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Abstract: Principal Component Analysis (PCA) is a well known technique the aim of which is to 

synthesize huge amounts of numerical data by means of a low number of unobserved variables, 

called components. In this paper, an extension of PCA to deal with interval valued data is proposed. 

The method, called Midpoint Radius Principal Component Analysis (MR-PCA) recovers the 

underlying structure of interval valued data by using both the midpoints (or centers) and the radii (a 

measure of the interval width) information. In order to analyze how MR-PCA works, the results of a 

simulation study and two applications on chemical data are proposed. 
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1. Introduction 

 

In conventional data analysis, the variables are represented by single valued vectors (numerical 

vectors). However, in several substantive applications, the utilization of single valued variables may 

bring about a heavy loss of information. For example, in chemometrics, we may study the mineral 

concentrations of food products analyzed at different times or in different experimental situations; 

in meteorology, we may consider the daily temperature, humidity and wind speed registered in 

different places; in environmetrics, we may refer to the pollutant concentrations of SO2, CO, NO, 

NO2, O3 recorded at various places; in finance, we may examine the daily rate of exchange between 

Euro-Dollar or Euro-Sterling; in medicine, we may make reference to daily systolic and diastolic 

pressure, pulse rate, temperature of patients; and so on. In all the previous cases, it is more 

interesting to take into account the minimum and maximum values registered in the considered 

period rather than the average one because they offer more detailed and complete information about 

the phenomenon under examination. 

We can formalize an interval valued datum as ],[    jijiji xxx = , i=1,…,I; j=1,…,J, where jix   

represents the j-th interval valued variable observed on the i-th observation unit; jix   and jix   

denote, respectively, the lower and upper bounds of the interval; in particular, they represent the 

minimum and maximum values registered for the j-th interval valued variable with respect to the i-

th observation unit. Notice that, in the general case of J interval valued variables, each observation 

unit can be represented geometrically by a hyperrectangle in Jℜ  having 2J vertices. The set of the 

2J vertices corresponds to all the possible (lower bound, upper bound) combinations. In particular, 

in ℜ  (J=1) the generic object is represented by a segment; in 2ℜ  (J=2), it is represented by a 

rectangle with 22=4 vertices, and so on. See also [1-2]. Moreover, see, in the fuzzy data framework, 

[3-4]. 

In many real situations, as it happens with traditional single valued data, it is desirable to compress 

interval valued data losing relevant information as little as possible. When the data set is numerical 

valued, this can be done by means of Principal Component Analysis (PCA). Let X be the numerical 

data matrix of order ( )JI× . We have  

 

EBAX +′=            (1) 
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where A is the component scores matrix of order ( )PI× , B is the component loadings matrix of 

order ( )PJ× , E ( )JI ×  is the residual matrix and P (<J) is the number of extracted components. 

Notice that BA ′  provides the best approximation of rank P of the original data matrix X.  

The popularity of PCA (and its three-way extensions) in chemistry is recognized. For instance, it is 

used for second-order calibration, fluorescence spectroscopy, chromatography, food quality 

evaluation (see, e.g., [5-7]). In this paper, we propose suitable extensions of conventional Principal 

Component Analysis (PCA) when the data are intervals.  

The paper is organized as follows. In the next section we recall Vertices Principal Component 

Analysis (V-PCA) and Centers Principal Component Analysis (C-PCA). They are, probably, the 

two most popular methods which detect the underlying structure of interval valued data. In section 

3, we propose our method. In section 4, we propose how to plot the observation units in the 

obtained low dimensional space. In section 5, we give the results of a simulation study carried out 

in order to compare our method with C-PCA and V-PCA. Finally, in section 6, we show two 

applications of our method on two chemical data sets.  

 

 

 

2. Vertices Principal Component Analysis (V-PCA) and Centers Principal Component 

Analysis (C-PCA). 

 

Vertices Principal Component Analysis (V-PCA) and Centers Principal Component Analysis (C-

PCA) are multi-step procedures which aim at detecting the underlying structure of two-way interval 

valued data sets [1-2]. Let us consider to deal with I observation units characterized by J interval 

valued variables. The data are stored in the interval valued matrix X, the generic element of which 

is [ ]ijijij xxx ,= , Ii ,,1K= , Jj ,,1K= .   

The first step of both methods consists of replacing the interval valued matrix by a single valued 

one. In V-PCA, this is done by transforming the original data matrix of order ( )JI ×  into a 

numerical one of order ( )J2I J × . In the original interval valued matrix X, the generic i-th row 

pertains to the i-th observation unit. Each row is transformed into the submatrix Xi  of order 

( )J2 J ×  in which each row refers exactly to each vertex of the hyperrectangle associated to the 

generic i-th observation unit. Thus, with regard to observation unit i, if we have 2J =  variables, the 

coding procedure leads to 
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and the new data matrix is 
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V-PCA is nothing but performing PCA on (3). It should be clear that V-PCA is computationally 

cumbersome when the data size is huge because the number of rows of the matrix in (3) is 

exponentially related to the number of variables. However, the computation of the component 

loadings matrix can be simply obtained, because it is based on the eigendecomposition of the cross-

products matrix PCAVPCAV −−′ XX , which can be easily computed. In fact, it can be shown that  
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See, for further details, [2]. 

In C-PCA, each element of the interval valued matrix X is replaced by the midpoint (or center) of 

the associated interval. Thus, we get the ( )JI × -matrix 
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where .,,1  and  ,,1for    ,
2
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=  Now, classical PCA is performed on PCAC −X .  

Using both methods, we can represent each observation unit as a low dimensional hyperrectangle. 

When the loadings are columnwise orthonormal, the scores provide the projection of the 

observation units in the low dimensional space spanned by the loadings. With respect to V-PCA, 

the scores give the coordinates of the vertices for all the observation units in such low dimensional 

space. Unfortunately, the projected vertices do not define exactly a hyperrectangle. This problem 

can be solved by considering the Maximum Covering Area Rectangle (MCAR), that is considering 

the hyperrectangle (the rectangle if we extract 2=P  components) which encloses all the projected 

vertices. If we are performing C-PCA, the low dimensional hyperrectangles can be found by noting 

that the coordinates of the midpoints are enclosed between the lower and upper bounds and that the 

principal components are linear functions of the ijm ’s. See, for further details, [1-2]. 

So far, we recalled the two most popular methods to analyze the underlying structure of interval 

valued data sets. Further extensions of PCA for interval valued data can be found in [8-9]. In the 

next section we provide a different approach to the problem. 

 

 

 

3. Principal Component Analysis for Interval Valued Data 

 

3.1. The model 

We already noticed that each observation unit can be seen as a hyperrectangle in Jℜ . Let M be the 

midpoints matrix as given in (5), the generic element of which is the midpoint of the associated 

interval. Moreover, let R be the radii matrix of order ( )JI ×   
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half-width of an interval.  

The principal component model for interval valued data is given by: 

 

MEMM * += ,           (7) 

BAM* ′= M ,           (8) 

RERR * += ,           (9) 

BAR* ′= R ,           (10) 

Kkkkk ,...,1      ** =++=+ ZHRMRHM ,      (11) 

 

where, *M  and *R  are the matrices of order ( )JI ×  of the estimated midpoints and radii, 

respectively. MA  and RA  are, respectively, the component scores matrices for the midpoints and 

for the radii of order ( )PI× , B is the component loadings matrix of order ( )PJ× . Finally ME , RE  

and kZ  are residual matrices of order ( )JI × . We refer to the model in (7)-(11) as Midpoint Radius 

Principal Component Analysis (MR-PCA). 

In MR-PCA, we assume that different scores are determined for the midpoints and the radii, 

whereas the loadings are the same. Thus, the proposed model is based upon the assumption that the 

midpoints and the radii are modelled by means of the same components. It follows that the MR-

PCA model can be seen as a special case of Simultaneous Component Analysis with invariant 

Pattern (SCA-P). SCA is a generalization of PCA proposed in [10-12] when observations on the 

same variables have been registered in more than one population. Instead of analyzing the 

observations separately, the idea is to find components that explain as much variance as possible in 

all populations simultaneously. In SCA-P [12], a special version of SCA, the number of component 

scores matrices is equal to the number of populations, while one common loadings matrix is 

constructed. It is well known that the same components can be always extracted from different 

populations and, indeed, in the MR-PCA method, from the midpoints and radii matrices. However, 

one can argue whether such components are able to synthesize simultaneously both the midpoints 

and the radii in a satisfactory way. In Section 5, we aim at answering this question. In particular, we 

will give the results of a simulation study carried out in order to assess whether our method recovers 

the underlying structure in the data better than C-PCA and V-PCA. 

It is fruitful to observe that the model in (7)-(11) is the same as the one for fuzzy data proposed in 

[4]. It is recognized that the analysis of interval valued data can be considered as a sub-domain of 

fuzzy set theory. Specifically, an interval valued number can be seen as a fuzzy number with the so-

called rectangular membership function. See, for instance, [13]. However, in spite of all that, we 
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prefer to treat differently interval valued data and fuzzy data. This is based upon the assumption that 

methods suitable for fuzzy data should be constructed in such a way that the role of the midpoints or 

centers (whose membership function values are maximal) must be emphasized. This does not hold 

in the interval valued data framework where all the points in the interval are considered on the same 

foot. 

So far, we showed how to model the midpoints and the radii. Following a least squares approach, 

the optimal component matrices MA , RA  and B are then obtained by minimizing a suitable loss 

function, which compares the observed and theoretical data as given in (7)-(11). Such a loss 

function is based on the distance measure between observed and theoretical interval valued data that 

will be proposed in the next subsection.  

 

 

3.2. The distance measure 

In order to compare, in the least squares sense, two observation units described by J interval valued 

variables, we suggest to consider all the vertices of the two hyperrectangles pertaining to the 

observation units involved. Thus, we get the following squared distance: 
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in which i′m  and i ′′m  denote, respectively, the i′ -th and the i ′′  rows of M and i′r  and i ′′r  those of 

R. The symbol ∗  denotes the Hadamard product, that is the elementwise product of two matrices 

(vectors) of the same order. The vectors, kh , 1=k ,…,K, where JK 2= , help us to define every 

vertex of the hyperrectangle associated to each observation unit separately. In fact, their elements 

are equal to 1±  in order to refer exactly to every vertex. The vectors kh , 1=k ,…,K, are the rows 

of a new matrix, say H, of order ( )JK× .  If 3=J , we get: 
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Using 1h  (first row of H) we get the vector of the lower bounds pertaining to the i-th observation 

unit: 

 

( ) ( ) iiiiiii xxx rmrm −=−−−∗+= 111321 .      (14) 

 

Analogously to (14), by means of 5h , we obtain the vector of the upper bounds: 

 

( ) ( ) iiiiiii xxx rmrm +=∗+= 111321 .      (15) 

 

In order to compare a set of I observation units characterized by J interval valued variables, and a 

set of estimated ones, the use of (12) leads to the following squared distance: 
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where kH , 1=k ,…,K, are diagonal matrices whose diagonal elements are equal to those of the 

vectors kh , 1=k ,…,K. 

It can be easily seen that the matrices kH , 1=k ,…,K, satisfy the following properties that will be 

very useful in order to simplify (16): 
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Let us consider the k-term of the sum in (16). After a little algebra we get 
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By taking into account (17), (19) can be simplified as 
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Upon substituting (20) into (16) and considering (18), we obtain 
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We notice that (21) is the matrix generalization of the distance between two vectors of fuzzy 

numbers proposed in [14].  

 

 

3.3. The solution 

The solution of the model is obtained by means of the Singular Value Decomposition (SVD) of the 

matrix 
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Y  of order ( )JI×2  that is decomposed as QPD ′  where P and Q are matrices 

containing the unit length singular vectors of Y and D is the diagonal matrix displaying the singular 

values of Y in decreasing order. The best P-rank decomposition of Y is PPP QDP ′  where PP  and 

PQ  are matrices containing the first P columns of P and Q, and PD  is the diagonal matrix 

displaying the first P singular values of Y. In fact, according to (8) and (10), (21) can be written as 
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where 
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A . We then get the following solution: 

  
 PPM DPA 1=            (23) 

PPR DPA 2=            (24) 
 PQB=             (25) 

 

where 1
PP  and 2

PP , contain, respectively, the first I rows and the last I rows of PP .  

We notice that the solution in (23)-(25) does not guarantee that the estimated radii are non negative. 

If negative estimated radii occur, two possible approaches can be adopted.  

The first approach simply consists of replacing negative estimated radii by zero. This is done under 

the assumption that possible negative estimates of the radii correspond to a lack of uncertainty. 

Thus, for any practical purpose, negative estimated radii can be set equal to zero.  

The second approach is based on the following rowwise Alternative Least Squares (ALS) algorithm 

that updates the rows of the component matrices MA , RA  and B by minimizing the loss function in 

(22) subject to the non-negativity constraint on *R , as given in (10). Notice that the updates of all 

the rows of MA  do not affect the non-negativity of the estimated radii. Thus, in order to reduce 

computation time, the updating of the entire matrix MA  should be considered. The algorithm 

involves the following steps: 

 

________________________________________________________________________________ 

 

Step1 (Initialization): 

Consider a feasible solution such that 0BA ≥′R . It can be randomly generated from the uniform 

distribution in [ ]z,0 , 0>z  or it can be obtained considering (24) and (25) by replacing negative 

values with random values from the uniform distribution in [ ]z,0 , 0>z . 

 

Step 2 (Updating): 

Update MA  and all the rows of RA  ( iRa ’s) and B ( jb ’s) by solving, for each row of each matrix, 

the following constrained problem:  

 

.subject to
∆~minimize 222

0BA
BARBAM

≥′
′−+′−=

R

RM       (26) 
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Step 3 (Convergence): 

Check whether the loss function decreased less than a pre-specified percentage with respect to the 

previous function value. If the decrease is negligible, conclude that the algorithm has converged; 

otherwise go to Step 2.  

________________________________________________________________________________ 

 

The problem in (26) can be solved by means of active sets algorithms as described in [15]. In 

particular, the LSI algorithm can be adopted. It solves the following problem: 

 

( )
. subject to

minimize 2

tSx
dCxx

≥
−=f          (27) 

 

where C is a ( )21 nn × -matrix, x a 2n -vector, d an 1n -vector, S a ( )23 nn × -matrix, t a 3n -vector. 

The updating of the generic i-th row of RA  is obtained by setting iRax ′= , BC = , ird ′=  (where ir  

is the i-th row of R), BS =  and J0t = . The updating of the generic j-th row of B is obtained by 

setting jbx ′= , AC = , jyd =  (where jy  is the j-th column of Y), RAS =  and I0t = . Finally, 

since MA  does not affect the estimated radii, MA  is updated by solving an ordinary regression 

problem. We thus have ( ) 1−′= BBMBA M .  

In fact, whenever a matrix or a row is updated, the loss function to minimize does not increase. The 

expression in (22) has a lower bound and therefore the function value converges to a stable value. 

We notice that the above procedure does not guarantee that the global optimum is attained.  

 

 

3.4. The goodness of fit index 

In order to evaluate the goodness of fit of the model, we suggest to compare the estimated and 

observed values by considering the following performance index: 
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The index takes values from 0 to 100. Values near 100 show that the model fits the data well. 

 

 

Remark 1: Preprocessing 

In the MR-PCA method, if it is desirable to preprocess the data, we suggest to standardize each 

midpoint score by subtracting the mean and dividing by the standard deviation of the variable at 

hand. The radii can be preprocessed by dividing them by the standard deviation of the related 

midpoints. 

 

 

  

4. Graphical representation of the observation units 

 

In several cases, it can be convenient to plot the entities of the observation unit mode onto the low 

dimensional space spanned by the component loadings matrix B. This provides a representation of 

each observation unit as a low dimensional hyperrectangle in Pℜ . In the MR-PCA method, as well 

as for classical PCA and, indeed, for the C-PCA and V-PCA methods, in order to have an adequate 

plot, B must be columnwise orthonormal. If such a property does not hold, the plot is distorted 

because the axes have unequal length. See, for further details, [16]. 

The non-iterative algorithm guarantees that B is columnwise orthonormal taking into account that, 

in the SVD decomposition, PQ  contains the first P unit length singular vectors of the matrix on 

which the SVD is performed. If negative estimates of the radii occur, the iterative algorithm must be 

run. In this case, the optimal loadings matrix B is not columnwise orthonormal. Thus, we find a 

transformation matrix T such that BTB=ˆ  is columnwise orthonormal provided that A is 

postmultiplied by ( ) 1−′T , that is ( ) 1ˆ −′= TAA . In fact, this procedure does not modify the fitting of 

the model taking into account that 

 

( ) ( ) BABTTABA ′=′′=′ −1ˆˆ .         (29) 

 

It is well known that the matrix T can be found, for instance, by means of the Gram-Schmidt 

orthonormalization procedure. 
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To simplify the notation, let us suppose that B is columnwise orthonormal. Going into detail, two 

plotting procedures can be proposed. The first one consists of projecting all the vertices pertaining 

to each hyperrectangle in the low dimensional space spanned by B. The matrices of the estimated 

vertices of the i-th hyperrectangle, say iV , of order ( )JK× , can be written as 

 

 **
iii HR1MV +=           (30) 

 

where H was introduced in Section 3, *
iM  and *

iR  are diagonal matrices whose main diagonals are 

the i-th rows of, respectively, *M  in (7) and *R  in (10), and 1 is a matrix with unit elements of 

order ( )JK× . The matrix 

 

 BVA ii =            (31) 

 

contains the coordinates of the vertices pertaining to the i-th hyperrectangle in the low dimensional 

space spanned by B. As one may expect, the union of the points in (31) does not define a low 

dimensional hyperrectangle. The problem can be solved by considering the hyperrectangle which 

encloses all the projected vertices. With respect to the i-th observation unit and the p-th component, 

we have the lower and the upper bounds, respectively, as 

 

( )p
ipi a amin= ,          (32) 

( )p
ipi a amax= ,          (33) 

 

where p
i a  denotes the p-th column of Ai . 

In order to find exact low dimensional hyperrectangles we also propose the following procedure. 

Let CH  be the matrix of order ( )PP ×2  whose role is to define every vertex of the low dimensional 

hyperrectangles in Pℜ , similarly to H with respect to the hyperrectangles in Jℜ . The matrix H 

refers to the variable space, whereas CH  refers to the component space. As the rows of MA  and RA  

provide the coordinates of, respectively, the midpoints and the radii in the low dimensional space 

spanned by B, the vertices of the low dimensional hyperrectangle pertaining to the generic i-th 

observation unit are 
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 R
i

CM
i

C
i AHA1A += ,         (34) 

 

where M
iA   and R

iA  are diagonal matrices whose main diagonal elements are, respectively, those of 

iMa , the i-th row of MA , and iRa , the i-th row of RA . Finally C1  is a matrix of order ( )PP ×2  

whose elements are 1’s. It is worth to notice that the elements of R
iA  can be negative. It follows that 

the visualization tool loses the information about the signs of the elements in R
iA , Ii ,,1K= , but it 

has no effects from a graphical point of view. However we suggest, using the rotational freedom of 

MR-PCA, to find, if it exists, a columnwise orthonormal rotation matrix W (it very often suffices to 

use a diagonal matrix whose elements are 1± ) such that the coordinates of the radii are non negative 

provided that the rotation is compensated by postmultipling the loadings by ( ) 1−′W . 

 

 

 

5. Simulation study 

 

In this section we give the results of a simulation study carried out in order to compare MR-PCA to 

C-PCA and V-PCA. Specifically, the simulation study aims at answering whether the compromise 

structure obtained by means of the MR-PCA method recovers better than C-PCA and V-PCA the 

underlying structure (the component loadings B) in the interval valued data. Notice that, in the 

C-PCA method, only the information pertaining to the midpoints is used in recovering the 

underlying structure of the interval valued data set involved. The information about the width of the 

intervals plays a relevant role just afterwards. In fact, the radii help us in determining the size of the 

low dimensional hyperrectangles associated to the observation units. Therefore, the simulation 

study also offers a comparison between MR-PCA and classical PCA applied on the midpoints.  

Moreover, we investigate about the cases in which negative estimated radii occur. In these cases we 

apply the iterative algorithm. In fact, we study the computation time and the decrease of fit with 

respect to the solution of the non iterative procedure. 

For each simulated data set, we randomly generate from the uniform distribution in [ ]1,0  the known 

component loadings matrix, say B~ , and the component scores matrices for the midpoints, say MA~ , 

and for the radii, say RA~ . Six levels of noise ( 0.2,5.1,0.1,5.0,3.0,1.0=n ) are added to the obtained 

data. Therefore, we get 
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MM nNBAM +′= ~~ ,          (35) 

RR nNBAR +′= ~~ ,          (36) 

 

where MN  and RN  are randomly generated matrices from the uniform distribution in [ ]1,0  for 

which the following relations hold: 

 
22~~

MM NBA =′ ,          (37) 

22~~
RR NBA =′ .          (38) 

 

By means of (37)-(38), we are able to quantify exactly the level of added noise according to the 

values of the parameter n. We construct data sets with three different numbers of observation units 

( 24,18,12=I ) and variables ( 12,9,6=J ) and we consider three relative sizes of the radii with respect 

to the midpoints ( 0.1,5.0,25.0=r ). Finally, we use 3,2=P  components. For each condition (a 

combination of the values pertaining to the five design variables), we generate ten data sets. 

Therefore, the simulation study is done on 3.240 data sets. 

It remains to show how to evaluate whether one method works noticeably better than the other ones. 

Let CB , VB  and MRB  be the estimated component loadings matrix obtained performing, 

respectively, C-PCA, V-PCA and MR-PCA. To deal with the rotational freedom in the models, we 

first transform CB , VB  and MRB  in such a way that they are as similar as possible to B~ . In fact, we 

seek the matrices CW , VW  and MRW  for which, respectively, 
22 ~min~ BWBBWB

W
−=− CCC , 

22 ~min~ BWBBWB
W

−=− VVV  and 
22 ~min~ BWBBWB

W
−=− MRMRMR . The above minimization 

problems are simple regression problems that can be easily solved.  

Let CCC WBB =~ , VVV WBB =~  and MRMRMR WBB =~ . In order to compare the estimated component 

loadings matrices with the known generated one, we consider the following index known as 

proportion of recovery (PR) measure (see, e.g., [17]): 

 

100~

~~
1 2

2

*















 −
−=

B

BB
PR ,         (39) 
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where *
~B  denotes the rotated estimated component loadings matrix. The index in (39) takes values 

from 0 to 100. Values near to 100 show that the method at hand recovers the known component 

loadings matrix B~  well. 

 

 

5.1. Performance of the model 

We assume that one method works noticeably better than the remaining two when the PR value 

differs more than 5% with respect to the ones pertaining to the remaining two methods. The results 

are displayed in Figure 1 for each level of each design variable separately. On average, in 28.8% of 

cases, MR-PCA recovers the underlying structure of the data better than the other methods, whereas 

C-PCA and V-PCA only in, respectively, 3.1% and 0.3% of cases.  

Going into detail, we notice that MR-PCA works noticeably better than C-PCA except when the 

level of added noise is small. The size of the radii and the number of extracted components do not 

affect the results. The recovering performance of MR-PCA is better when the number of 

observation units decreases or the number of variables increases. The MR-PCA method performs 

very well when the level of noise added is higher than 0.5. In fact, on average, the PR values 

pertaining to the MR-PCA method are considerably higher in 56.2% of cases and C-PCA in 1.7% 

(V-PCA only in 0.2%). 
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Figure 1: Percentage of times in which one method recovers the known component loadings 

matrix noticeably better than the others 

Note: White slices = C-PCA works better, Black slices = V-PCA works better, Dark Grey slices = MR-PCA works 

better, Light Grey slices = The methods work equally well.   
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Further details are given by considering Figure 2, which gives the average recovering performance 

of C-PCA, V-PCA and MR-PCA in terms of the PR index, for each level of each design variable 

separately. According to Figure 2, we can observe that the average PR value pertaining to the V-

PCA method is always the lowest except for 25.0=r  when it is slightly higher than that pertaining 

to C-PCA. The average PR values pertaining to the MR-PCA method are very often higher than 

those pertaining to C-PCA. Only when the levels of added noise are small, the average C-PCA 

values are slightly higher. The average PR value for MR-PCA is 88.6% versus 81.9% for C-PCA 

and 75.7% for V-PCA. With respect to the MR-PCA method, the average values seem to not 

depend on the number of observation units, the number of variables and the size of the radii. The 

highest difference between the performance of MR-PCA and that of the remaining methods is 

attained when the level of added noise is the highest ( 0.2=n ). 

 

Figure 2: Recovering performance of C-PCA (or PCA) in white, V-PCA in black and MR-PCA 

in grey, in terms of the PR index. 

 

Summing up, we can argue that the MR-PCA method works better than C-PCA and V-PCA 

especially when the level of added noise is high. In the remaining conditions, the MR-PCA method 

should be preferable. However, the different levels of the remaining design variables slightly affect 

the performance of the method. 
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5.2. Negative estimated radii 

In this subsection, we aim at studying the occurrences in which the estimates of the radii are 

negative by means of the non-iterative algorithm given in Section 3.3. 

Out of 3.240 randomly generated data sets, we obtain negative estimates only 60 times (1.9% of 

cases). Further details can be found in Figure 3. 

 

Figure 3: Number of times in which negative estimates occur 

 

The number of times in which negative estimates of the radii occur increases when the number of 

observation units increases or the number of variables decreases. As it should be expected, when the 

size of the radii is small, the risk of negative estimates increases. In fact, as the generated radii are 

nearer to zero, the possibility to obtain negative estimates increases. Analogously, when the level of 

added noise increases or the number of extracted components decreases, the number of times in 

which negative estimates occur increases. In both cases, the fit of the model decreases and, as a 

consequence, the risk of irregular estimates – in particular, negative estimates - increases.  

Whenever negative estimates of the radii occur, we run the row-wise ALS algorithm given in 

Section 3.3 considering as starting point the non-iterative solution and replacing negative 

component loadings and component scores for the radii by randomly generated numbers from the 

uniform distribution in [ ]1,0  in order to deal with a feasible solution. The need for the iterative 

algorithm leads to a negligible decrease of fit (0.02% on average according to the index in (28)). 
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The computation time of the algorithm is very low. In fact, the average computation time is 1.8 

seconds. It seems to be affected only by the number of observation units and by the level of added 

noise as we can observe in Figure 4. 

 

Figure 4: Computation time of the iterative algorithm 

 

To sum up, the possibility of obtaining negative estimates of the radii is very low. In such unlucky 

occurrences, the iterative algorithm works very well: it converges quickly and the decrease of fit is 

very small. 

 

 

 

6. Applications 

 

In this section, we give the results of two applications of MR-PCA on chemical data. In the first 

one, the solution is obtained running the non-iterative algorithm whereas, in the second one, the 

iterative algorithm is necessary because negative estimates of the radii occur. 

 

6.1 Portuguese mineral water data 

In this subsection the MR-PCA method is performed on a data set describing 5=I  Portuguese 
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mineral concentrations of HCO3
-, Cl-, Na+, Ca2+ and SiO2 (mg/l) and the PH value. The data are 

summarized in Table 1. 

 

Table 1: Portuguese mineral water data  
 

Water HCO3
- Cl- Na+ Ca2+ SiO2 PH 

n.1 [21,41] [7,9] [10,16] [3,4] [23,29] [6.1,6.5] 

n.2 [113,119] [16.5,17.5] [10.3,10.7] [15,21] [13.7,14.9] [6.7,7.1] 

n.3 [2.2,4.2] [3.6,4] [2.8,3.8] [0.01,1.01] [5.8,7.8] [5.71,5.81] 

n.4 [8,11.6] [4.1,4.7] [2.8,3.6] [1.9,2.9] [5.8,6.8] [5.6,6] 

n.5 [4.6,5] [6.6,7.4] [5.4,5.6] [0.72,0.84] [16.7,18.3] [5.4,5.8] 

 

After preprocessing the data as described in Remark 1, the MR-PCA method is performed 

extracting 2=P  components. The non-iterative procedure is run. In fact, the estimates of the radii 

are non negative. We decide to extract 2=P  components  because the goodness of fit is very high 

(following (28), 96.6%) and the solution is easily interpretable. Notice that each variable plays a 

relevant role in exactly one component. In order to interpret the solution, the matrix of the varimax-

rotated component loadings and the low dimensional representation of the waters in the low 

dimensional space spanned by the (orthonormal) loadings are given, respectively, in Table 2 and 

Figure 5. Notice that the low dimensional configuration is obtained using (34) and that the 

component scores matrix for the radii has all non negative elements. 

 

Table 2: Component loadings matrix  
 

Mineral PC1 PC2 

HCO3
-  0.50 -0.05 

Cl-  0.46  0.05 

Na+  0.16  0.62 

Ca2+  0.53 -0.14 

SiO2 -0.10  0.77 

PH  0.47  0.11 

 

 

 



 22 

Figure 5: Low dimensional representation of the Portuguese waters  

 

From Table 2, we can easily assess the role of the original variables in describing the extracted 

components. The first component is strongly related to the concentrations of HCO3
-, Cl- and Ca2+ 

and the values of PH. The remaining variables (Na+, SiO2) have a negligible influence. On the 

contrary, Na+ and SiO2 help us to define the second component. In fact, high second component 

scores for the midpoints depend on high values of Na+ and SiO2. 

The low dimensional representation (as rectangles because 2=P ) of the waters is consistent with 

the above interpretation of the components. The position of Water n.2 can be explained by 

considering the values of PH and, above all, HCO3
-, Cl- and Ca2+ which are sensibly higher than the 

ones pertaining to the remaining waters. The same comments hold with respect to the second 

component and Water n.1. In fact, its position reflects the values of Na+ and, above all, SiO2. Notice 

that Waters n.3 and n.4 are overlapped. This can be explained by the observed interval valued 

scores of Na+, SiO2 and PH for Waters n.3 and n.4 which have not empty intersections. 

Figure 5 provides useful information by considering the size of each rectangle which gives a 

measure of the uncertainty associated with each observation unit. Water n.1 is characterized by the 

biggest rectangle. In fact, the radii of the intervals pertaining to Water n.1 are the highest ones 
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except for Ca2+. Water n.2 has the highest first component score for the radii. It depends on the 

radius of Ca2+. Thus, the component scores for the radii (e.g. the size of the low dimensional 

hyperrectangles) can be explained by considering the widths of the interval valued variables, which 

play a relevant role in interpreting the component at hand. It follows that the aim of the low 

dimensional configuration of the observation units is to provide information about not only the 

similarities among the observation units but also the uncertainty associated to each observation unit. 

Hence, the structure of the observation unit mode entities (as low dimensional hyperrectangles) in 

the principal space can be detected considering their position, their size and, eventually, their 

overlap. 

 

 

6.2. Greek wine data 

In this subsection we illustrate the application of the MR-PCA method on Greek wine samples [7]. 

Specifically, the data set involved describes 33=I  Greek red and white commercial wines from the 

1998 vintage characterized by 9=J  mineral concentrations (K+, Na+, Ca2+, Mg2+, Fe3+, Cu2+, Mn2+, 

Zn2+, P5+). The available information for the i-th wine with respect to the j-th mineral concentration 

is the interval ( )ijijijij rmrm +− ,  where ijm  denotes the mean value and ijr  the standard deviation. 

In [7] two different PCA’s based on red wines and, separately, on white wines are performed. The 

PCA’s were carried out considering the midpoints only. It can be observed, as it is already noticed 

in [7], that the features of red and white wines are very similar. With respect to the red wines, 3=P  

components are extracted: the first one is highly related to Fe3+, Cu2+, and Na+, whereas the second 

and the third ones to Ca2+ and Mg2+. Similar results were obtained from PCA of white wines. 

In [7], the authors did not describe how they preprocessed the data. Here, we preprocess them 

according to the procedure described in Remark 1. 

After preprocessing the data, we perform the MR-PCA method. We extract 3=P  components. As 

some estimates of the radii take negative values, we run the iterative algorithm in order to find a 

feasible solution. According to the index in (28), the goodness of fit of the model is 71.8% (58.9% 

if 2=P  and 79.1% if 4=P ). We rotate the components to simple structure. The varimax-rotated 

component loadings matrix is summarized in Table 3. 
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Table 3: Component loadings matrix  
 

Mineral PC1 PC2 PC3 

K+  0.02  0.39  0.39 

Na+ -0.09 -0.07  0.68 

Ca2+  0.49 -0.25 -0.01 

Mg2+  0.39  0.27 -0.19 

Fe3+  0.42  0.25 -0.06 

Cu2+ -0.03  0.79  0.03 

Mn2+  0.41 -0.16  0.16 

Zn2+  0.48 -0.04  0.02 

P5+  0.14   0.03  0.56 

 

From Table 3, we can observe that the first component is positively related to high values of Ca2+, 

Mg2+, Fe3+, Mn2+ and Zn2+. The second component loadings show the importance of Cu2+ and, to a 

lesser extent, K+, Mg2+, Fe3+, Ca2+ (the last one is inversely related to the axis). Finally, except for 

K+, the minerals Na+ and P5+ that play a slight role in describing the first two components are 

strictly related to the third one. 

In Figures 6 and 7, we provide the low dimensional representations of the wines according to (34). 

Notice that the component scores matrix for the radii has all non negative elements. Each wine is 

recognized by a letter (‘W’ if it is a white wine, ‘R’ if it is red) and by a number (from 1 to 33 

following [7]). In Figure 6, we plot the wines on the two dimensional space spanned by the first and 

the second components. We can observe that the white wines are on the low side and the red ones 

on the high side. Thus, the second component can be interpreted as the type of wine. Just one white 

wine (‘W19’ from Kefalinia) is not consistent with the interpretation of the second component. 

Further information about the interpretation of the axes is provided by Figure 7 in which the wines 

are represented with respect to the second and third components. The third component seems to be 

related to the geographical position of the production areas. More specifically, positive scores 

pertain to wines the geographical origin of which is South Greece or Greek islands while negative 

scores pertain to wines from North Greece. Three areas of production are not consistent with the 

above distinction. In fact, the scores of the wines from Rapsani (in the geographical area above 

Peloponnese, belonging to the North Greece group) are higher than 0 and the wines from the island 

of Crete (three out of four) and those from Mantinia (two out of three) have negative scores. We 

also notice that the wines produced in the island of Kefalinia have negative scores but this is 

consistent with the island position. 
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Figure 6: Low dimensional representation of the Greek wines (PC1 vs PC2) 

 

Finally, we inspect Figure 6 again, and see that the first component seems to not be discriminated 

by geographical origin, variety or type. It only provides a measure of the dissimilarities among the 

(red and white) wines with respect to the mineral concentrations that play a relevant role in 

interpreting this component. For instance, notice that ‘R23’ is very far from the remaining wines. 

This can be explained considering that its observed scores are the highest ones among all the wines. 

In fact, this observation unit can be considered an outlier. 

Let us now consider the uncertainty associated to the red and white wines in the obtained low 

dimensional space. With respect to the first component, we observe that the highest low 

dimensional scores for the radii pertain to ‘W5’, ‘W16’, ‘R23’, ‘R30’ and ‘R33’. By considering the 

original data set and the loadings (Table 3) we can state that the size of ‘W5’ and ‘R23’ depends on 

high radii of Mg2+ (for ‘R23’, also of Zn2+); the component score for the radii of ‘W16’ is related to 

Mn2+. The component scores for the radii of ‘R30’ and ‘R33’ are affected by Fe3+ (‘R30’ also by 

Ca2+). 
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Again, ‘W5’ and ‘R33’ have high second component scores for the radii. The score of ‘R33’ can be 

explained by the radius of Fe3+ and that of ‘W5’ by the radii of Mg2+ and Cu2+. The component 

score for the radii of ‘W5’ is related to Cu2+ (in the data set, the associated uncertainty is the highest 

one). As well as for ‘W5’ and ‘R33’, the second component score for the radii of ‘R24’ is high. It 

depends on the radius of Fe3+.  

With respect to the uncertainty associated to the third component, three wines can be well 

distinguished: ‘W5’ and ‘R11’ (both wines have high radii of P5+), ‘W16’ and ‘R33’. 

 

Figure 7: Low dimensional representation of the Greek wines (PC2 vs PC3) 

 

In conclusion, this application shows that the components are able to distinguish the wines 

according to the type (red or white) of wine (second component) and to the geographical position 

(third component) whereas the first component reflects the chemical differentation of wines. 

Moreover, the size of the hyperrectangles in the low dimensional space provides a measure of the 

uncertainty associated to the registered mineral concentrations. Specifically, for each component, 
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the scores for the radii give information about the uncertainty of the mineral concentrations the role 

of which in interpreting the component at hand is relevant 

 

 

 

7. Final remarks 

 
In this paper we proposed a Principal Component method for two-way interval valued data matrices 

(observation units × interval valued variables) based on a least squares approach. The suggested 

method, called Midpoint Radius Principal Component Analysis (MR-PCA), is capable to find the 

underlying structure of the interval valued data by using the midpoints and the radii information. 

Moreover, in order to analyze how our method works, the results of a simulation study and two 

chemical data applications have been shown. 

In future works, it will be interesting to extend our data reduction method to a three-way 

framework, in order to synthesize three-way data arrays (i.e. observation units × interval valued 

variables × occasions) by means of three-way methods such as Tucker3 [18] and PARAFAC [19]. 

In this respect, it will be also attractive to analyze the situation in which the occasions are times, i.e. 

time intervals, extending the so called Dynamic Factor Analysis [20, 21] to interval valued time 

arrays. Moreover, other possible extensions may concern the suggestion, in the two-way as well as 

in the three-way framework, to make use of interval arithmetic (see, e.g. [22,23]) in suitably 

generalizing principal component methods to deal with interval valued data. These will be the main 

issues of our future research in this field. 
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