 1988:03-1998:12
σ Corr(Act., Fit.) AR 1-12 Norm.

∆∆12IPI 0.020 0.959 0.051 0.217
∆∆12TON 0.044 0.867 0.084 0.664
∆∆12PP 0.106 0.754 0.090 0.478
VAR 0.093 0.485

Parameter constancy forecast tests (1999:01-2001:12)
FΩ 0.143
FV(e) 0.569
FV(E) 0.607
The Table reports the standard error of each equation in the VAR
(σ), the correlation of actual and fitted values (Corr(Act., Fit.)),
the p-value of the LM test for residuals autocorrelation up to the
twelfth order (AR 1-12), and the p-value of the test for residuals
normality (Norm.). The p-values of the tests on the residuals of
the VAR as a whole are also reported in the row labelled ”VAR”.
The values reported for the parameter constancy forecast tests are
p-values of the tests in their F-form. The first one (FΩ) does not
consider parameter uncertainty.

comparisons refer to this variable.
Perfectly fair forecasts comparisons would require the use of homogeneous

forecasting criteria among the competing models (see e.g. Tashman, 2000).
However, we want to compare our forecasts with those from a model of which
we do not know many details (the IRS model), and even with those derived
from a survey (CSC). For this reason we believe that, while perfectly homo-
geneous conditions are essential when comparing the forecasting performance
of alternative methods, they cannot always be imposed when comparing real
world forecasts. However, to increase comparability the ARIMA, the single-
equation, and the VAR forecasts are all based on a common recursive scheme.
Parameters are estimated with data ranging from 1 to t0, and forecasts are
produced for t0 + 1, . . ., t0 + n (1 ≤ n ≤ 6); then parameters are estimated
on the sample ranging from 1 to t0+1, and forecasts are produced for t0+2,
. . ., t0 + n + 1, and so forth.13 In our application the forecast evaluation
sample runs from January 1999 to December 2001: the estimation sample
is adjusted in such a way that for each forecasting horizon we have n = 36
out-of-sample observations.

13For the single-equation models, the last observation available for estimation depends
on the number of steps ahead to be forecast.
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In order to evaluate the quality of our forecasts we consider different
criteria. We first compute simple standard statistics (mean absolute fore-
casting error, root mean square error, mean error), and in order to draw
some inference on the significance of the emerging differences we use the
Diebold-Mariano (1995) approach as modified by Harvey et al. (1997, 1998).
In particular, for the h-step ahead forecasts we use the modified Diebold-
Mariano statistic:

DM∗ =
n+ 1− 2h+ n−1h(h− 1)

n

1/2
d̄

n−12πfd(0)
(2)

where n = 36, d̄ = n−1 n
t=1 dt, dt = g(e1t) − g(e2t) with g(eit) some arbi-

trary function of the forecasting errors from model i {∈ 1, 2}, and fd(0) is a
consistent estimate of the zero-frequency spectral density of dt.
When comparing forecasting accuracy, in this paper we use dt = |e1t| −

|e2t|: the null in this case is E(dt) = 0. This choice, as well as the emphasis on
the MAE, is justified on the grounds that we would like to obtain a model that
on average performs well, at the cost of some occasional relatively large error.
When performing tests of forecast encompassing, dt becomes dt = e1t(e1t−e2t)
(see Harvey et al., 1998): under the null, forecast 1 encompasses forecast
2 and E(dt) = 0; under the alternative, forecast 1 could be improved by
incorporating some of the features present in forecast 2.
In order to obtain a consistent estimate of fd(0), we follow the recommen-

dations contained in Diebold and Mariano (1995) and Harvey et al. (1997)
and use an unweighted sum of the sample autocovariances up to h− 1, that
is 2πfd(0) = γ0 + 2

h−1
τ=1 γτ , with γk the lag-k sample autocovariance.

Two remarks are important at this stage. First, given that CSC and IRS
do not release their forecasts in summer according to different schemes, their
projections present some missing values. In fact, CSC does not produce one-
step ahead estimates for the month of July and two-step ahead projections
for the month of August of each year. IRS does not release two-step ahead
forecasts for the month of August of each year; additionally, we could not
retrieve IRS forecasts for a couple of dates.14 To cope with this issue, in the
computation of 2πfd(0) we use (see Harvey, 1989, p.329; Robinson, 1985)

γk =
n−k
t=1 (d

†
t − d)(d†t+k − d̄)
n−k
t=1 atat+k

(3)

where d†t is dt with zeros replacing the missing values, and at = 1 when dt
is observed and at = 0 otherwise. Second, West (2001) demonstrates that
14This happened in corrispondence of two dates for which IRS released only the season-

ally adjusted forecasts.
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when forecasts are based on estimated models and parameters estimation
uncertainty is neglected, the forecast encompassing test tends to reject too
often. This size distortion depends, among other things, on the number of
out-of-sample forecasts used to compute the test. When the fraction n/t0
is small, the distortion is likely to be small. In our case, n/t0 ≈ 0.25: this
implies that a nominal 5% t test should slightly over-reject, but the actual
size should not exceed 8%.15 Given that correction of DM∗ to take into
account parameters uncertainty entails knowledge of both the models to be
compared, we cannot in practice use the modifications suggested by West
(2001).

3.1 The ARIMA model

It is customary to compare the forecasts derived from a model to those relying
only on univariate techniques. The reason for this, is that we want to be
sure that using our model we can forecast at least as well as what we could
do by exploiting only the information embodied in the variable of interest.
Actually, the benchmark model we use in this paper is slightly more general
than a “pure” ARIMA, being a regression model with ARMA errors, where
the dependent variable is the stationary transform (seasonal difference) of
IPI and the regressors are those included in dt in equation (1) with the
exception of the “special” dummies for August and December.
At any rate, for simplicity we will continue throughout the paper to denote

this model as ARIMA. IPI has been considered both in the original scale and
in logs. The BIC criterion is used to select the AR andMA polynomial orders,
testing each lag combination up to 6 for both polynomials. An appropriate
transformation of the likelihood (Findley et al., 1998) allows to compare
models both in levels and in logs. The selected model is an ARMA (2,2) on
the seasonal difference of the untransformed IPI variable. The estimated
AR polynomial has a pair of complex conjugate roots with a period of 37
months, which is consistent with the observed cyclical behavior of Italian
industrial production.
This model has been estimated recursively by exact maximum likelihood16

and 1 to 6 step-ahead forecasts have been produced. Such an ARIMA model

15A nominal 3% should not exceed actual 5%. These computations follow West (2001,
p.30) and are based on some rather unrealistic technical conditions. However, the values
obtained in this way seem to act as upper bounds in the simulations carried out by West
(2001, p.31).
16The software used to carry out the estimation is X-12-ARIMA ver. 0.2.9 (see U.S.

Census Bureau, 2002).
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Table 2: Forecasts evaluation statistics: VAR vs ARIMA.
Steps ahead 1 2 3 4 5 6

ME 0.12 0.13 -0.04 -0.30 -0.11 -0.15
VAR MAE 1.26 1.31 1.29 1.26 1.63 1.74

RMSE 1.71 1.75 1.59 1.63 2.65 2.77
ME -0.01 -0.09 -0.08 -0.17 -0.26 -0.33

ARIMA MAE 1.54 1.62 1.69 1.82 1.94 1.96
RMSE 2.17 2.29 2.37 2.38 2.45 2.52

Predictive VAR vs. ARIMA -1.085 -1.122 -2.816 -3.504 -1.324 -0.831
accuracy p-values 0.285 0.270 0.008 0.001 0.194 0.412

VAR vs. ARIMA 1.228 1.250 0.778 0.303 1.342 2.149
Encompassing p-values 0.228 0.220 0.442 0.764 0.188 0.039

ARIMA vs. VAR 2.040 2.076 2.923 9.916 1.503 1.792
p-values 0.049 0.045 0.006 0.000 0.142 0.082

Note. ME: Mean Error. MAE: Mean Absolute Error. RMSE: Root Mean Square
Error.

constitutes a fairly robust benchmark to beat.17

The results, reported in Table 2, indicate that the MAE and RMSE of the
VAR forecasts are uniformly smaller than those of the ARIMA, except for the
five- and six-step ahead RMSE. The sudden increase of these two statistics in
correspondence of five- and six-step ahead forecasts is due to one single large
forecast error induced by the difficulty of predicting PP precisely at these
longer horizons. The DM∗ predictive accuracy tests denote a significant
superiority of the VAR only for the three- and four-step ahead forecasts.
However, the forecasts encompassing tests highlight that the VAR forecasts
encompass the ARIMA ones at all horizons, with the exception of the six-
step ahead forecasts. On the contrary, the ARIMA forecasts encompass those
stemming from the VAR only for the five-step and, marginally, for the six-
step ahead horizons.

3.2 Single-equation alternatives

While the univariate ARIMA model is a useful benchmark against which to
test our proposed model, we also consider a set of single equation multivariate
models which exploit as much information as possible from the same variables
used by the VAR. In fact, at the half of month t, when we have to produce
forecasts for months t − 1, t, t + 1, ..., t+ 4, the most recent observations on
the variables that enter our model are {IPIt−2, TONNt−1, PPt−1}. This fact
is not exploited in the VAR, where we consider only the information set up
to t − 2 for all variables, in this way ignoring the available information for
17The same ARIMA is used also in the applications described in Section 4.
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Table 3: Forecasts evaluation statistics: VAR vs Single-equation alternatives
(SEQ).
Steps ahead 1 2 3 4 5 6

ME 0.12 0.13 -0.04 -0.30 -0.11 -0.15
VAR MAE 1.26 1.31 1.29 1.26 1.63 1.74

RMSE 1.71 1.75 1.59 1.63 2.65 2.77
ME 0.21 0.17 0.11 0.09 -0.55 -0.54

SEQ MAE 1.33 1.33 1.45 1.26 1.60 1.90
RMSE 1.73 1.79 1.97 1.80 2.23 2.54

Predictive VAR vs. SEQ -0.391 -0.098 -0.883 0.001 0.158 -0.458
accuracy p-values 0.698 0.922 0.383 0.999 0.876 0.650

VAR vs. SEQ 1.683 2.011 3.155 1.312 1.945 4.610
Encompassing p-values 0.101 0.052 0.003 0.198 0.060 0.000

SEQ vs. VAR 1.459 2.010 4.190 2.893 0.370 0.847
p-values 0.154 0.052 0.000 0.007 0.714 0.403

Note. ME: Mean Error. MAE: Mean Absolute Error. RMSE: Root Mean Square
Error.

t−1. An alternative strategy that bypasses this problem is based on building
six single-equation forecasting models, one for each forecasting horizon, such
that at every step the most comprehensive available information set is used.
The single-equation model used to produce the k-step ahead forecast for
∆12IPIt can be written as

∆12IPIt = ak(L)∆12IPIt−k + bk,1(L)∆12TONt−k+1 +
+bk,2(L)∆12PPt−k+1 +Υ�

kdt + υk,t (4)

where dt is the same as in (1) when k = 1, 2. At longer horizons (k = 3, ..., 6)
dt does not include the dummies for August and December. In fact, the
single-equation framework does not allow to produce forecasts for PP , so
that August and December dummies cannot be produced either.
This procedure is related to the concept of “dynamic estimation”, which

sometimes can be useful for forecasting in the presence of model misspecifi-
cations (Clements and Hendry, 1998).
The equations are initially over-parameterized, and are successively re-

cursively simplified in the usual general-to-specific framework. The final 6
equations selected to produce the 1 to 6-step ahead forecasts are reported in
Appendix C. As might be easily expected, the forecasting equations for the
longer horizons show residuals autocorrelation at lower lags.
The forecasting performance of the single-equation models, summarized

in Table 3, is slightly worse than that of the VAR. Only the five- and six-
step ahead RMSEs are slightly better than the corresponding VAR statistics.
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Table 4: Forecasts evaluation statistics: VAR vs CSC and IRS.
Steps ahead 1 2 1 2

ME 0.22 0.12 ME 0.13 0.14
VAR MAE 1.23 1.21 VAR MAE 1.29 1.23

RMSE 1.71 1.67 RMSE 1.74 1.69
ME 0.00 -0.64 ME -1.06 -1.25

CSC MAE 1.09 1.31 IRS MAE 1.56 1.90
RMSE 1.61 1.80 RMSE 2.07 2.34

Predictive VAR vs. CSC 0.586 -0.353 VAR vs. IRS -0.914 -1.952
accuracy p-values 0.562 0.726 p-values 0.367 0.060

VAR vs. CSC 2.933 3.100 VAR vs. IRS 2.978 2.442
Encompassing p-values 0.006 0.004 p-values 0.005 0.021

CSC vs. VAR 2.042 2.736 IRS vs. VAR 2.849 3.484
p-values 0.049 0.010 p-values 0.007 0.001

Note. ME: Mean Error. MAE: Mean Absolute Error. RMSE: Root Mean Square Error.
The statistics on the VAR are computed on the same samples covered by CSC and IRS,
respectively, by excluding the months for which CSC or IRS did not publish their forecasts.

However, the MAE of the six-step ahead predictions is smaller for the VAR,
consistently with the previous observation that the deterioration of the VAR
forecasting statistics at the longest horizons is due to one large forecast error.
Finally, the tests for predictive accuracy are never significant and those for
encompassing do not show a clear pattern.
All in all, we believe that even if the VAR performance is not dramatically

superior to the single-equations’ one, nevertheless the VAR framework is
neater and more flexible, so that we prefer again our VAR to the single-
equation alternatives. Finally, from a very practical standpoint, the VAR has
also the advantage of “protecting” the forecasting procedure from occasional
delays in the availability of TON and PP .

3.3 CSC and IRS forecasts

The comparison with the CSC and IRS projections is limited to the two-
step ahead forecast horizons, but given the high reputation of these two
forecasters, it is for us very important to obtain a similar forecasting record
on this short horizon. The computations for the MAE and the RMSE are
carried out considering the same sample for the VAR and CSC and IRS,
respectively. The results of the comparisons are reported in Table 4. The
outcomes suggest that our VAR behaves slightly better than the CSC survey
on the two-step ahead horizon, but is somewhat inferior on the one-step
ahead. According to the predictive accuracy tests, these differences are not
statistically significant, however. On the contrary, our predictions appear
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to be consistently superior to IRS’, particularly so at the two-step ahead
horizon, where the predictive accuracy test is marginally significant. The
encompassing tests always reject.

4 Using the forecasts to improve the quality
of trend-cycle estimates

The overall evidence collected in the previous section suggests that we can
fruitfully use our VAR to forecast the Italian industrial production index.
Now we want to show that our forecasts, which we believe are useful per
se, can be used also in a different context to retrieve useful information and
improve the analysis of the industrial business cycle.
The estimation of a cyclical indicator from an observed series can be

typically represented as a filtering problem. As such, the indicator itself is
calculated using a weighted average of past, present, and future values of
the variable by applying a symmetric filter to the observed series. However,
at the end of the series, say at time T , no future values are available, and
asymmetric uni-lateral filters must be used to obtain preliminary estimates
to be revised later. It should be highlighted that the most recent part of the
cyclical indicator series is the most interesting to business analysts and policy
makers. Therefore it is of paramount importance to minimize the revisions
in the cyclical indicator so to obtain a series that is reliable and stable. In
this context, the forecasts can be used to extend the observed series so as to
apply a symmetric filter also at the end-points, obtaining a cyclical indicator
less affected by revisions.
This is done in a spirit similar to the X-12-ARIMA seasonal adjustment

procedure, where univariate forecasts are used to robustify the procedure,
in order to get less revised seasonal factors (Findley et al., 1998). Note
that, again in analogy with X-12-ARIMA, there is no need that the forecasts
and the indicators be derived within the same framework. For example, the
selected filtering tool can be either parametric (as in this paper) or nonpara-
metric (as it was in a previous draft). The filtering tool is not directly related
to the forecasts, being specifically designed only to solve the filtering problem
of interest, not the forecasting problem.

4.1 Characterization of the problem

An important feature of the industrial production index is its strong cyclical
behavior. Indeed, the down- and upturns of the industrial production cycle
are of major interest to business analysts. In order to highlight this feature,

13



the unobserved component framework seems the most appropriate one. Let
the series IPI be composed of four (unobserved) components:

IPIt = µt + ωt + γt + εt (5)

which correspond to the trend-cycle (µt), the seasonal (ωt), the working days
(γt), and the irregular component (εt), respectively.
A cyclical indicator can be built by eliminating the seasonal and the

other short term movements from the series, leaving only the trend-cycle.18

In order to estimate the latter, many methods have been proposed. Here we
adopt the structural time series approach (see Harvey, 1989), which specifies
a statistical model for each of the components in (5). The explicit spec-
ification of a statistical model for the components is often regarded as a
key advantage of the structural time series approach over non parametric
approaches and model based approaches based on reduced forms (e.g. the
ARIMA model-based approach to decompose time series; see Maravall, 1995,
and the references therein).19

4.2 The structural time series model

As suggested in the previous subsection, one advantage of the model-based
approach is the explicit specification of the models for the components, mak-
ing it possible to obtain components with the desired characteristics. Let
us consider again the representation (5), and let εt be IID(0,σ2ε). Since we
are particularly interested in obtaining a smooth trend-cycle component for
easily detecting expansion and recession periods, we choose to model µt as
an Integrated Random Walk (IRW) (Pedregal and Young, 2002):

µt = µt−1 + βt−1 (6)

βt = βt−1 + ζ t

where ζt is IID(0,σ
2
ζ). The variable βt is generally called the “slope” or the

“trend derivative”. Even if the specification of the trend as in (6) implies

18In this paper we are not interested in disentangling long term trend and business
cycle oscillations, given that the data we are dealing with feature frequent cycles in the
classical sense, so that detrending is not necessary. Indeed, whenever we refer to business
cycle, we do so in the sense of classical cycle and not in the sense of growth cycle (which
considers detrended series). At any rate, if the forecasts produced by our model are useful
to improve the construction of a trend-cycle indicator, they are likely to be equally useful
with respect to the calculation of a purely cyclical indicator.
19Indeed, in an early version of this paper (documenti di lavoro ISAE, 20/01) we used

the ARIMA model-based approach, obtaining qualitatively similar results.
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an I(2) representation for IPIt, nevertheless it represents a useful and wide-
spread tool in the context of trend extraction problems, because it produces
a very smooth trend component. In fact, the problem of dating expansion
and recession in monthly time series can be a very difficult task and the IRW
trend, being much smoother than other alternatives, allows to accomplish
this task in an easy and effective way, simply using the trend derivative de-
finition (García-Ferrer and Bujosa-Brun, 2000).20 In particular, period t is
defined as an expansion (recession) if µt − µt−1 = βt−1 > 0 (< 0).
Concerning the other components, the seasonal pattern is defined in

trigonometric form:

ωt =
6

j=1

ωjt (7)

with

ωjt = ωj,t−1 cosλj + ω∗j,t−1 sinλj + κjt (8)

ω∗jt = −ωj,t−1 sinλj + ω∗j,t−1 cosλj + κ∗jt

where κjt and κ∗jt IID(0, σ
2
jκ). The parameter λj = 2πj/12 represents the

frequency in radians.
Finally, the working days effect is modelled as:

γt = δTDt (9)

where TDt is again the number of working days in month t and δ is a coef-
ficient to be estimated. A time varying structure for δ has also been tested
but it did not prove necessary.
The error terms εt, ζt, κjt and κ∗jt are mutually independent at all leads

and lags. The model composed by equations (5) to (9) can be easily put in
state space form and the further assumption of normality allows estimation
by maximum likelihood of the unknown variances and of δ (so called hyper-
parameters) by means of the Kalman filter. The Kalman smoother can then
be used to estimate the different components.21

20Pedregal and Young (2002) note that the IRW trend has the properties of a cubic
spline. We have also tested the alternative I(1) specification with βt = φβt−1 + ζt, and
|φ| < 1. Though the results are qualitatively similar to those illustrated here, nevertheless
the resulting trend is rougher, rendering more difficult the detection of the business cycle
phases.
21For the practical implementation we use Ox 3.0 (Doornik, 2001) and the routine

SsfPack 2.2 (Koopman et al., 1998).
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Table 5: Structural model estimates
σ2ζ = 0.0152 σ2κ1 = 0.0037 σ2κ2 = 0.0019 σ2κ3 = 0.0052
σ2κ4 = 0.0072 σ2κ5 = 0.0014 σ2κ6 = 0.0017 δ =2.7128

(0.10885)

Ljung-Box(24) 0.5234
Normality 0.1118
The variances are expressed in terms of signal-to-noise ratios
(i.e. are all normalized by σ2ε). δ is the coefficient attached to
the trading days term; the number in brackets is the standard
error. The last two rows report the p-values of the Ljung-Box
and normality tests on residuals.

4.3 Reducing revisions

Classical formulae for signal extraction allow us to recover the minimum
mean square linear estimator of the unobserved components βt and µt, given
an infinite realization of the observed series yt:

βt|∞ =
∞

j=−∞
wjyt+j (10)

µt|∞ =
∞

j=−∞
ujyt+j (11)

where the w’s and the u’s are two set of weights. In practice, we never observe
infinite samples; instead, in the presence of a sample of finite length T ≥ t
we have a sequence of preliminary estimates βt|t+k and µt|t+k (0 ≤ k ≤ T−t).
When k = 0 we have the so called concurrent estimate; adding observations
after time t produces a set of estimates which converge to their “final” value
as t grows in such a way that t+ k → T  t.
In this section we show that the use of the forecasts coming out from

the model described in Section 2 dramatically improve the reliability of the
preliminary estimates of the trend and of the slope components of IPI, mak-
ing them much better devices in order to monitor the business cycle in the
manufacturing sector. Indeed, Bruno (2001) shows that the revisions of con-
ventional estimates of the trend component of IPI may be unacceptably large
for the purpose of analysing the current industrial business cycle situation.
In order to check the importance of revisions in the trend estimates,

and to evaluate the advantages deriving from using our model’s forecasts,
we perform a historical simulation from September 1995 to December 2001,
estimating the trend and slope components at every period, for the original
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series and for the one extended, respectively, with six-step ahead ARIMA
forecasts and with six-step ahead VAR forecasts.22

The quantities

rµ,k = µt|t+k − µt|t+k−1 k = 1, 2, ... (12)

rβ,k = βt|t+k − βt|t+k−1 (13)

represent, for every k, the monthly revisions in µt and βt, k months after the
concurrent estimate.
We compute (12) and (13) for every month from October 1995 onward,

obtaining a distribution of revisions for every k ranging from 1 (with 75 obser-
vations) to 75 (just one observation). In practice we are usually interested in
small values of k, say k ≤ 10. We can therefore derive summary statistics of
the monthly revisions: in particular it is interesting to check their variances,
to see if the use of our forecasts improves on the revision process. Figures 2
and 3 show clearly how effective is the improvement on the revision pattern
using the forecasts from our model. The black bar (labelled “No forecasts”)
is the variance of the monthly revisions after k periods (x-axis) using the
standard procedure that relies only on historical data. Note that converge of
revisions is faster for the trend than for the slope component. In both cases
the extension of the original series with the ARIMA forecasts does not im-
prove significantly the revision pattern. On the contrary, revisions diminish
dramatically using the VAR forecasts; trend revision variance is reduced by
over 50% during the first three periods and by 40% during the fourth. As far
as slope revisions are considered, the reduction is greater than 50% during
the first seven periods.

4.4 Detection of turning points

In order to further assess how important is the improvement in the revision
process showed in the previous sub-section, it is possible to analyze if it helps
in detecting turning points earlier. In order to do this we use the results
of the simulation of the previous sub-section together with the rule that a
contraction (expansion) takes place in period t as long as βt−1 < 0 (> 0),
as suggested by García-Ferrer and Bujosa-Brun (2000). As a reference, we
consider the turning points identified with the observed series ending in April
2002 as “final”.
It is important to stress that our aim is not to find out the best approach

to signal turning points, nor to forecast them. In fact, turning points are often

22The ARIMA model is the same as the one described in section 3.
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Figure 2: Variance of revisions of the trend (µt)
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Figure 3: Variance of revisions of the slope (βt)
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Table 6: Detection dates of turning points with different forecasts
Turning points locations No forecasts ARIMA VAR
1995:10 (p) 6 7 2
1996:9 (t) 7 7 4
1998:2 (p) 6 3 2
1999:2 (t) 6 1 2
2000:11 (p) 5 5 2
Mean lag 6.0 4.6 2.4
The table reports the delay, in months, of first detection of the
turning points: “p” denotes a peak, ”t” a trough. In the first
column are listed the dates of the turning points as estimated
using the whole time series up to April 2002. Mean lag is
the average lag of the detection with different methods. Six
forecasts added to time series for ARIMA and VAR.

claimed to be essentially non-linear phenomena, and non-linear methods seem
the most natural candidates to forecast them (Camacho and Perez-Quiros,
2002). On the contrary, we want to show that our forecasts can be utilized to
recognize turning points earlier, using a standard procedure to detect them.23

This is also to say that at this stage we are not particularly concerned with
the determination of the exact or “true” timing of the turning points. Rather,
we want to show that the results of a standard routine to identify turning
points can be significantly improved by embodying our forecasts.
The turning points identified by the procedure over the period 1995.9-

2001.12 using the actual data up to April 2002 are five (three peaks and two
troughs): they are not so many, but going back further would have led to a
too pronounced loss of degrees of freedom for our model.24 Table 6 shows
the main results: the dates in the first column represent the turning points
estimated as of April 2002.
The mean lag in the detection of turning points with the original series

is 6 months. The use of the ARIMA model forecasts in some cases reduces
the time needed to detect turning points: the reduction, on average, is 1.4
months. A further improvement is obtained with the VAR forecasts,25 which

23In a previous version of this paper turning points were identified applying the pro-
cedure proposed by Bry and Boschan (1971) to the trend-cycle series extracted using
TRAMO-SEATS (Gómez & Maravall, 1998). The dates of the turning points identified
using that procedure are very similar to those reported here.
24By replicating a historical situation, we estimate the model using information up to

time t.
25Given that we have only five observations, the calculation of the mean could be ques-
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Figure 4: Concurrent estimate of the slope βt|t obtained with the original
data (’No forecasts’), with the forecasts produced with the ARIMA model
and with those stemming from the VAR model. The final slope (’Final’) βt|T
is estimated using the entire sample and is reported for comparison.

in four out of five cases allow us to detect a turning point after only two
months, while in one case the time elapsed is four months.
Figure 4 shows the concurrent estimate of the slope for every t ranging

from 1995.9 to 2001.12. In the upper left panel the conventional estimate
of the slope is shown; in the upper right panel is displayed the concurrent
estimate of the slope obtained by appending to the original data the ARIMA
forecasts. Finally, the lower panel shows the concurrent estimate of the slope
obtained by adding the VAR forecasts. In each case the ”final” estimate of
the slope βt|T (that is the one estimated using the whole sample ending in
April 2002) is reported for comparison. It is clear that the conventional slope
(”No forecasts”) performs worse than the others in capturing turning points.
On the other hand, the slope obtained using ARIMA forecasts does not show
a consistent advantage over the “No forecast” case, also considering that in
some cases it gives false signals. In the end, the slope derived using the VAR
forecasts performs consistently better than the other two over the sample
examined, being much closer to the “final” one, and not giving false signals.

tioned. However, it should be stressed that we find a monotonic decrease in the delay with
which turning points are detected using our forecasts for all the turning points considered
here. This is well reflected by the mean lag.
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5 Concluding remarks
In this paper we propose a simple model to forecast the Italian industrial
production. We test for the predictive accuracy of our model over a fairly long
forecast evaluation sample. We show that our VAR predictions outperform
those produced on the basis of a robust ARIMA model and of simple single-
equation alternatives: in addition, they are on average at least as good as the
survey-based projections elaborated by CSC, and more accurate than those
deriving from the IRS econometric model. Furthermore, we show that using
our model we are able to produce reliable forecasts on longer horizons, which
is one of our main goals.
We argue that our forecasts, which are useful per se, can also be used

to improve significantly on the quality and reliability of the estimates of a
cyclical indicator obtained using signal-extraction (smoothing) techniques.
In particular, we compare the variance of the revisions of a cyclical indica-
tor estimated using our model’s forecasts with that of the same indicator
estimated using standard procedures: the information embodied in our pre-
dictions halves the uncertainty in the concurrent estimate of the cyclical
indicator. This is also fundamental to timely detect turning points: the av-
erage gain in the delay with which a turning point is detected when using
VAR forecasts is 3.6 months, that is a 60% reduction. We guess that a clear
indication to practitioners and economic analysts arise from these results:
multi-step dynamic forecasts can improve substantially on the perception we
can gain not only on the future, but also on the current phase of the economy.
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A Unit roots
Despite the practical approach adopted in the main text, in this appendix
we report for completeness the results of conventional tests for unit roots
in seasonal time series. However, the tests that follows are valid under the
maintained hypothesis of no structural breaks and pure AR representations.
This conflicts somewhat with our expectations.
The test regression includes a constant, a trend, eleven seasonal dum-

mies, and the number of lags of the dependent variable sufficient to whiten
the residuals (Beaulieu and Miron, 1993). The results reported in Table 7
indicate that the presence of all the twelve unit roots is strongly rejected for
all the series, but the presence of unit roots at least at some frequencies can
never be excluded.
In order to investigate the presence of possible multiple unit roots at the

zero frequency, we carry out formal tests on the annual differences of the
series. The results of these tests are reported in Table 8. Both the unit roots
and the stationarity tests seem to indicate that the annual differences of our
series do not contain unit roots at frequency zero.
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Table 7: Tests for unit roots
frequency IPI (3 lags) TON (3 lags) PP (no lags)
0 -2.64 -3.51 * -2.68
π/6 5.71 5.49 15.75 **
π/3 2.59 6.48 13.74 **
π/2 6.90 * 11.69 ** 14.16 **
2π/3 12.00 ** 8.74 * 14.16 **
5π/6 6.28 7.55 * 16.48 **
π -1.90 -1.76 -2.45
t-tests for the 0 and π frequencies, F -tests for the
others. Values significant at 5% and 1% are indicated
by ’*’ and ’**’, respectively.

Table 8: Tests for unit roots in seasonally differenced series
ADFc ADFc,t BG2 BG3 BG4 BG5 BG6

∆12IPI -3.589 ** -3.566 * 0.061 0.061 0.061 0.860 0.713
∆12TON -4.105 ** -4.332 ** 0.318 0.315 0.316 0.791 0.114
∆12PP -3.684 ** -3.666 * 0.632 0.586 0.588 0.328 0.219
∆12 denotes the seasonal difference. The table reports the results from
the Augmented Dickey-Fuller (with constant, ADFc, and with constant and
trend, ADFc,t) tests for zero-frequency unit roots and from the Bierens-Guo
(BG2-BG6) tests for stationarity (Bierens and Guo, 1993) applied to the
seasonally differenced series. For the ADF tests, “*” and “**” denote values
that are significant at 5% and 1%, respectively. For the Bierens-Guo tests,
p-values are reported.
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B VAR estimates
For completeness, in this Appendix we report the estimated VAR. The VAR
diagnostics are reported in Section 2. The estimation period is 1988:03-
1998:12. 36 out of sample observations (1999:01-2001:12) have been left for
forecast evaluation.

∆∆12IPI = − 0.224
(0.104)

∆∆12IPIt−1 − 0.194
(0.0967)

∆∆12IPIt−2 − 0.182
(0.0926)

∆∆12IPIt−3

− 0.0153
(0.0832)

∆∆12IPIt−4 − 0.00757
(0.0611)

∆∆12IPIt−5 + 0.114
(0.0484)

∆∆12IPIt−9

− 0.00307
(0.0555)

∆∆12IPIt−12 − 0.0803
(0.0581)

∆∆12IPIt−13 − 0.0971
(0.0628)

∆∆12TONt−1

− 0.0964
(0.0601)

∆∆12TONt−2 − 0.0321
(0.0557)

∆∆12TONt−3 − 0.103
(0.0482)

∆∆12TONt−4

− 0.0474
(0.0401)

∆∆12TONt−5 − 0.0891
(0.0328)

∆∆12TONt−9 + 0.0718
(0.0369)

∆∆12TONt−12

+ 0.0666
(0.0399)

∆∆12TONt−13 − 0.0297
(0.0235)

∆∆12PPt−1 − 0.000546
(0.0225)

∆∆12PPt−2

+ 0.0227
(0.0214)

∆∆12PPt−3 + 0.0248
(0.021)

∆∆12PPt−4 − 0.0105
(0.0179)

∆∆12PPt−5

+ 0.023
(0.0156)

∆∆12PPt−9 − 0.0116
(0.0172)

∆∆12PPt−12 − 0.0179
(0.0174)

∆∆12PPt−13

− 0.485
(0.0956)

∆12IPIt−1 + 0.115
(0.0579)

∆12TONt−1 + 0.0333
(0.0158)

∆12PPt−1

+ 0.00146
(0.00297)

− 0.0906
(0.0248)

dt + 0.0392
(0.0254)

dt

− 0.00564
(0.0231)

dt − 0.0388
(0.0118)

dumaugnt + 0.0549
(0.00999)

dumaugpt

− 0.0219
(0.00947)

dumdecnt + 0.0209
(0.0106)

dumdecpt + 0.474
(0.0541)

∆12 logTDt

− 0.271
(0.0745)

∆12 logTDt−1
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∆∆12TON = 0.392
(0.226)

∆∆12IPIt−1 + 0.0571
(0.211)

∆∆12IPIt−2 + 0.0391
(0.202)

∆∆12IPIt−3

+ 0.0613
(0.181)

∆∆12IPIt−4 + 0.0797
(0.133)

∆∆12IPIt−5 + 0.0558
(0.105)

∆∆12IPIt−9

+ 0.0168
(0.121)

∆∆12IPIt−12 − 0.0234
(0.127)

∆∆12IPIt−13 − 0.453
(0.137)

∆∆12TONt−1

− 0.156
(0.131)

∆∆12TONt−2 − 0.0877
(0.121)

∆∆12TONt−3 − 0.113
(0.105)

∆∆12TONt−4

− 0.187
(0.0875)

∆∆12TONt−5 − 0.107
(0.0716)

∆∆12TONt−9 − 0.272
(0.0804)

∆∆12TONt−12

− 0.0857
(0.0869)

∆∆12TONt−13 − 0.0874
(0.0512)

∆∆12PPt−1 + 0.0391
(0.0491)

∆∆12PPt−2

− 0.00252
(0.0467)

∆∆12PPt−3 + 0.00439
(0.0458)

∆∆12PPt−4 + 0.00667
(0.039)

∆∆12PPt−5

+ 0.0107
(0.0339)

∆∆12PPt−9 − 0.027
(0.0376)

∆∆12PPt−12 − 0.0484
(0.038)

∆∆12PPt−13

− 0.361
(0.208)

∆12IPIt−1 − 0.22
(0.126)

∆12TONt−1 + 0.0957
(0.0345)

∆12PPt−1

+ 0.015
(0.00646)

− 0.0309
(0.054)

dt + 0.0415
(0.0553)

dt

− 0.0913
(0.0503)

dt − 0.0463
(0.0257)

dumaugnt + 0.0206
(0.0218)

dumaugpt

− 0.0568
(0.0206)

dumdecnt + 0.0337
(0.023)

dumdecpt + 0.354
(0.118)

∆12 logTDt

− 0.501
(0.162)

∆12 log TDt−1
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∆∆12PP = 0.482
(0.541)

∆∆12IPIt−1 + 0.729
(0.504)

∆∆12IPIt−2 + 0.678
(0.483)

∆∆12IPIt−3

+ 0.358
(0.434)

∆∆12IPIt−4 + 0.000218
(0.318)

∆∆12IPIt−5 − 0.19
(0.252)

∆∆12IPIt−9

− 0.164
(0.289)

∆∆12IPIt−12 − 0.108
(0.303)

∆∆12IPIt−13 + 0.486
(0.327)

∆∆12TONt−1

− 0.052
(0.313)

∆∆12TONt−2 − 0.168
(0.29)

∆∆12TONt−3 − 0.118
(0.251)

∆∆12TONt−4

− 0.132
(0.209)

∆∆12TONt−5 − 0.0539
(0.171)

∆∆12TONt−9 + 0.171
(0.192)

∆∆12TONt−12

+ 0.0763
(0.208)

∆∆12TONt−13 − 0.227
(0.122)

∆∆12PPt−1 − 0.124
(0.118)

∆∆12PPt−2

− 0.0214
(0.112)

∆∆12PPt−3 + 0.0651
(0.11)

∆∆12PPt−4 + 0.297
(0.0932)

∆∆12PPt−5

− 0.0602
(0.0812)

∆∆12PPt−9 − 0.354
(0.0899)

∆∆12PPt−12 − 0.0291
(0.0909)

∆∆12PPt−13

− 0.68
(0.499)

∆12IPIt−1 − 0.17
(0.302)

∆12TONt−1 + 0.025
(0.0825)

∆12PPt−1

+ 0.0225
(0.0155)

− 0.062
(0.129)

dt + 0.0209
(0.132)

dt

− 0.409
(0.12)

dt − 0.0382
(0.0616)

dumaugnt + 0.00258
(0.0521)

dumaugpt

+ 0.106
(0.0494)

dumdecnt − 0.108
(0.0551)

dumdecpt − 0.836
(0.282)

∆12 log TDt

− 0.354
(0.388)

∆12 log TDt−1
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C Single-equation models

C.1 One-step ahead

∆12IPI = 0.255
(0.0623)

∆12IPIt−1 − 0.00192
(0.00251)

+ 0.165
(0.0332)

∆12TONt

+ 0.15
(0.0253)

∆12TONt−12 + 0.0538
(0.0107)

∆12PPt−3 + 0.464
(0.0434)

∆12 logTDt

− 0.193
(0.0561)

∆12 logTDt−1 − 0.12
(0.0224)

dt − 0.0251
(0.0107)

dumaugnt

+ 0.0548
(0.00873)

dumaugpt

Test Statistic p-value
AR 1-12 test: F(12,108)= 1.0617 0.3996
ARCH 1-12 test: F(12,96) = 0.93271 0.5181
Normality test: χ2(2) = 1.3339 0.5133
hetero test: F(15,104)= 1.1452 0.3269
hetero-X test: F(38,81) = 1.5247 0.0573
RESET test: F(1,119) = 1.6178 0.2059

C.2 Two-step ahead

∆12IPI = 0.112
(0.0464)

∆12IPIt−3 − 0.00127
(0.00253)

+ 0.119
(0.0352)

∆12TONt−1

+ 0.0658
(0.0273)

∆12TONt−7 + 0.14
(0.0285)

∆12TONt−12 + 0.0801
(0.0111)

∆12PPt−2

+ 0.0549
(0.00929)

dumaugpt − 0.127
(0.024)

dt + 0.462
(0.0448)

∆12 log(TD)t

− 0.196
(0.0479)

∆12 log(TD)t−1

Test Statistic p-value
AR 1-12 test: F(12,108)= 1.5245 0.1263
ARCH 1-12 test: F(12,96) = 1.585 0.1088
Normality test: χ2(2) = 0.35396 0.8378
hetero test: F(16,103)= 0.31639 0.9942
hetero-X test: F(42,77) = 0.55803 0.9795
RESET test: F(1,119) = 3.7923 0.0538

C.3 Three-step ahead

∆12IPI = 0.00418
(0.00278)

+ 0.1
(0.0311)

∆12TONt−7 + 0.175
(0.0325)

∆12TONt−12

+ 0.122
(0.00953)

∆12PPt−2 + 0.505
(0.0533)

∆12 log TDt − 0.179
(0.053)

∆12 log TDt−1
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Test Statistic p-value
AR 1-12 test: F(12,112)= 1.9693 0.0335
ARCH 1-12 test: F(12,100)= 2.6763 0.0037
Normality test: χ2(2) = 1.4538 0.4834
hetero test: F(10,113)= 1.0161 0.4345
hetero-X test: F(20,103)= 0.79015 0.7197
RESET test: F(1,123) = 2.8985 0.0912

C.4 Four-step ahead

∆12IPI = 0.0049
(0.00306)

+ 0.101
(0.0371)

∆12TONt−3 + 0.163
(0.03)

∆12TONt−12

+ 0.105
(0.0119)

∆12PPt−3 + 0.519
(0.0559)

∆12 log TDt − 0.123
(0.0564)

∆12 log TDt−1

Test Statistic p-value
AR 1-12 test: F(12,112)= 1.7406 0.0673
ARCH 1-12 test: F(12,100)= 1.5212 0.1289
Normality test: χ2(2) = 8.5356 0.0140
hetero test: F(10,113)= 1.1403 0.3390
hetero-X test: F(20,103)= 0.85881 0.6378
RESET test: F(1,123) = 0.60339 0.4388

C.5 Five-step ahead

∆12IPI = 0.18
(0.049)

∆12IPIt−9 + 0.0115
(0.00271)

+ 0.115
(0.00934)

∆12PPt−4

+ 0.458
(0.0582)

∆12 log TDt − 0.166
(0.0574)

∆12 log TDt−1 + 0.129
(0.0287)

dt

Test Statistic p-value
AR 1-12 test: F(12,112)= 5.3293 0.0000
ARCH 1-12 test: F(12,100)= 1.1673 0.3169
Normality test: χ2(2) = 13.794 0.0010
hetero test: F(9,114) = 0.77248 0.6420
hetero-X test: F(15,108)= 0.99552 0.4653
RESET test: F(1,123) = 0.18651 0.6666

C.6 Six-step ahead

∆12IPI = 0.0157
(0.00269)

+ 0.116
(0.01)

∆12PPt−5 + 0.559
(0.056)

∆12 log TDt

+ 0.164
(0.0309)

I : t
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AR 1-12 test: F(12,114)= 2.3406 0.0101
ARCH 1-12 test: F(12,102)= 1.7139 0.0744
Normality test: χ2(2) = 8.7349 0.0127
hetero test: F(5,120) = 0.20817 0.9585
hetero-X test: F(6,119) = 0.34412 0.9121
RESET test: F(1,125) = 0.18389 0.6688
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