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1 Introduction

In a large number of countries coincident and leading indexes are routinely built in order to

provide economic analysts with early signals of the broad swings in macroeconomic activity

known as the business cycle. These indexes are typically constructed in two steps. The first

step aims at identifying groups of variables that move in, before or after the recession (see e.g.

Niemera and Klein, 1994). In this paper the focus is on the first two groups of variables, which

are respectively defined as the coincident and leading indicators. The second step consists in

forming composite indicators, namely the Coincident Index [CI] and Leading Index [LI], in

order to extract the relevant business cycle features from the individual indicators.

Among the various statistical methods for constructing such CI and LI, the procedure devel-

oped by Stock and Watson (1989, 1991, and 1993) for the NBER has rapidly become a standard

reference. But other approaches exist since a while, from the well known principal component

and classical linear time series analyses to more complex non-linear methods such as smooth

transition regressions, switching regimes and probit models, and nonparametric procedures (see

Camacho and Perez-Quiros, 2002, for a comparison of the forecasting performances of some of

these procedures).

In a similar spirit as Emerson and Hendry (1996), the viewpoint in this article is that the

construction of coincident and leading indexes should be based on a formal statistical analysis

of the multivariate time series properties of the data. Hence, a Reduced Rank Regression [RRR]

approach is proposed to build a CI&LI from a vector of cointegrated economic indicators. RRR

has been extensively analyzed in the statistical and macroeconometric literature (see inter alia

Anderson, 1984; Velu et al., 1986; Ahn and Reinsel, 1988; Tiao and Tsay 1989; Johansen,

1995) but, to the best of my knowledge, it has not yet been applied for the problem at hand.

This seems a promising route to follow since there is convincing evidence (see inter alia Reinsel

and Ahn,1992; Camba-Mendez et al., 2003) that imposing reduced-rank structure in Vector

Auto-Regressive [VAR] models improve in prediction performances.

In particular, the dynamic properties of the data are investigated within the polynomial

serial correlation common feature modeling (Cubadda and Hecq, 2001). Similarly as the com-

posite indexes built by The Conference Board (1997), the proposed CI&LI’s are obtained as

linear combinations of observed variables. However, the weights of the novel indexes are de-

rived such that the changes of the LI are the best linear predictor of the changes of the CI.
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Hence, the suggested CI&LI’s are constructed in order to satisfy the purpose of documenting

and predicting the variations of the overall economic activity.1 Other relevant characteristics of

the new composite indicators are that the existence of such CI&LI is tested and not assumed

a priori, it is possible to check if the individual indicators significantly enter in the CI and LI,

and the multivariate Beveridge-Nelson (1981) cycle of the LI leads that of the CI.

This paper is organized as follows. Section 2 proposes a definition of the CI&LI, and shows

how to build such indexes by means of RRR. In Section 3 the conditions for the existence of a

long leading index are examined. In Section 4 the methodology is applied to the US business

cycles indicators. Section 5 concludes.

2 The statistical methodology

The aim of this section is to present a RRR framework to build the CI&LI from a set of

cointegrated time series.

2.1 Preliminaries

Let us start with the VAR(p) model for a n-vector of I(1) time series {yt, t = 1, . . . , T},

A(L)yt = εt,

for fixed values of y−p+1, ..., y0 and where A(L) ≡ In −
Pp

i=1AiL
i, and εt are i.i.d. Nn(0,Σε)

errors. To simplify the notation, the deterministic terms are omitted at this stage.

It is further assumed that the process yt is cointegrated of order (1,1), namely that 1◦)

rank(A(1)) = r, 0 < r < n, so that A(1) can be expressed as A(1) = αβ
0
with α and β both

(n×r) matrices of full column rank r, and 2◦) the matrix α0⊥A∗(1)β⊥ has rank equal to (n−r)
where A∗(1) denotes the first derivative of A(z) at z = 1. The columns of β span the space of

cointegrating vectors, and the elements of α are the corresponding adjustment coefficients. In

order to rewrite the system in a VECM form we use the identity A(L) ≡ Γ(L)∆−A(1)L where

1Although the proposed CI&LI’s are not specifically designed for predicting the business cycle turning points,
they may also be used for such purpose along the lines of Wecker (1979), and Hamilton and Perez-Quiros (1996).

3



Γ(L) = In −
Pp−1

i=1 ΓiL
i, and Γi = −

Pp
j=i+1Aj for i = 1, . . . , p− 1. And finally we obtain

Γ(L)∆yt = αβ
0yt−1 + εt. (1)

The stationary process ∆yt admits the following Wold representation

∆yt = C(L)εt, (2)

with
P∞

j=1 j |Cj| <∞, and C0 = In.
Based on the polynomial factorization C(L) = C(1) +∆C∗(L), where C∗i = −

P∞
i+1Cj for

i ≥ 0, we obtain the multivariate Beveridge and Nelson (1981, BN henceforth) representation
of the series yt

yt = τ t + ξt, (3)

where ξt = C
∗(L)εt, and ∆τ t = C(1)εt.

The multivariate BN decomposition has a natural interpretation in forecasting terms. In-

deed, we easily get from equations (2) and (3) that

lim
h→∞

E(yt+h|Ωt) = τ t,

where Ωt is the σ-field generated by {yt−i; i ≥ 0}. Based on the popular view that the trend of
a non-stationary time series coincides with its infinite-step ahead prediction (see e.g. Harvey,

1990), the processes τ t and ξt are respectively defined as the stochastic trends and cycles

of variables yt. Proietti (1997) and Hecq et al. (2000) provided explicit expressions of the

components τ t and ξt in terms of the VECM parameters.

In order to analyze non-contemporaneous short-run comovements, Cubadda and Hecq (2001)

have introduced the notion of Polynomial Serial Correlation Common Features [PSCCF] such

that

Definition 1 Polynomial Serial Correlation Common Features of order m: series

∆yt have s PSCCF of order m, henceforth PSCCF(m), iff there exists a n × s polynomial
matrix δ(L) = δ0 −

Pm
i=1 δiL

i with m < (p − 1) such that the matrix δ0 is full column rank,
δm 6= 0, and δ(L)0∆yt = δ00εt.

Notice that the notion of serial correlation common feature (Engle and Kozicki, 1993) is
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obtained as a special case of the PSCCF(m) with m = 0.

The presence of the PSCCF(m) endows series yt with several interesting properties. First,

the following restrictions on the VECM (1) parameters hold

Condition 1. δ00α = 0

Condition 2. δ00Γi =

 δ0i if i ≤ m
0 if i > m

Second, variables yt must share at least one common trend since Condition 1 implies that

the matrix α has rank less then n. Third, the multivariate BN cycles ξt respect the following

condition

E(δ(L)0ξt+h|Ωt) = 0, h ≥m, (4)

which is equivalent to say that the process δ(L)0ξt+h is a VMA(m− 1) for m ≥ 1.2

2.2 The Coincident and Leading Indexes

Let us assume that the vector of n time series may be partitioned into two subvectors such

that yt = (z0t, x0t)0. The first n1 series zt are the relevant business cycle indicators whereas the

remaining n2 = n−n1 series xt must Granger-cause the reference series zt. Hence, the following
notion of coincident and leading indexes is proposed.

Definition 2 CI&LI. CIt and LIt are respectively the composite coincident and leading in-

dexes iff

E(∆CIt+1|Ωt) = E(∆CIt+1|∆LIt), (5)

where CIt is a linear combinations of the reference series zt, and LIt is a linear combinations

of series (y0t, .., y0t−m+1)0.

The above definition can be motivated as follows. In view of the BN decomposition in (3),

if the reference series zt possess some cyclical components, their first differences ∆zt must be

autocorrelated. The weights of the suggested CI&LI are simultaneously determined such that

the CI exhibits a cyclical behavior but ∆CIt+1−E(∆CIt+1|∆LIt) is an innovation with respect
to Ωt. Hence, the BN cycle of CIt+1 is cancelled after removing the influence of LIt.

2When m = 0, i.e. δ(L) = δ0, equation (4) stands for the common cycle property δ00ξt = 0.
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Notice that Definition 2 involves the differences rather than the levels of the indexes. The

reason of this choice is that CI&LI’s are conceived as a tool for short-term analysis. Indeed,

whether the goal is to monitor and predict the turning points in the business cycle or macroe-

conomic growth, the changes of the indexes are entailed (see e.g. The Conference Board, 1997,

TCB henceforth).

Suppose now that series ∆yt exhibit at least one PSCCF(m) such that δ00 = (ω00, 00n2). In

view of Definition 1, we have that

E(ω00∆zt+1|Ωt) = δ(L)
0∆yt,

where δ(L) =
Pm

i=1 δiL
i−1. Consequently the coincident and leading indexes are simply given

by

CIt = ω
0
0zt,

and

LIt = δ(L)
0yt.

It is easy to see that the reverse implication holds as well, i.e. if there exists a pair of CI&LI

according to Definition 2 then series ∆yt have at least one PSCCF(m) with δ00 = (ω00, 00n2).

These results, along with equation (4), imply that the CI&LI have the following important

property:

Proposition 3 Let us define the detrended CI&LI respectively as CIξt ≡ (ω00, 00n2)ξt and LIξt ≡
δ(L)0ξt. Then we have

E(CIξt+h|Ωt) = E(LI
ξ
t+h−1|Ωt), h ≥ m.

The above proposition tells us that the cyclical movements of the LI lead those of the CI

when the forecast horizon is not less than the PSCCF order. Hence, the case of the PSCCF(1)

with δ00 = (ω00, 00n2) is particularly attractive for CI&LI building. In the rest of the paper the

focus will be on such particular case.

Based on Cubadda and Hecq (2001), we can make inference on the existence of such CI&LI’s

by means of the following RRR procedure. We first solve the following canonical correlation
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program

CanCor



 ∆zt

−∆yt−1

 ,


β̂
0
yt−1
∆yt−1
∆yt−2
...

∆yt−p+1


| Dt


, (6)

where Dt is a vector of deterministic terms, then the LR test statistic for the hypothesis that

are at most s CI&LI couples is

LR1 = −T
sX

i=1

ln(1− bλi), s = 1, . . . ,min(n1, n− r) (7)

where bλi is the i−th smallest squared canonical correlation coming from (6) and the esti-

mates of the parameters (ω00, δ
0
1)
0 are the eigenvectors associated with the s smallest eigenvaluesbλ1, ...,bλs.3 Under the null hypothesis the test statistic (7) is asymptotically distributed as a

χ2(d1) with d1 = s× (n(p− 3) + r + s+ n2).4
A relevant feature of the RRR approach is that it is possible to test for linear restrictions

on the CI&LI weights. Alike Johansen (1995) in cointegration analysis, these restrictions are

expressed as follows

 ω0

δ01

 = H|{z}
(n1+n)×g

ϕ|{z}
g×s

≡


H11|{z}
n1×g1

H12|{z}
n1×g2

H21|{z}
n×g1

H22|{z}
n×g2




ϕ0|{z}
g1×s

ϕ1|{z}
g2×s

 , (8)

where H is matrix of known elements, the sub-matrix H11 has rank equal to g1, g = g1 + g2,

and ϕ is a parameter matrix to be estimated.

Let us a consider the illustrative example where the reference series zt are the coincident

indicators used by TCB (1997), namely the industrial production, employment, real income,

and manufacturing and trade sales, and we wish to test if the reference series do enter in the

3Since such eigenvalues and eigenvectors are invariant to non-singular linear transformation of variables
(y0t−1β̂,∆y0t−1, ...,∆y0t−p+1)

0, inference on the CI&LI’s does not depend on the identification of the cointegration
vectors β.

4Based on Cubadda and Hecq (2001), a test statistic with better small-sample properties can be obtained by
applying the scaling factor (T − n(p− 2)− r)/T to (7).

7



LI. Then the matrix H takes the form

H =


I4 04×(n−4)

0n×4

 04×(n−4)
In−4


 , (9)

which means that there are no cross restrictions between ω0 and δ1, ω0 is unrestricted, and

δ01 = (0s×4, ϕ01, ).

We can handle such linear restrictions by means of the following procedure. We first solve

the following canonical correlation program

CanCor


H 0
 ∆zt

−∆yt−1

 ,


β̂
0
yt−1
∆yt−1
∆yt−2
...

∆yt−p+1


| Dt


. (10)

Then the LR test statistic is

LR2 = T
sX

i=1

ln

Ã
1− λ̂i
1− bηi

!
, s = 1, . . . ,min(g1, n− r), (11)

where bηi is the i−th smallest squared canonical correlation coming from (10) and the esti-

mates of the parameters (ϕ00, ϕ01)0 are the eigenvectors associated with the s smallest eigenval-

ues bη1, ...,bηs. Under the null hypothesis the test statistic (11) follows asymptotically a χ2(d2)
distribution where d2 = s(n1 + n− g).

Notice that when s > 1 there is not necessarily a unique CI&LI pair.5 In the sequel we

consider both the case where several indexes are individually identified and the most usual case

where a unique CI&LI pair must be constructed.

5A practically relevant case for which s ≤ 1 is when zt is formed by a single reference series, such, e.g., the
monthly gross domestic product.
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2.3 Identifying the CI&LI’s

This subsection shows how to identify "structural" pairs of CI&LI’s by means of overidentifying

restrictions. Coming back the previous illustrative example, we may wish to construct a leading

index that does not include the four Conference Board coincident series. In this case, we need

to test for zero canonical correlations between (∆z0t,−∆x0t−1)0 and the past of yt.
More generally, suppose that we are willing to consider only composite indexes with weights

which obey the linear restrictions (8). Then the LR test statistic for the null hypothesis that

there exist s "restricted" CI&LI’s against the alternative that no restricted CI&LI’s exist is

given by

LR3 = −T
sX

i=1

ln(1− bηi), s = 1, . . . ,min(g1, n− r). (12)

Under the null hypothesis the test statistic (12) is asymptotically distributed as a χ2(d3) with

d3 = s× (n(p− 1) + r+ s− g).

2.4 Building the Optimal CI&LI

This subsection shows how to combine several CI&LI’s in order to extract the most relevant

pair for forecasting purposes. More precisely, the following notion of optimal coincident and

leading composite indexes is proposed.

Definition 4 Optimal CI & LI. CI∗t ≡ ξ∗0CIt and LI∗t ≡ ξ∗0LIt are respectively the optimal
composite coincident and leading indexes iff

ξ∗ = argmin
(ξ)

½
ξ0V (et)ξ
ξ0V (∆CIt)ξ

¾
, (13)

where ξ is a generic s-vector, et ≡ ∆CIt −E(∆CIt|∆LIt−1) and V (·) is the covariance matrix
of the process in argument.

When several PSCCF vectors exist (i.e., s > 1), condition (13) requires that ∆CI∗t and

∆LI∗t−1 are the most correlated among all the linear combinations of ∆zt and ∆yt−1 that

satisfy equation (5). Based on a standard result from canonical correlation theory, equation

(13) is solved by ξ∗ = [V (∆CIt)]−1/2ζ1, where ζ1 is the eigenvector associated to the smallest

eigenvalue of the matrix

[V (∆CIt)]
−1/2V (et)[V (∆CIt)]−1/2. (14)
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Hence, the optimal CI weights are given by ω∗0 = ω0ξ
∗ and the optimal LI weights are given by

δ∗1 = δ1ξ
∗. We summarize the above results in the following proposition.

Proposition 5 Construction of the optimal CI&LI. Suppose that there exist s PSCCF(1)

vectors such that δ00 = (ω00, 00s×n2) and δ1 6= 0. In this case, the optimal CI and LI are respectively
given by CI∗t = ω∗00 zt and LI∗t = δ

∗0
1 yt, where ω

∗
0 = ω0ξ

∗, δ∗1 = δ1ξ
∗, ξ∗ = [V (∆CIt)]−1/2ζ1, and

ζ1 is the eigenvector associated to the smallest eigenvalue of the matrix (14).

The optimal CI&LI weights can be estimated as follows. Compute the RRR estimates

(bω00,bδ01) of the CI&LI’s weights and fix (ω00, δ01) = (bω00,bδ01). Then obtain bξ∗ by solving equation
(13) where V (∆CIt) and V (et) are respectively substituted with the sample covariance matrices

of bω00∆zt and (bω00∆zt − bδ01∆yt−1). Finally, the point estimates of ω∗0 and δ∗1 are respectively
given by bω∗0 = bω0bξ∗ and bδ∗1 = bδ1bξ∗.

Linear restrictions on ω∗0 and δ
∗
1 may be tested by a linear switching algorithm similar as

the one proposed by Johansen (1995) in cointegration analysis. In particular, let us consider

the following system of hypothesis:

H0 : δ∗ ≡ (ω∗00 , δ∗01 )0 = H∗ϕ∗ ≡ (H∗00|{z}
g×n
, H∗01|{z}
g×n

)0ϕ∗ vs H1 : δ∗ is unrestricted,

where H∗ is a matrix of known elements and ϕ∗ is a g × 1 parameter matrix.
Let us then write δ# = (ω00, δ

0
1)
0ξ#, where ξ# = [V (∆CIt)]−1/2ζ1, and ζ1 is the matrix of

the (s− 1) eigenvectors associated to the (s − 1) largest eigenvalues of the matrix (14). Thus
the iterative procedure goes as follows

1. Estimate δ# unrestricted by bδ# = (bω00,bδ01)0bξ#.
2. For fixed δ# = bδ#, obtain bϕ as the eigenvector associated with the smallest eigenvalue
coming from the solution of

CanCor


H∗0

 ∆zt

−∆yt−1

 ,


β̂
0
yt−1
∆yt−1
∆yt−2
...

∆yt−p+1


| δ#0

 ∆zt

−∆yt−1

 ,Dt


. (15)
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3. For fixed δ∗ = H∗bϕ∗, obtain bδ# = δ∗⊥bφ(s−1), where bφ(s−1) are the eigenvectors associated
with the (s− 1) smallest eigenvalues coming from the solution of

CanCor


δ∗0⊥

 ∆zt

−∆yt−1

 ,


β̂
0
yt−1
∆yt−1
∆yt−2
...

∆yt−p+1


| δ∗0

 ∆zt

−∆yt−1

 ,Dt


. (16)

4. Continue with 2. and 3. until numerical convergence.

The LR test statistic is

LR4 = T

"
sX

i=1

ln(1− λ̂i)− ln(1− bρ1)− s−1X
i=1

ln(1− bυi)# , s = 1, . . .min(n1, n− r), (17)

where bρi and bυi are the i−th smallest squared canonical correlations respectively coming from
(15) and (16). The test statistic (17) follows asymptotically a χ2(d4) distribution where d4 =

(n1 + n− g).

3 The Long Leading Indicator

We have so far focused on building CI&LI’s when the time delay is one period only. However, it

is often desirable to anticipate the state of economic activity with a larger advance. Hence, the

properties of the composite indexes must be evaluated also when the forecast horizon is larger

than one. By construction of the CI&LI we get

∆CIt = ∆LIt−1 + et, (18)

where et = (ω00, 00n2)εt.

Equation (18) implies in turn that

E(∆CIt+h|Ωt) = E(∆LIt+h−1|Ωt), (19)
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for h ≥ 2. Hence, the h-step ahead forecasts of the first differences of CI are given by the

(h− 1)-step ahead forecasts of the first differences of LI.
Notice that the left hand side of equation (19) is generally not a function of ∆LIt only. For

instance, for h = 2 we get

E(∆LIt+1|Ωt) = δ
0
1(αβ

0
yt +

p−2X
i=0

Γi∆yt−i),

which is generally different from E(∆LIt+1|∆LIt).
Based on equation (19), the h-step ahead leading index LIht is defined as follows

∆LIht = δ
0
0E(∆yt+h|Ωt). (20)

In order to build such h-step ahead leading index we may follow two different approaches.

The first approach requires to derive the h-step ahead forecasts of series yt and combine

them with the estimated CI weights bδ0. A possible way to incorporate the CI&LI’s restrictions
within the VECM is to rely on the following common factor representation

(In − Γ1L)∆yt = ΛFt−1 + εt, (21)

where Λ is a full-rank n× (n− s) matrix such that (ω00, 00n2)Λ = 0,

Ft−1 = eαβ0yt−1 + p−1X
i=2

eΓ0i∆yt−i,
eα is a (n − s) × r matrix, and eΓi is n × (n − s) matrix for i = 2, , ..., p − 1. Efficient esti-
mates of the parameters [eα, eΓ01, eΓ02, ..., eΓ0p−1] are provided by the canonical variates coefficients
of (y0t−1β,∆y0t−1, ...,∆y0t−p+1)0 associated to the (n − s) largest eigenvalues λ̂s+1, ..., λ̂n. Fi-
nally, the remaining parameters of model (21) are easily estimated by a regression of ∆yt on

(∆y0t−1, F 0t−1)0.

The second approach consists in estimating the h-step ahead leading index by a single-

equation method. In particular, for fixed (δ00, δ
0
1) = (

bδ00,bδ01), the General Method of Moments
can be used to estimate the equation

∆CIt+h = γ
h∆LIt+h−1 + eht+h (22)
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using series (y0tβ̂,∆y0t, ...,∆y0t−p+2)0 as instruments, where CIt and LIt are a generic CI&LI pair,

γh is a scalar, and eht is a MA(h− 1) error. Clearly, ∆LIht is then obtained by subtracting the
residuals beht+h−1 to the observed values of ∆CIt+h.

Although the second approach may be preferred for its simplicity, one should keep in mind

that statistical inference on (22) is conditional on the estimated CI&LI’s weights and hence

their sample variability is ignored.

An interesting question to be posed is if one can build an optimal CI&LI pair such that LI∗t
is a valid leading indicator for any forecast horizon of CI∗t . Such CI&LI should satisfy, along

with condition (13), the following equation

E(∆CI∗t+h|Ωt) = E(∆LI
∗
t+h−1|∆LI∗t ), (23)

for any h ≥ 1.
In view of equation (19) and keeping in mind that ∆CI∗t and ∆LI∗t are stationary ARMA

processes, we see that equation (23) is satisfied when

∆LI∗t = ρ∆LI
∗
t−1 + νt, (24)

where ρ 6= 0, |ρ| < 1, and νt = δ∗01 εt.
Equation (24) implies that the optimal leading index is an ARIMA(1,1,0) process. But

we need a stronger requirement that the error term of this ARIMA process is an innovation

with respect Ωt−1. In the terminology of Granger and Yoon (2001), the optimal LI must be a

self-generating variable.

By comparing equation (18) with equation (24) and in view of Proposition 5, we conclude

that condition (23) holds when δ∗01 = ρ(ω∗00 , 001×n2). These non-linear restrictions on the optimal

CI&LI weights can be tested and possibly imposed in estimation by means of a grid search of

the likelihood function over different values of ρ.

4 Coincident and Leading Indexes for the US Economy

This section illustrates the use of the RRR framework for constructing coincident and leading

indicators for the US economy. The aim of this empirical analysis is twofold. First, the historical

components of the new indexes are extracted and compared with those proposed by Stock and
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Watson (1989, SW henceforth) and TCB (1997). Second, an out-of-sample forecasting exercise

is performed to asses the predictive performances of the RRR procedure.

4.1 Variable Definitions and Description

For the empirical analysis we consider the monthly Business Cycle Indicators [BCI] that TCB

used to build their own indexes. The first two columns of Table 1 report the variables of

interest along with their BCI code. With the exception of the stock prices index and consumer

expectations index, the data are seasonally adjusted6 and span the period 1959.01 to 2002.12.

The sub-sample 1959.01-1999.12 is used to build the new CI&LI and the remaining observations

are left for an out-of-sample forecasting exercise.

The fourth column of Table 1 reports the results of the ADF unit root tests on the BCI

indicators that have been transformed as indicated in the third column. Only the vendor

performance, the interest rate spread, and the building permits series appear to be I(0). In order

to build the new CI&LI, these stationary indicators are integrated, namely their cumulative

sum are taken in the analysis (see e.g. Rahbek and Mosconi, 1999). This operation allows to

include in the first differences of the CI&LI also the I(0) variables that otherwise would have

been annihilated by Condition 1 of Definition 1. Notice that the cumulated I(0) series do not

posses an exact unit root by construction. Indeed, from Table 2 we see that the ADF tests

indicate the presence of significant but not exact unit roots in such cumulated series. Finally,

the volatility of all the transformed indicators has been adjusted as TCB suggests, that is all

the first differences of these series have unitary standard deviations and are now all expressed

in comparable scale.

SW (1989) impose a single dynamic common factor for summarizing the information con-

tained in the past. Since such assumption is not formulated in the RRR approach to CI&LI

building, the new procedure is prone a dimensionality problem. Consequently it is required to

rely on the following step-wise procedure based on the minimization of an information crite-

rion such as the Bayes Information Criterion [BIC]. Let us start with the four BCI coincident

variables zt = (z1t, z2t, z3t, z4t)0 and select the VAR order that minimizes the BIC from 0 up to

pmax. Then, we add separately in the right hand side the lags of each of the ten TCB leading

6Although seasonal filtering poses problems for common features analysis (see e.g. Cubadda, 1999), the
purpose of comparing the new CI&LI with the existing ones imposes to follow the usual practice of using
seasonally adjusted data.
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indicators and we estimate all the VARX models with order from 0 up to pmax. Finally, we

compare the smallest BIC of these 10 × pmax VARX models with the BIC of the previously

selected VAR model. If the value of the BIC is smallest for the VAR model, we keep only

the reference series in the analysis. Otherwise, the leading indicator associated to the VARX

model with the smallest BIC is retained as exogenous variable. In the second round, each of

the nine remaining TCB indicators is included as an additional exogenous variable and the BIC

is computed for all the 9× pmax VARX models. Again, we compare the smallest BIC of these
9× pmax VARX models with the BIC of the previously selected VARX model. The procedure
stops when it is not possible to find a better VARX model according to the BIC. The outcome

is that the selected series are the average weekly hours, vendor performances building permits,

and interest rate spread. These four series respectively comprise the leading indicators vector

xt = (x1t, x2t, x3t, x4t)
0 in the subsequent analysis.

4.2 Building the RRR-based CI&LI

Table 3 reports both the asymptotic and the small-sample corrected versions of the Johansen

trace statistics in a VAR(3). We can not reject the presence of three cointegrating vectors

and then five common trends. A graphical inspection of the cointegrating vector confirms the

outcome of the formal analysis. Hence, we fix at three the number of cointegrating vectors and

we pursue the CI&LI analysis.

The next step is testing whether there exists a PSCCF vector such that the CI is formed by

the four TCB coincident series only. We use the test statistic (7), both in the asymptotic and

the small-sample corrected version. From Table 4 we see that one cannot reject the presence of

a single CI&LI at the 5% confidence level. The weights of such CI&LI are also reported in the

same Table.7

It is also possible to evaluate additional restrictions on the individual indicator coefficients.

As a result of a general to specific testing procedure, we cannot reject the null hypothesis that

sales (z4t) do not enter in both the CI and the LI. In particular, the p-value associated with the

test statistic (11) for these joint restrictions on the CI&LI’s weights is equal to 0.312.8 Table 4

7Notice that such coefficients are normalized such that the sum of the absolute value of the CI weights is
equal to one.

8A possible explanation of this result is that the growth rates of sales display very little autocorrelation. This
implies that z4t has a negligible BN cyclical component.
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also reports the value of the test statistics (12) and the associated coefficients of such restricted

CI&LI. In the sequel, we will refer to these restricted CI and LI respectively as the RRR_CI

and RRR_LI.

4.3 Comparison with Other Coincident Indices

In this sub-section the RRR_CI is compared with two other composite indicators, namely TCB

[TCB_CI] and SW [SW_CI] coincident indicators. The levels of the three series, rebased to

average 100 in 1995, are graphed in Figure 2. Visual inspection suggests that these indexes

provide a rather similar picture of the business cycle.

Table 5 reports the cross-correlation functions between the monthly growth rates of the

various CI’s. It is apparent that the three indexes are clearly synchronous and highly cross-

correlated. Moreover, Table 6 shows the average spectral coherency of the alternative CI’s

growth rates in the 3-9 year period band. It emerges that these indexes are almost perfectly

coherent at the business cycle frequencies.

Table 7 compares the recessions determined by each index with the NBER official chronology.

To facilitate the comparison, the following set of dummy variable were created

dt =

 1, if there was a recession at date t according to NBER;

0, otherwise.

di,t =

 1, if there was a recession at date t according to index i;

0, otherwise.

for i = RRR, TCB, SW, and for each di,t its average squared deviation from dt was computed:

TPi = T
−1

TX
t=1

(di,t − dt)2. (25)

We see that TCB_CI captures the NBER reference series best, but the new index perform

very similarly. The SW_CI exhibits the same value of the above index as the RRR_CI.
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4.4 Comparison with Other Leading Indices

So far, the one-month ahead leading index [RRR_LI] was obtained. However, SW (1989) and

TCB built their leading indicators, denoted respectively by SW_LLI and TCB_LLI, in order

to foresee the business cycles about six months in advance. Hence, also the six-month ahead

Long Leading Index [RRR_LLI] was constructed using equation (22). Similarly as in the case

of TCB, the growth rates of RRR_LLI were adjusted in order to have the same variability

as those of RRR_CI. Moreover, the levels of RRR_LLI were computed using the values of

RRR_CI at 1959.7-8 as starting values.

The levels of the indexes RRR_LLI, SW_LLI, TCB_LLI, rebased to average 100 in 1995,

are plotted in Figure 2. The graphical comparison indicates that RRR_LLI is smoother than

its competitors, providing so a clearer picture of the business cycle.

Table 8 reports the correlations of each CI’s monthly growth rates with the lags of the

associated LI’s growth rates. We see that RRR_LI forecasts its CI changes best for shorter

lags, namely one and two, whereas RRR_LLI performs better from three up to twelve periods

in advance. One may observe that this is an unfair way of comparing the in-sample forecasting

performances of the alternative LI’s because the RRR-based LI’s are explicitly designed for

predicting the associated CI’s growth rates. Hence, Table 9 shows the correlations of the

alternative CI’s j-month growth rates with the j-th lags of the associated LI’s j-month growth

rates for j = 1, 2, ..., 12. We see that RRR_LI again forecasts best for j = 1, 2, RRR_LLI

performs better for j = 3, ...6, whereas TCB_LLI is superior to its competitors for longer lags.

4.5 Out-of-Sample Forecasting Exercise

In this sub-section we wish to evaluate the out-of-sample performances of the new CI&LI.

Hence, the weights estimated using the sub-sample from 1959.01 to 1999.11 are kept fixed in

the forecasting period 2000.1-2002.12.

Let us preliminary compare the properties of the RRR_CI with those of SW_CI and

TCB_CI, which are instead built using the full sample. In Table 10 we see the cross-correlation

functions of the alternative CI’s growth rates for the period 2000.01-2002.12. We notice that

the various CI’s clearly exhibit positive contemporaneous comovements, even if the evidence is

less strong than within the sample. Table 11 shows the recessions determined by each index

and the NBER official chronology. The index (25) indicates that the RRR_CI accords with
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NBER chronology quite well, since the index assume an intermediate value with respect to

those associated with TCB_CI and SW_LI.

In order to check for possible structural breaks in the forecasting period, the Chow tests

for parameter stability were applied. For the unrestricted VECM, the value of the χ2(288) test

statistic is 264.69 that corresponds to a p-value equal to 0.834. After imposing the CI&LI’s re-

strictions through the common factor representation (21), the value of the test statistic becomes

252.01 and the associated p-value increases to 0.938.

Finally, the forecasting performances of∆LIht built according to equation (22) are contrasted

with those of an unrestricted h-step ahead forecasts of∆CIt+h. The latter forecasts are obtained

by estimating with Generalized Least Squares the equation

∆CIt+h = γ
h0
0 β

0yt +
p−2X
i=0

γh0i ∆yt−i + e
h
t+h, h = 1, . . . 6, (26)

where γh0 is a r-vector, and γ
h
i is a n-vector for i = 1, 2, ..., p− 2, and eht is a MA(h− 1) error.

Table 12 shows the tests proposed by Diebold and Mariano (1995) and modified by Harvey

et al. (1997) for the equality of the Mean Square Forecasting Errors [MSFE] of equations (22)

and (26) for h = 1, ..., 6. The third column reports the p-values for the alternative hypothesis

that the former equation has a smaller MSFE than the latter, and the p-values for the opposite

inequality are the complements to one of the third column elements. It emerges that ∆LIht
forecasts significantly better than equation (26) for h = 1 at the 5% level, and h = 2 at the 10%

level, whereas none of the two predictors has a significantly smaller MSFE for larger forecasting

horizons at the 10% level.

5 Conclusions

This paper has presented a new method to build a CI and a LI from a set of cointegrated

time series yt. Based on the notion of PSCCF (Cubadda and Hecq, 2001), the CI and LI

are respectively obtained as linear combinations of the reference series zt and yt−1 such that

the changes of the LI are the best linear predictors of the changes of the CI. The proposed

methodology covers also additional aspects of composite indicators building such as testing

on the CI&LI weights and the construction of long leading indicators. Finally, concepts and

methods have been illustrated by an empirical application with the US business cycle indicators.
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Table 1

ADF unit root tests

BCI code Variable Transf. t-ADF

Potential Coincident Indicators

BCI-041 Employees on non-agricultural payrolls log level -2.83

BCI-051 Personal income less transfer payments log level§ -2.41

BCI-047 Industrial production log level -2.15

BCI-057 Manufacturing and trade sales log level -2.98

Potential Leading Indicators

BCI-001 Average weekly hours, manufacturing log level -3.34

BCI-005 Average weekly initial claims for unemployment insurance log level -2.30

BCI-008 Mfrs’ new orders, consumer goods and materials log level -3.24

BCI-032 Vendor performance, slower deliveries diffusion index level -5.63**

BCI-027 Mfrs’ new orders, nondefense capital goods log level -2.69

BCI-029 Building permits for new private housing units log level -3.61*

BCI-019 Index of stock prices, 500 common stocks log level -0.43

BCI-106 Money supply, M2 log level -2.85

BCI-129 Interest rate spread, 10-year Treasury bond less fed. funds level -4.25**

BCI-083 Univ. of Michigan Index of consumer expectations level -2.65

§ Two additive outliers corresponding to 1992.12 and 1993.12 were removed.

* (**) Insignificant at the 5% (10%) confidence level

Table 2

ADF unit root tests

BCI code Variable Transf. t-ADF

BCI-032 Vendor performance, slower deliveries diffusion index Σ level -1.43

BCI-029 Building permits for new private housing units Σ log level -2.87

BCI-129 Interest rate spread, 10-year Treasury bond less fed. funds Σ level -1.49
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Table 3

Johansen’s cointegration tests

Trace Trace§

r = 0 295.0** 280.6**

r ≤ 1 171.0** 162.6**

r ≤ 2 119.3** 113.5**

r ≤ 3 73.86* 70.23*

r ≤ 4 40.20 38.22

r ≤ 5 18.13 17.24

r ≤ 6 8.069 7.673

r ≤ 7 0.029 0.028

§ Small-sample corrected test statistics

* (**) Insignificant at the 5% (10%) confidence level

Table 4

CI&LI’s tests

Unrestricted CI&LI’s Restricted CI&LI’s

LR1 LR
§
1 LR3 LR

§
3

s ≤ 1 15.05* 14.71* s ≤ 1 17.37* 16.98*

s ≤ 2 36.72 35.90 s ≤ 2 39.87 38.97

s ≤ 3 100.1 97.80 s ≤ 3 164.1 160.4

s ≤ 4 232.0 226.8

CI&LI’s weights

Unrestricted CI&LI (s = 1) Restricted CI&LI (s = 1)

z1t 0.268 z1t−1 0.075 x1t−1 -0.077 z1t 0.295 z1t−1 0.072 x1t−1 -0.095

z2t 0.132 z2t−1 0.059 x2t−1 0.103 z2t 0.208 z2t−1 0.091 x2t−1 0.115

z3t 0.486 z3t−1 0.186 x3t−1 0.122 z3t 0.497 z3t−1 0.227 x3t−1 0.155

z4t -0.115 z4t−1 0.002 x4t−1 0.132 z4t 0.000 z4t−1 0.000 x4t−1 0.168

§ Small-sample corrected test statistics

* (**) Insignificant at the 5% (10%) confidence level
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Figure 1: RRR, TCB, and SW coincident indexes

Table 5

Cross-correlation functions of different CI’s growth rates

Lag −6 −5 −4 −3 −2 1 0 1 2 3 4 5 6

RRR vs TCB .101 .086 .186 .248 .302 .467 .910 .457 .324 .262 .204 .010 .129

RRR vs SW .046 .020 .080 .169 .281 .479 .926 .437 .326 .232 .178 .080 .122

TCB vs SW .051 .032 .095 .170 .260 .426 .916 .376 .269 .224 .155 .078 .098

Note: 95% significance is .089

Table 6

Average spectral coherency of different CI’s growth rates

at the business cycle frequencies (3-9 year periods)

RRR vs TCB RRR vs SW TCB vs SW

0.997 0.983 0.987

Note: spectra are estimated by a rectangular spectral window with width = 45
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Table 7

Recession periods determined by alternative indexes

NBER RRR TCB SW

1960.04-1961.02 1960.04-1961.02 1960.04-1961.02 1960.02-1961.02

1969.12-1970.11 1969.10-1970.11 1969.12-1970.11 1969.10-1970.11

1973.11-1975.03 1973.12-1975.04 1973.12-1975.04 1973.11-1975.05

1980.01-1980.07 1980.02-1980.07 1980.02-1980.07 1980.01-1980.07

1981.07-1982.11 1981.08-1982.12 1981.08-1982.12 1981.07-1982.12

1990.07-1991.03 1990.07-1991.04 1990.07-1991.03 1990.08-1991.03

TP index 0.0171 0.0107 0.0171

Figure 2: RRR, TCB, and SW (long) leading indexes
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Table 8

Correlations of CI’s growth rates with past

LI’s growth rates for alternative indexes

Lag RRR_LI RRR_LLI TCB_LLI SW_LLI

1 0.587 0.481 0.195 0.221

2 0.481 0.456 0.318 0.233

3 0.424 0.438 0.293 0.152

4 0.333 0.427 0.317 0.165

5 0.255 0.405 0.183 0.121

6 0.272 0.383 0.214 0.167

7 0.283 0.369 0.172 0.188

8 0.253 0.364 0.224 0.206

9 0.228 0.338 0.206 0.172

10 0.183 0.316 0.257 0.106

11 0.101 0.269 0.190 0.090

12 0.035 0.234 0.209 -0.028

Table 9

Correlations of CI’s j-month growth rates with j-th lags

of LI’s j-month growth rates for alternative indexes

j RRR_LI RRR_LLI TCB_LLI SW_LLI

1 0.587 0.481 0.195 0.221

2 0.601 0.543 0.416 0.330

3 0.572 0.579 0.516 0.360

4 0.552 0.605 0.556 0.429

5 0.540 0.619 0.572 0.515

6 0.514 0.615 0.607 0.573

7 0.476 0.604 0.639 0.585

8 0.426 0.583 0.656 0.558

9 0.377 0.557 0.652 0.511

10 0.330 0.526 0.639 0.462

11 0.285 0.492 0.626 0.422

12 0.244 0.456 0.611 0.394
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Table 10

Cross-correlation functions of different CI’s growth rates (2000.01-2002.12)

Lag −6 −5 −4 −3 −2 1 0 1 2 3 4 5 6

RRR vs TCB .020 .224 .264 .342 .431 .548 .754 .585 .531 .343 .201 .238 .154

RRR vs SW -.083 .112 .170 .275 .367 .501 .798 .637 .569 .345 .271 .308 .170

TCB vs SW .002 .183 -.012 .334 .263 .385 .884 .308 .492 .328 .137 .410 .082

Note: 95% significance is .3267

Table 11

Recession periods determined by alternative indexes

(2000.01-2002.12)

NBER RRR TCB SW

2001.03-2001.11 2000.12-2002.01 2001.01-2001.12 1999.10-2002.01

TP index 0.1389 0.0833 0.1944

Table 12

Modified Diebold-Mariano tests

Lead Statistic P -value

1 -2.344 0.0125

2 -1.672 0.0517

3 -0.174 0.4316

4 0.066 0.5261

5 -0.036 0.4856

6 1.119 0.8646
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