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1 Introduction

It is still common to use seasonally adjusted time series in empirical analyses. However, a body
of research has recently shown that seasonal adjustment may alter such time series properties
such as invertibility (Maravall, 1995), linearity (Ghysels et al., 1996), cointegration (Granger
and Siklos, 1995), and short-run comovements (Cubadda, 1999). Since there is convincing
evidence of seasonal unit roots in common macroeconomic time series (Hylleberg et al. 1993),
it is important to model them properly. The common practise of adding seasonal dummies to the
set of regressors leads to misspecified models when seasonal unit roots are present (Abeysinghe,
1994). The analysis of seasonal cointegration, as first proposed in Hylleberg et al. (1990),
has gained recent interest, see e.g., the thorough surveys by Franses and McAleer (1998) and
Brendstrup et al. (2003). Indeed, Löf and Franses (2001) shows that seasonal cointegration
models tend to yield better forecasts than alternative models of seasonal data.

A set of seasonally cointegrated time series may be represented by a seasonal version of the
Error-Correction Model [ECM], see inter alia Ahn and Reinsel (1994). The statistical analysis
of the seasonal ECM can be complicated by the existence of cointegration relationships that vary
over the frequencies. Moreover, the cointegration vectors at frequencies other than zero and π

are generally polynomial. However, Lee (1992) shows that asymptotically optimal inference on
seasonal cointegration may be conducted by Reduced-rank Regression [RR] analyses separately
for each frequency. Unfortunately, Lee’s method applies only to the peculiar case of synchronous
cointegration at frequencies different from zero and π. Based on Boswijk (1995), Johansen and
Schaumburg [henceforth, JS] (1999) provides a rather involved iterative procedure for detecting
and estimating dynamic cointegration relationships at complex root frequencies. Recently,
Cubadda (2001) shows that an estimator and a test statistic that are asymptotically equivalent
to those proposed by JS can be obtained by RR between complex-valued data.

Although the RR approach considerably simplifies seasonal cointegration analysis, it suffers
from two main limitations: it ignores the fact that complex unit roots occur in conjugate pairs
in real-valued data, and Maximum Likelihood [ML] analysis of the seasonal ECM requires the
cointegration vectors at different frequencies to be jointly estimated (JS, 1999).

The goal of this paper is twofold. First, we propose an iterative RR procedure that allows
the cointegration restrictions at the conjugate complex unit root frequencies to be modelled
simultaneously. Second, we extend our new procedure to estimate the cointegration vectors
jointly at the zero and seasonal frequencies. We investigate the small-sample properties of the
proposed methods through simulations and find that they often perform better with respect
to separate RR analyses at the different frequencies. As modelling non-stationary seasonality
increases substantially the number of parameters of VAR models, we think that new methods
are of practical value.

This paper is organized as follows. Section 2 reviews the relevant representations of sea-
sonally cointegrated time series. Section 3 introduces the new tests and estimators. Section 4
compares the performances of our procedures with existing ones by Monte Carlo simulations.
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Section 5 concludes.

2 Error-Correction Models for Seasonally Cointegrated Time
Series

Let Xt be an n-vector time series satisfying

Π(L)Xt = ΦDt + εt, (1)

where Π(L) is a p-order polynomial matrix with Π0 = In, the εt are i.i.d. Nn(0,Ω), the initial
values y−p+1, ..., y0 are fixed, and Dt is a deterministic kernel that may contain a constant, a
linear trend, and a set of seasonal dummies.

Suppose for simplicity that the Xt are observed on a quarterly basis. We know (JS, 1999)
that if the series are cointegrated of order (1,1) at frequencies 0, π, π

2 , and
3π
2 equation (1) may

be rewritten in the following ECM

eΓ(L)(1−L4)Xt| {z }
X0,t

= ΦDt + α1β
0
1(1+ L+ L2 + L3)Xt−1| {z }

X1,t−1

+ α2β
0
2(1− L+ L2 − L3)Xt−1| {z }+

X2,t−1

α∗β
0
∗(−i− L+ iL2 + L3)Xt−1| {z }

X∗,t−1

+ α∗β0∗(i− L− iL2 + L3)Xt−1| {z }
X∗,t−1

+ εt, (2)

where α1β
0
1 = −14Π(1), α2β02 = 1

4Π(−1), α∗β
0
∗ = −14Π(i), αj and βj are n × rj-matrices with

rank equal to rj for j = 1, 2, α∗ and β∗ are complex n× r3-matrices with rank equal to r3, and

C denotes the complex conjugate C, eΓ0 = In, and eΓk = −[(p−k)/4]P
l=1

Πk+4l for k = 1, 2, ..., p− 4.
Notice that four cointegrating relationships are present in the ECM (2). Indeed, β1 and β2

are, respectively, the cointegration matrices at frequencies 0 and π, whereas the conjugate
complex cointegration matrices β∗ and β∗ are respectively associated with frequencies π

2 and
3π
2 .
Below we refer to (2) when conducting statistical inference on the various cointegration ma-

trices. However, since complex valued coefficients are not amenable to economic interpretation,
we observe that (2) can be rewritten more neatly as

Γ(L)X0,t = ΦDt + α1β
0
1X1,t−1 + α2β

0
2X2,t−1 + (3)

(α4 − α3L)(β
0
3 − β04L)(1− L2)Xt−1| {z }

X3,t−1

+ εt,

where Γ1 = eΓ1 + α3β
0
4, and α∗β

0
∗ ≡ 1

2(α3 + α4i)(β
0
3 − β04i).

Representation (3) is entirely real-valued and it exhibits a polynomial cointegration matrix,
namely (β3 − β4L), and an intertemporal loading matrix, namely (α4 − α3L), for the annual
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frequency.

3 Optimal Inference on Seasonal Cointegration

In this section we introduce some new statistical tools for seasonal cointegration analysis. Specif-
ically, we offer various methods for detecting and estimating polynomial cointegration vectors
and an iterative procedure for ML estimation of the cointegration vectors at the zero and sea-
sonal frequencies. All the proposed inferential procedures are motivated by the idea that joint
modelling of the cointegration restrictions at the different frequencies may increase efficiency in
finite samples.

3.1 Statistical analysis of cointegration at the complex root frequencies

Cubadda (2001) observes that asymptotically optimal inference on cointegration at complex
root frequencies may be obtained through partial RR applied to model (2).

At frequency π
2 , this RR procedure goes as follows: We regress X0,t, X1,t−1, X2,t−1, and

X∗,t−1 on (Dt,X0,t−1,X0,t−2, ...,X0,t−p+4) to obtain, respectively, the residuals R0,t, R1,t, R2,t,
and R∗,t. These residuals asymptotically satisfy

R0,t = α1β
0
1R1,t + α2β

0
2R2,t + α∗β

0
∗R∗,t + α∗β0∗R∗,t + εt. (4)

Since the process R∗,t is asymptotically uncorrelated with R1,t, R2,t, and R∗,t we can safely
ignore reduced rank restrictions at frequencies different from the one of interest. Hence, we
solve

CanCor
©
R0,t,R∗,t | R1,t,R2,t,R∗,t

ª
, (5)

where CanCor(Y,X | Z) denotes the partial canonical correlations between the elements of Y
and X conditional on Z.

A test for the null hypothesis that there exist at most r3 cointegration vectors at the annual
frequency is based on the statistic

Q1(r3|n) = −2T
nX

l=r3+1

ln(1− λ̂l), r3 = 1, . . . , n,

where λ̂l is the l−th largest squared canonical correlation coming from the solution for (5).
The test statistic Q1(r3|n) converges weakly in distribution to the same limit as the Likeli-

hood Ratio [LR] test statistic; that is

tr


1Z
0

dBc(u)F
0
c(u)

 1Z
0

Fc(u)F
0
c(u)du

−1 1Z
0

Fc(u)dB
0
c(u)

 , (6)
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where tr{·} denotes trace, Bc(u) is the standard complex-valued Brownian motion of dimension
(n − r3), and Fc(u) = Bc(u) if Dt does not include a set of seasonal dummies, and Fc(u) =

Bc(u)−
1R
0

Bc(v)dv otherwise.

Moreover, the eigenvectors associated with the r3 largest eigenvalues λ̂1, ..., λ̂r3 are T -
consistent estimators for the complex cointegration matrix β∗.

A Monte Carlo study in Cubadda (2001) indicates that the JS and RR procedures have
similar performances in small samples. There is evidence of a slight superiority for the JS
procedure when testing, but not for estimation. This apparent paradox is explained by the fact
that the test based on Q1(r3|n) does not use the information that the cointegration restrictions
at frequency π

2 apply also at the aliasing frequency
3π
2 . Although there is no asymptotic gain

in exploiting this information, it may well matter with finite samples.
Hence, we propose the following testing procedure. Solve (5) to obtain the RR estimate bβ∗

of the r3 complex cointegration vectors. Then regress R0,t on (R0∗,t
bβ∗,R0∗,tbβ∗, R01,t,R02,t)0 and

compute the residual covariance matrix Ω(bβ∗). The proposed test statistic is
Q2(r3|n) = T log


¯̄̄
Ω(bβ∗)¯̄̄
|Ω(In)|

 , r3 = 1, . . . , n.

Since the estimator bβ∗ is asymptotically equivalent to the ML estimator (Cubadda, 2001),
Q2(r3|n) has the same limiting distribution (6) as the LR test statistic.

In a similar spirit as JS (1999), we also consider a LR test that is based on an iterative
estimation procedure called Alternating Reduced-rank Regression [ARR]. The ARR procedure,
which increases the likelihood function in each step, goes as follows:

1. Estimate β∗ by solving (5)

2. For fixed β∗ =
bβ∗, obtain bβ∗ as the eigenvectors associated with the r3 largest eigenvalues

coming from the solution of

CanCor
n
R0,t,R∗,t | R1,t,R2,t, β0∗R∗,t

o
.

3. For fixed β∗ = bβ∗, obtain bβ∗ as the eigenvectors associated with the r3 largest eigenvalues
coming from the solution of

CanCor
©
R0,t,R∗,t | R1,t,R2,t, β0∗R∗,t

ª
.

4. Repeat 2-3 until numerical convergence occurs.
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The associated test statistic is

Q3(r3|n) = −2T
nX

l=r3+1

ln(1− bηl), r3 = 1, . . . , n, (7)

where bηl indicates the l−th largest squared canonical correlation coming from the last iteration
of the above switching procedure.

Moreover, the eigenvectors associated with the r3 largest eigenvalues bη1, ...,bηr3 are the ARR
estimator of the complex cointegration matrix β∗.

Notice that both the new tests may be easily adapted to include the seasonal dummies in
the seasonal error-correction terms, as suggested in Franses and Kunst (1999). However, in this
case their asymptotic distribution will be the one tabulated in Table 2 of JS (1999).

3.2 ML estimation of seasonal cointegration vectors

It is noted in JS (1999) that the ML estimator of the complex ECM requires estimating the
cointegration vectors jointly at the zero and seasonal frequencies. However, the switching
algorithm proposed there is computationally cumbersome since it typically involves a large
number of variables. Hence, a simpler estimation strategy is suggested that focuses on each
frequency separately. Although such strategy leads to asymptotically optimal estimation of the
various cointegration relationships, there may be some efficiency loss with finite samples.

We now consider a convenient procedure for the simultaneous ML estimation of the various
cointegration vectors that appear in the complex-valued ECM (2). In view of equation (4), we
propose the following iterative scheme that increases the likelihood in each step:

1. Fix the various cointegration ranks rj for j = 1, 2, 3 and let bβi for i = 1, 2, ∗ denote the
estimates of the cointegration vectors obtained by RR at the various frequencies.

2. For fixed β2 = bβ2, β∗ = bβ∗, and β∗ =
bβ∗, obtain bβ1 as the eigenvectors associated with

the r1 largest eigenvalues coming from the solution of

CanCor
n
R0,t,R1,t | β02R2,t, β0∗R∗,t, β0∗R∗,t

o
,

3. For fixed β1 =
bβ1, β∗ = bβ∗, and β∗ =

bβ∗, obtain bβ2 as the eigenvectors associated with
the r2 largest eigenvalues coming from the solution of

CanCor
n
R0,t,R2,t | β01R1,t, β0∗R∗,t, β0∗R∗,t

o
.

4. For fixed β1 =
bβ1, β2 = bβ2 and β∗ =

bβ∗, obtain bβ∗ as the eigenvectors associated with
the r3 largest eigenvalues coming from the solution of

CanCor
n
R0,t,R∗,t | β01R1,t, β02R2,t, β0∗R∗,t

o
.
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5. For fixed β1 =
bβ1, β2 = bβ2, and β∗ = bβ∗, obtain bβ∗ as the eigenvectors associated with

the r3 largest eigenvalues coming from the solution of

CanCor
©
R0,t,R∗,t | β01R1,t, β02R2,t, β0∗R∗,t

ª
.

6. Repeat 2-5 until numerical convergence occurs.

We shall refer to this iterative procedure as the Generalized Alternating Reduced-rank
Regression [GARR] estimator of the cointegration vectors (β1, β2, β∗). Remarkably, the GARR
approach can easily be extended to take account of more complex root frequencies, like in the
case of monthly data.

4 Monte Carlo Experiments

Here we conduct a Monte Carlo study to evaluate the small-sample properties of the different
statistical procedures for seasonal cointegration analysis. In particular, we first investigate size
and power of the various tests for cointegration at the annual frequencies. Then, we analyze
the efficiency of the RR and ARR estimators of the annual cointegration vectors. Finally, we
compare the usual RR estimators of the various seasonal cointegration vectors with the ones
obtained by GARR.

4.1 Size and power of annual cointegration tests

To evaluate the small-sample performances of the tests statisticsQ1(r3|n),Q2(r3|n) andQ3(r3|n),
we extend to the seasonal case a Data Generating Process [DGP] which has been used exten-
sively in the zero-frequency cointegration literature (e.g., Gonzalo, 1994; Haug, 1996). The
bivariate DGP is

X0,t =

"
−0.2
0

#h
1 −1

i
X1,t−1 +

"
0.2

0

#h
1 −1

i
X2,t−1 + (8)"

γ

0

#h
1 −L

i
X3,t−1 + εt,

or, equivalently, in a complex-valued format

X0,t =

"
−0.2
0

#h
1 −1

i
X1,t−1 +

"
0.2

0

#h
1 −1

i
X2,t−1 + (9)"

iγ/2

0

#h
1 −i

i
X∗,t−1 +

"
−iγ/2
0

#h
1 i

i
X∗,t−1 + εt,
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where t = 1, 2, . . . , T and E(εtε
0
t) =

"
1 σρ

σρ σ2

#
.

The design parameters are

γ = (0, 0.2), ρ = (−0.5, 0, 0.5), σ2 = (0.5, 1, 2), and T = (50, 100, 200).

Some comments on the choice of the parameter values are in order. The cointegration
rank at the annual frequencies is zero when γ = 0 and is one otherwise. When γ = 0.2 slow
adjustment to equilibrium takes place. This slow adjustment assures that the small-sample
properties of the tests statistics differ substantially from the large-sample ones. The value of σ
determines the sizes of the non-stationary components in the system. Hence, the small-sample
behavior of the tests statistics can be evaluated under rather different signal-to-noise ratios. The
various non-stationary components are strictly exogenous when ρ = 0 and weakly exogenous
when ρ = ±0.5. However, there is no loss of generality since exogeneity assumptions are not
relevant for the comparison of full-information procedures. By letting ρ vary, we also check if
the tests statistics are sensitive to the degree and sign of correlation between the innovations.

In all the simulations, 10000 series are generated with initial values set to zero. The first
50 observations are discarded to eliminate dependence from the starting conditions. Based on
preliminary experiments, numerical convergence of the ARR procedure is assumed to be reached
after six iterations. Notice that a constant and seasonal dummies are included unrestrictedly
in the estimated model. Hence, the asymptotic distribution of the three test statistics is the
one tabulated in Table 1 of Cubadda (2001).

In Tables 1-2 the acceptance frequencies at the 5% level tests based on Q1(r3|n), Q2(r3|n)
and Q3(r3|n) are reported, both for r3 = 0 and r3 = 1. All the results are based on the 5%
asymptotic critical value. Notice that the last two test statistics assume the same value when
r3 = 0. It is apparent that for a given sample size the most important parameter in determining
the performance of the test statistics is σ. As expected, all the tests perform better when
the variance of the common seasonal component becomes larger. The degree of correlation
between the innovations has little effect on the size but is beneficial to the power of the tests.
In particular, power is higher when this correlation is negative.

In comparative terms, we consider a difference between the acceptance frequencies of two
different tests as significant when it is larger than twice the Monte Carlo standard error at the
nominal 5% level, i.e., 0.44%.

When r3 = 0, the tests statistic Q2(0|n) = Q3(0|n) is better sized than Q1(0|n) for all the
9 experiments with T = 50. However, only two differences between the acceptance rates of the
two tests are significant according to the adopted rule. With T = 100 the test statistics Q2(0|n)
and Q3(0|n) are better sized than Q1(0|n) in seven experiments but no difference between the
acceptance rates is significant.

When r3 = 1, the experimental evidence is more clear-cut. Indeed, with T = 50 the test
statistics Q2(1|n) and Q3(1|n) are significantly more powerful than Q1(1|n) in seven exper-
iments, whereas the opposite is true for one experiment only. Moreover, the test statistic
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Q3(1|n) dominates both the alternatives in eight experiments. The power of the three tests
become similar with T = 100.

To save space, we do not report the tables for T = 200. Indeed, the performances of the
three testing procedures are almost identical both when r3 = 0 and r3 = 1.

Overall, the new testing procedures appear to be superior to Q1(r3|n) when a limited sample
size is available. In particular, the test statistic Q3(r3|n) leads more often to the right decision
than both the alternatives. However, if one wishes to avoid the use of an iterative procedure
for computational reasons, the test statistic Q2(r3|n) generally performs better than Q1(r3|n).

4.2 Efficiency of complex cointegration vectors estimators

It is not obvious how to analyze the finite sample properties of the RR and ARR estimators
of the annual cointegration vectors in equation (9). Indeed, the asymptotic distribution of
such estimators is the complex-valued analog to the distribution of the usual Johansen (1996)
estimator, see JS (1999) and Cubadda (2001). Although Abadir and Paruolo (1997) shows
that the normalized Johansen estimator has asymptotically finite second moments, the use of
the minimum standard error criterion remains problematic due to the Cauchy-like tails of the
exact distribution of such estimator, see Phillips (1994). Hence, we compare the RR and ARR
estimators on the basis of three criteria, namely the standard error, the mean bias module of the
normalized estimators, and the distance between the actual and nominal size of the associated
LR tests for the null hypothesis that the annual cointegration vector is equal to the "true" one,
i.e., β

0
∗ = [1,−i]. The last criterion is used as a dispersion measure that is robust to the possible

presence of extreme outliers in the simulated distributions of the two estimators.
We rely on the previous Monte Carlo design with γ fixed to 0.2. From Table 3 we see that

with T = 50 the RR estimator has the smallest standard error in seven experiments whereas
the ARR is less biased in all the experiments. According to the criterion of the acceptance rate
of the LR test for β

0
∗ = [1,−i] at the 5% level, the ARR test is always better sized even if no

difference between the rejection rates is significant. The results in Table 4 indicate that the
performances of the two estimators become similar when T = 100.

Though outside the scope of this paper, we observe that the actual rejection probabilities of
both of the LR tests are far away from the nominal size. This means that some kind of small-
sample correction, such as a Bartlett correction or bootstrap, is called for, see e.g., Johansen
(2000) and Omtzigt and Fachin (2002) for the zero-frequency case.

Overall, the efficiency gains of the ARR over the RR estimator appear quite limited. In-
terestingly enough, a similar conclusion is found in a previous Monte Carlo study in Cubadda
(2001) where the RR estimator is compared with the JS switching procedure. Notice that al-
though we are not able to prove that the JS and the ARR algorithms numerically converge to
the same limit, their simulated values are indistinguishable in our experiments. This implies
that all the results that we find for the ARR can be practically referred to the JS switching
procedure as well. However, we emphasize that ARR numerically converges much faster than
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JS.

4.3 Efficiency of seasonal cointegration vectors estimators

In order to examine if the GARR estimator provides any efficiency gain in small samples over
separated RR analyses at the different frequencies, we make use of the previous Monte Carlo
design with γ fixed to 0.2. Hence, we fix a cointegration vector proportional to [1,−1] and a
slow adjustment to equilibrium at both frequencies zero and π. We assume that the various
cointegration ranks are known. The comparison of the separated RR estimators with GARR is
again evaluated according to the three criteria used above.

In Table 5 we report the results of the simulations of the usual Johansen (1996) estimator
and GARR for the zero-frequency case with T = 50. Visual inspection of the biases and
standard errors of both the estimators reveals an high incidence of abnormal values, which is
likely due to the Cauchy-like tails of such estimators in finite samples. However, the GARR
estimator has the smallest standard errors in seven experiments and the smallest bias in six
experiments. Interestingly, the GARR test for β01 = [1,−1] at the 5% level is always better
sized than the RR one and three differences between the rejection rates of the two LR tests
are indeed significant. From Table 6 we notice that when T = 100 the simulated distributions
of the two estimators are much less affected by the presence of large outliers. In comparative
terms, the GARR estimator is less dispersed and biased in six experiments and the GARR test
is better sized in eight, although no difference between the rejection rates is significant.

From Table 7 we see the results of the comparison of the Lee (1992) estimator with GARR
for the case of frequency π with T = 50. We again notice that the presence of large outliers
in the simulated distributions of both the estimators inflates their biases and standard errors.
Remarkably, although the Lee estimator exhibits the smallest standard error in five experiments
and the GARR estimator is less biased in five experiments, efficiency gains and bias reductions
are more relevant when the GARR estimator is superior. For instance, when the Lee estimator is
less dispersed than GARR the average standard error ratio of these estimators is 0.805, whereas
when the reverse is true the average standard error ratio of the GARR and Lee estimators is
0.434. Moreover, the GARR test for β02 = [1,−1] is closer to the nominal size than RR in eight
experiments even if just one difference between the rejection rates is really significant. The
results in Table 8 indicate that when T = 100 the simulated moments of both the estimators
appear much less influenced by the Cauchy-like tails. Moreover, the two estimators perform very
similarly in terms of standard error and LR test size, whereas the GARR estimator exhibits a
smaller bias in seven experiments.

In Table 9 we report the results relative to the GARR estimator for the case of frequency π
2 .

These results must be compared with those corresponding to the RR and ARR estimators of β∗
that are reported in Tables 3 and 4. Interestingly, we notice that even when T = 50 the three
estimators do not exhibit anomalous standard errors and bias modules in our simulations. An
intuitive explanation of this different behavior of RR-type estimators in the complex-root case is
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that the occurrence of large outliers in the complex plane is more unlikely than on the real axis
only. In comparative terms, with T = 50 the GARR estimator has the smallest standard error
in three experiments and the largest bias module in all the experiments, and the GARR test for
β
0
∗ = [1,−i] has the best size in five experiments, but no difference between the rejection rates
is significant. When T = 100 the performances of the three methods become similar even if the
GARR estimator remains slightly more biased than both RR and ARR in all the experiments.

5 Conclusions

In this paper we have evaluated new statistical procedures for seasonally cointegrated systems.
A Monte Carlo study has revealed that our new tests for the cointegration rank at the annual
frequency outperform the trace test proposed in Cubadda (2001) for small sample sizes.

Moreover we have presented two novel iterative RR estimation procedures; the first allows
for estimating jointly the conjugate complex cointegration vectors, the second is designed for the
simultaneous ML estimation of all the cointegration vectors at the zero and seasonal frequencies.
Our simulations suggest that the joint ML estimator is a clear improvement over the individual
RR estimators of cointegration vectors at frequencies zero and π, whereas the efficiency gains
of the new estimators appear more limited in the complex-root frequency case.

References

[1] Abadir, K.M., and P. Paruolo (1997), Two Mixed Normal Densities from Cointegra-
tion Analysis, Econometrica, 65, 671-680.

[2] Abeysinghe, T. (1994), Deterministic Seasonal Models and Spurious Regressions, Jour-
nal of Econometrics, 61, 259-72.

[3] Ahn, S.K., and G.C. Reinsel (1994), Estimation of Partially Non-Stationary Vector
Autoregressive Models with Seasonal Behavior, Journal of Econometrics, 62, 317-350.

[4] Boswijk H.P. (1995), Identifiability of Cointegrated Systems, Tinbergen Institute, 78.

[5] Brendstrup, B., Hylleberg, S., Nielsen, M., Skipper, L., and L. Stentoft
(2003), Seasonality in Economic Models, forthcoming in Macroeconomic Dynamics.

[6] Cubadda, G. (1999), Common Cycles in Seasonal Non-Stationary Time Series, Journal
of Applied Econometrics, 14, 273-291.

[7] Cubadda G. (2001), Complex Reduced Rank Models for Seasonally Cointegrated Time
Series, Oxford Bulletin of Economics and Statistics, 63, 497-511.

[8] Franses, P.H., and R.M. Kunst (1999), On the role of seasonal intercepts in seasonal
cointegration, Oxford Bulletin of Economic and Statistics, 61, 409-433.

11



[9] Franses, P.H., and M. McAleer (1998), Cointegration Analysis of Seasonal Time
Series, Journal of Economic Surveys, 12, 651-78.

[10] Ghysels, E., Granger, C.W.J., and P.L. Siklos (1996), Is Seasonal Adjustment a
Linear or Nonlinear Data-Filtering Process? (with comments), Journal of Business and
Economic Statistics, 14, 374-97.

[11] Gonzalo, J. (1994), Five Alternative Methods of Estimating Long-Run Equilibrium
Relationships, Journal of Econometrics, vol. 60, pp. 203-223.

[12] Granger, C.W.J., and P.L. Siklos (1995), Systematic Sampling, Temporal Aggrega-
tion, Seasonal Adjustment, and Cointegration: Theory and Evidence, Journal of Econo-
metrics, 66, 357-69.

[13] Haug, A.A. (1996), Tests for Cointegration. A Monte Carlo Comparison, Journal of
Econometrics, Vol. 71, pp. 89-115.

[14] Hylleberg, S., Engle, R.F., Granger, C.W.J., and B.S. Yoo (1990), Seasonal
Integration and Cointegration, Journal of Econometrics, 44, pp. 215-238.

[15] Hylleberg, S., Jorgensen, C., and N.K. Sorensen (1993), Seasonality in Macroe-
conomic Time Series, Empirical Economics, Vol. 18, pp. 321-335.

[16] Johansen, S. (1996), Likelihood-Based Inference in Cointegrated Vector Autoregressive
Models, Oxford University Press, Oxford.

[17] Johansen, S. (2000), A Bartlett Correction Factor for Tests on the Cointegrating Rela-
tions, Econometric Theory, 16, pp. 740-778.

[18] Johansen, S., and E. Schaumburg (1998), Likelihood analysis of seasonal cointegra-
tion, Journal of Econometrics, 88, pp. 301-339.

[19] Lee, H.S. (1992), Maximum Likelihood Inference on Cointegration and Seasonal Cointe-
gration, Journal of Econometrics, 54, pp. 1-47.

[20] Lof, M., and P.H. Franses (2001), On forecasting cointegrated seasonal time series,
International Journal of Forecasting, 17, 607-621.

[21] Maravall, A. (1995), Unobserved Components in Economic Time Series, in Pesaran,
M.H., and M.R. Wickens (eds.) Handbook of applied econometrics. Volume 1. Macroeco-
nomics. Blackwell, 12-72.

[22] Omtzigt, P. and S. Fachin (2002), Bootstrapping and Bartlett corrections in the
cointegrated VAR model, Technical report, University of Amsterdam.

12



[23] Phillips, P.C.B. (1994), Some Exact Distribution Theory for Maximum Likelihood
Estimators of Cointegrating Coefficients in Error Correction Models, Econometrica, 62,
pp. 73-93.

13



6 Appendix 1: Tables

table 1

Acceptance Percentages of 5% level tests for the annual cointegration rank r3

DGP: no cointegration (γ = 0)

T = 50 T = 100

r3 Q1 Q2 Q3 Q1 Q2 Q3

σ2 = 0.5 0 91.80 92.17 92.17 94.32 94.38 94.38

ρ = −0.5 1 7.69 7.34 7.37 5.32 5.25 5.25

2 0.51 0.49 0.46 0.37 0.38 0.37

σ2 = 0.5 0 91.57 92.03 92.03 94.24 94.26 94.26

ρ = 0 1 7.93 7.45 7.49 5.39 5.36 5.36

2 0.50 0.52 0.48 0.37 0.38 0.38

σ2 = 0.5 0 91.30 91.75 91.75 94.15 94.25 94.25

ρ = 0.5 1 8.17 7.72 7.77 5.47 5.37 5.37

2 0.53 0.53 0.48 0.38 0.38 0.38

σ2 = 1 0 92.08 92.33 92.33 94.45 94.47 94.47

ρ = −0.5 1 7.40 7.17 7.18 5.19 5.15 5.15

2 0.52 0.50 0.49 0.36 0.38 0.38

σ2 = 1 0 91.76 92.08 92.08 94.33 94.23 94.23

ρ = 0 1 7.73 7.40 7.44 5.29 5.40 5.40

2 0.51 0.52 0.48 0.38 0.37 0.37

σ2 = 1 0 91.46 91.93 91.93 94.24 94.24 94.24

ρ = 0.5 1 8.04 7.53 7.59 5.38 5.36 5.37

2 0.50 0.49 0.48 0.38 0.40 0.39

σ2 = 2 0 92.32 92.45 92.45 94.43 94.52 94.52

ρ = −0.5 1 7.19 7.05 7.07 5.22 5.07 5.08

2 0.49 0.50 0.48 0.35 0.41 0.40

σ2 = 2 0 92.07 92.24 92.24 94.37 94.40 94.40

ρ = 0 1 7.39 7.26 7.30 5.26 5.21 5.21

2 0.54 0.50 0.46 0.37 0.39 0.39

σ2 = 2 0 91.78 91.95 91.95 94.37 94.39 94.39

ρ = 0.5 1 7.71 7.57 7.58 5.26 5.21 5.21

2 0.51 0.48 0.47 0.37 0.40 0.40
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table 2

Acceptance Percentages of 5% level tests for the annual cointegration rank r3

DGP: one cointegration vector (γ = 0.2)

T = 50 T = 100

r3 Q1 Q2 Q3 Q1 Q2 Q3

σ2 = 0.5 0 10.91 11.89 11.89 0.01 0.00 0.00

ρ = −0.5 1 83.04 82.28 82.31 94.80 94.65 94.67

2 6.05 5.83 5.80 5.19 5.35 5.33

σ2 = 0.5 0 32.48 32.17 32.17 0.41 0.42 0.42

ρ = 0 1 62.90 63.03 63.10 94.29 94.20 94.21

2 4.62 4.80 4.73 5.30 5.38 5.37

σ2 = 0.5 0 24.50 23.50 23.50 0.13 0.11 0.11

ρ = 0.5 1 71.30 71.90 72.10 94.35 94.42 94.43

2 4.20 4.60 4.40 5.52 5.47 5.46

σ2 = 1 0 6.63 6.01 6.01 0.00 0.00 0.00

ρ = −0.5 1 87.12 87.80 87.83 94.47 94.42 94.42

2 6.25 6.19 6.16 5.53 5.58 5.58

σ2 = 1 0 26.09 22.18 22.18 0.08 0.05 0.05

ρ = 0 1 68.75 72.52 72.59 94.51 94.51 94.51

2 5.16 5.30 5.23 5.41 5.44 5.44

σ2 = 1 0 19.97 15.64 15.64 0.02 0.02 0.02

ρ = 0.5 1 75.09 79.32 79.44 94.26 94.22 94.23

2 4.94 5.04 4.92 5.72 5.76 5.75

σ2 = 2 0 2.62 1.71 1.71 0.00 0.00 0.00

ρ = −0.5 1 90.85 91.71 91.76 94.36 94.31 94.31

2 6.53 6.58 6.53 5.64 5.69 5.69

σ2 = 2 0 15.90 10.57 10.57 0.01 0.01 0.01

ρ = 0 1 78.40 83.72 83.81 94.26 94.35 94.38

2 5.70 5.71 5.62 5.73 5.64 5.61

σ2 = 2 0 13.49 7.53 7.53 0.00 0.00 0.00

ρ = 0.5 1 80.96 87.01 87.13 94.28 94.36 94.36

2 5.55 5.46 5.34 5.72 5.64 5.64
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table 3

Standard Errors (SE) and Bias modules (BM) of the RR and ARR estimators of β∗,
Rejection Percentages (RP) of the 5% level LR-tests for the null hypothesis: β

0
∗ = [1,−i]

RR estimator ARR estimator
T = 50 SE BM RP SE BM RP

σ2 = 0.5

ρ = −0.5 0.548 0.0111 16.79 0.571 0.0095 16.50

ρ = 0 0.662 0.0231 19.58 0.651 0.0218 19.23

ρ = 0.5 0.509 0.0258 18.12 0.552 0.0230 17.97

σ2 = 1

ρ = −0.5 0.397 0.0054 15.79 0.413 0.0052 15.52

ρ = 0 0.436 0.0165 18.07 0.437 0.0150 17.66

ρ = 0.5 0.359 0.0181 16.98 0.362 0.0167 16.80

σ2 = 2

ρ = −0.5 0.246 0.0023 14.61 0.251 0.0020 14.30

ρ = 0 0.298 0.0082 16.21 0.296 0.0075 16.14

ρ = 0.5 0.251 0.0100 15.36 0.252 0.0095 15.32

table 4

Standard Errors (SE) and Bias modules (BM) of the RR and ARR estimators of β∗,
Rejection Percentages (RP) of the 5% level LR-tests for the null hypothesis: β

0
∗ = [1,−i]

RR estimator ARR estimator
T = 100 SE BM RP SE BM RP

σ2 = 0.5

ρ = −0.5 0.202 0.0016 9.89 0.203 0.0018 9.63

ρ = 0 0.246 0.0070 10.89 0.240 0.0073 10.76

ρ = 0.5 0.206 0.0084 10.25 0.207 0.0087 10.27

σ2 = 1

ρ = −0.5 0.143 0.0012 9.22 0.143 0.0012 9.08

ρ = 0 0.168 0.0045 9.96 0.169 0.0049 10.07

ρ = 0.5 0.146 0.0058 9.53 0.147 0.0060 9.43

σ2 = 2

ρ = −0.5 0.101 0.0009 8.75 0.101 0.0009 8.64

ρ = 0 0.119 0.0025 8.94 0.119 0.0027 9.01

ρ = 0.5 0.104 0.0031 8.54 0.105 0.0032 8.63
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table 5

Standard Errors (SE) and Biases of the Johansen and GARR estimators of β1,
Rejection Percentages (RP) of the 5% level LR-tests for the null hypothesis: β01 = [1,−1]

Johansen estimator GARR estimator
T = 50 SE Bias RP SE Bias RP

σ2 = 0.5

ρ = −0.5 2.903 −0.0374 12.90 5.878 −0.1087 12.49

ρ = 0 62.91 −0.6844 16.15 23.41 −0.2749 15.52

ρ = 0.5 29.36 0.2439 16.88 12.60 0.1691 16.26

σ2 = 1

ρ = −0.5 21.52 −0.3319 12.02 10.31 0.0707 11.74

ρ = 0 8.247 0.0776 14.98 7.568 0.0113 14.34

ρ = 0.5 11.76 0.2070 16.52 5.148 0.0539 16.15

σ2 = 2

ρ = −0.5 19.96 −0.2001 11.18 0.489 −0.0153 10.88

ρ = 0 2.713 −0.0078 13.53 1.693 −0.0091 13.29

ρ = 0.5 2.150 −0.0052 15.65 5.667 0.0534 15.46

table 6

Standard Errors (SE) and Biases of the Johansen and GARR estimators of β1,
Rejection Percentages (RP) of the 5% level LR-tests for the null hypothesis: β01 = [1,−1]

Johansen estimator GARR estimator
T = 100 SE Bias RP SE Bias RP

σ2 = 0.5

ρ = −0.5 0.252 −0.0038 8.17 0.298 −0.0000 8.21

ρ = 0 0.375 −0.0022 9.31 0.398 0.0002 9.20

ρ = 0.5 0.387 0.0168 9.98 0.340 0.0154 9.77

σ2 = 1

ρ = −0.5 0.174 −0.0029 8.01 0.172 −0.0008 7.99

ρ = 0 0.234 −0.0017 9.09 0.280 −0.0020 9.06

ρ = 0.5 0.490 −0.0001 9.74 0.264 0.0055 9.54

σ2 = 2

ρ = −0.5 0.122 −0.0023 7.76 0.121 −0.0006 7.70

ρ = 0 0.226 −0.0013 8.54 0.154 −0.0022 8.41

ρ = 0.5 1.176 −0.0130 9.03 0.300 −0.0030 8.99
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table 7

Standard Errors (SE) and Biases of the Lee and GARR estimators of β2,
Rejection Percentages (RP) of the 5% level LR-tests for the null hypothesis: β02 = [1,−1]

Lee estimator GARR estimator
T = 50 SE Bias RP SE Bias RP

σ2 = 0.5

ρ = −0.5 1.389 −0.0371 12.95 1.231 −0.0466 12.80

ρ = 0 136.6 1.3292 15.49 6.303 −0.0042 15.52

ρ = 0.5 42.77 −0.4288 17.43 5.976 0.0086 16.97

σ2 = 1

ρ = −0.5 1.459 −0.0919 12.04 0.912 −0.0344 11.91

ρ = 0 2.507 −0.0501 14.16 2.822 −0.0243 13.90

ρ = 0.5 3.715 −0.0177 15.87 4.971 −0.0123 15.60

σ2 = 2

ρ = −0.5 0.358 −0.0149 11.64 0.331 −0.0174 11.55

ρ = 0 0.776 −0.0250 12.79 1.031 −0.0341 12.74

ρ = 0.5 1.599 −0.0673 13.72 3.161 −0.0801 13.83

table 8

Standard Errors (SE) and Biases of the Lee and GARR estimators of β2,
Rejection Percentages (RP) of the 5% level LR-tests for the null hypothesis: β02 = [1,−1]

Lee estimator GARR estimator
T = 100 SE Bias RP SE Bias RP

σ2 = 0.5

ρ = −0.5 0.250 −0.0041 8.52 0.249 −0.0038 8.43

ρ = 0 0.305 −0.0075 9.68 0.304 −0.0034 9.71

ρ = 0.5 3.056 0.0247 9.89 0.380 0.0072 9.93

σ2 = 1

ρ = −0.5 0.173 −0.0016 7.98 0.173 −0.0020 8.02

ρ = 0 0.207 −0.0044 9.15 0.207 −0.0023 9.16

ρ = 0.5 0.190 −0.0049 9.48 0.190 −0.0007 9.47

σ2 = 2

ρ = −0.5 0.122 −0.0004 7.93 0.122 −0.0012 7.89

ρ = 0 0.143 −0.0021 8.67 0.143 −0.0017 8.66

ρ = 0.5 0.125 −0.0029 8.84 0.125 −0.0011 8.89
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table 9

Standard Errors (SE) and Bias modules (BM) of the GARR estimator of β,
Rejection Percentages (RP) of the 5% level LR-tests for the null hypothesis: β

0
∗ = [1,−i]

T = 50 T = 100

SE BM RP SE BM RP

σ2 = 0.5

ρ = −0.5 0.565 0.0129 16.45 0.202 0.0027 9.61

ρ = 0 0.625 0.0337 19.23 0.239 0.0109 10.80

ρ = 0.5 0.553 0.0373 17.81 0.206 0.0138 10.31

σ2 = 1

ρ = −0.5 0.390 0.0061 15.43 0.143 0.0205 9.08

ρ = 0 0.432 0.0213 17.87 0.168 0.0070 10.02

ρ = 0.5 0.365 0.0267 16.79 0.146 0.0097 9.58

σ2 = 2

ρ = −0.5 0.296 0.0025 14.50 0.101 0.0019 8.65

ρ = 0 0.299 0.0091 16.26 0.119 0.0033 9.12

ρ = 0.5 0.254 0.0144 15.42 0.104 0.0048 8.76
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