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Abstract

This paper provides a further generalization of co-integration tests
in a nonparametric setting. We adopt Bierens’([2]) approach in order
to give an extension for processes I(d), with a fixed integer d. A gen-
eralized eigenvalue problem is solved, and the test statistics involved
are obtained starting from two matrices that are independent on the
data generating process. The mathematical tools we adopt are related
to the asymptotic theory of the stochastic processes. The key point
of our work is linked to the distinguishing between the stationary and
non-stationary part of an integrated process.
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1 Introduction

The importance of the co-integration concept in the economic literature is
due to the possibility of linking the information about the long run equilib-
rium, coming from the economic theory, and the statistical evidence of the
short-run dynamics in the observed series. Most of the studies have investi-
gated the properties of co-integrated systems of order one, I(1), (Engle and
Granger, 1987[3]; Engle and Yoo, 1987[4]; Johansen, 1988[5], 1991[6], 1995[7];
Phillips, 1991[8]; Stock and Watson, 1988[9]). If each element of a vector of
time series yt has a unit root, but a linear combination αyt exists and is
stationary, the time series yt are said to be co-integrated with co-integrating
vector α. A nonparametric approach has recently been proposed to study
co-integrated system of order one. Bierens (1997) developed new consistent
co-integration tests and estimators of a basis of the space co-integrating vec-
tors that do not depend on the specification of the data-generating process.
The tests proposed are conducted analogously to Johansen’s (1988, 1991)
tests, inclusive of the test for parametric restrictions on the co-integrating
vectors. This paper proposes an extension of the Bieren’s approach to the
so-called I(d) process, that is non-stationary with d order difference. The
paper is organized as follows. Section 2 provides the main tools we used.
Section 3 describes the data generating process. In section 4, non parametric
results via convergence theorems are obtained. Section 5 concludes.

2 Main tools

This section is devoted to the survey of several results and definitions, in
order to let this paper be self-containing. First of all, we recall the definition
of an integrated process of order d.

Definition 1 Given p ∈ N, a discrete time p-variate integrated process of
order d with drift µ, Yt ∼ I(d), is defined by

Yt = µ +∇−dεt = µ + (1− L)−dεt, (1)

where Yt = (Y 1
t , . . . , Y p

t ), L is the lag difference operator, i.e. Lεt := εt−1,
and εt = (ε1

t , . . . , ε
p
t ) is a zero mean stationary process.

Proposition 2 Given d ∈ N, let us consider Yt ∼ I(d) with drift µ. Then
X̄t := Yt − Y0 ∼ I(d) with drift µ.

2



Proof. Immediate.

Remark 3 By Proposition 2, fixed d ∈ N, we don’t lose of generality as-
suming Yt ∼ I(d) with drift µ such that Y0 = 0. We make these assumptions
for the rest of the paper. This assumption is due to the fact, that the prob-
lem we address in this paper can be solve uniquely by the statement of a null
condition on the initial data.

Proposition 4 Let us consider Yt ∼ I(d) with drift µ and let us denote
∆ := 1− L. Then ∆Yt = Yt − Yt−1 ∼ I(d− 1) with drift µ.

Proof. Immediate.

Remark 5 The following relation between Yt and ∆Yt holds:

Yt = ∆Yt + ∆Yt−1 + . . . + ∆Y1. (2)

By (2), we have that the t-th realization of an I(d) process can be viewed as
the sum of the first t realizations of an I(d− 1) process.

3 Description of the data generating process

In this section we provide a description of the data generating process in the
case of I(d) with a drift µ, under some conditions on the process ε.
We assume that the hypotheses of the Wold decomposition theorem hold for
the process ε hold. Due to this fact, fixed t = 1, . . . , n, we can write

εt =
∞∑

j=0

Cjvt−j =: C(L)vt, (3)

where vt is a p-variate stationary white noise process and C(L) is a p-squared
matrix of lag polynomials in the lag operator L.
Let us now state a condition for the matrix C(L), defined in (3).
Assumption I
The process εt can be written as (3), where vt are i.i.d. zero mean p-variate
gaussian variables with variance Ip, and there exist C1(L) and C2(L), p-
squared matrices of lag polynomials in the lag operator L such that all the
roots of detC1(L) are outside the complex unit circle and C(L) = C1(L)−1C2(L).
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The lag polynomial C(L) − C(1) attains value zero at L = 1. Thus, there
exists a lag polynomial

D(L) =
∞∑

k=0

DkL
k

such that C(L)− C(1) = (1− L)D(L). We can write

εt = C(L)vt = C(1)vt + [C(L)− C(1)]vt = C(1)vt + D(L)(1− L)vt. (4)

Let us define wt := D(L)vt. Then, substituting wt into (4), we get

εt = C(1)vt + wt − wt−1. (5)

(5) implies that, given Yt ∼ I(d) with drift µ, we can write recursively

∆d−1Yt = ∆d−1Yt−1 + εt + µ =

= ∆d−1Yt−1+C(1)vt+wt−wt−1+µ = ∆d−1Y0+µ+wt−w0+C(1)
t∑

j=1

vj. (6)

If rank(C(1)) = q − r < q, then the process ∆d−1Yt is co-integrated with r
linear independent co-integrating vectors γ1, . . . , γr.

Remark 6 By Assumption I, we get that C(L)vt and D(L)vt are well-defined
stationary processes and the series

∞∑

k=0

Ck,
∞∑

k=0

CkC
T
k ,

∞∑

k=0

Dk,
∞∑

k=0

DkD
T
k

converge.

Assumption II
Let us consider Rr the matrix of the eigenvectors of C(1)C(1)T corresponding
to the r zero eigenvalues. Then the matrix RT

r D(1)D(1)T Rr is nonsingular.

4 Convergence properties of random matri-

ces and generalized eigenvalues for I(d) processes,

d > 2 integer

First of all, we give a further definition of fractionally integrated process of
order d, where d is a positive integer.
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Definition 7 Given p ∈ N, a discrete time p-variate fractionally integrated
process of order d, Yt ∼ I(d), is defined by the following property: ∆kYt is
a non-stationary process, for k = 0, 1, . . . , d − 1 and ∆dYt is a stationary
process.

We propose a test based on two random matrices, taking into account the
stationary and the non-stationary terms of the I(d) process.
We write such matrices as

Am =
m∑

k=1

an,ka
T
n,k (7)

and

Bm =
m∑

k=1

bn,kb
T
n,k, (8)

where

an,k =
MY,∆Y,...,∆d−1Y

n /
√

n√∫ ∫
Fk(x)Fk(y) min{x, y}dxdy

(9)

and

bn,k =

√
nM∆dY

n√∫
Fk(x)2dx

, (10)

where

MY,∆Y,...,∆d−1

n =
1

n

n∑

t=1

Fk(t/n)∆d−1Yt +
d∑

h=2

[ 1

n2+h

n∑

t=1

Gh(k, t/n)∆d−hYt

]
(11)

and

M∆dY
n =

1

n

n∑

t=1

Fk(t/n)∆dYt. (12)

Remark 8 Am and Bm represent, respectively, the random matrices related
to the non stationary part of the process and to the stationary one.

Now we state an important convergence result.

Theorem 9 Assume that Assumption I and the following properties for the
functions Fk and Gh(k, ·) hold.

lim
n→+∞

1

nh+ 3
2

n∑

t=1

td−hGh(k, t/n) = 0; h = 2, 3, . . . , d. (13)
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1√
n

n∑

t=1

Fk(t/n) = o(1); (14)

1

n
√

n

n∑

t=1

tFk(t/n) = o(1); (15)

∫ ∫
Fi(x)Fj(y) min{x, y}dxdy = 0, i 6= j; (16)

∫
Fi(x)

∫ x

0
Fj(y)dxdy = 0, i 6= j; (17)

∫
Fi(x)Fj(x)dx = 0, i 6= j. (18)

Then we have the following convergence in distribution:




MY,∆Y,...,∆d−1

n (Fk, Gk)/
√

n

M∆dY
n (Fk)

√
n


 →




C(1)
∫

Fk(x)W (x)dx

C(1)(Fk(1)W (1)− ∫
fk(x)W (x)dx)


 ,

(19)
where W is a p-variate standard Wiener process and fk is the derivative of
Fk.

Proof. In order to fix ideas, let us consider d = 3, i.e. the process Y ∼ I(3).
By Remark 3, we can write recursively

Yt =
t∑

j=0

∆Yt−j =
t∑

j=0

[ t−j∑

i=1

∆2Yt−j−i

]
=

=
t∑

j=0

[
j∆2Yt−j+1

]
=

t∑

j=0

[
j

t−j+1∑

k=1

εk

]
. (20)

Thus we have, as n → +∞,

1

n5

n∑

t=1

G3(k, t/n)Yt ∼ 1

n5
ε1

n∑

t=1

G3(k, t/n)t3. (21)

Analogously, we have

1

n4

n∑

t=1

G2(k, t/n)∆Yt ∼ 1

n4
ε1

n∑

t=1

G2(k, t/n)t2. (22)
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It is easy to provide a generalization of this argument. Let us consider
Y ∼ I(d), with d > 3 integer. For each h ∈ {2, . . . , d} we can write

1

n2+h

n∑

t=1

Gh(k, t/n)∆d−hYt ∼ 1

n2+h
ε1

n∑

t=1

Gh(k, t/n)td−h. (23)

Using the definition of the p-variate normal random variable εt and the i.i.d.
property, we get

√
n·MY,∆Y,...,∆d−1

n =
√

n·
{ 1

n

n∑

t=1

Fk(t/n)∆d−1Yt+
d∑

h=2

[ 1

n2+h

n∑

t=1

Gh(k, t/n)∆d−hYt

]}
.

(24)
By hypothesis (13), by Proposition 4, by the hypotheses (14), (15), (16),
(17), (18) and using [2], we get the thesis.
¿From Theorem 9 the following result holds.

Theorem 10 Assume that the hypotheses of Theorem 9 hold.
Then we have the following convergence in distribution:



MY,∆Y,...,∆d−1

n (Fk, Gk)/
√

n

M∆dY
n (Fk)

√
n


 →




C(1)Xk

√∫ ∫
Fk(x)Fk(y) min{x, y}dxdy

C(1)Yk

√∫
Fk(x)2dx


 ,

(25)
for each k, where Xk and Yk are independent p-variate standard normally
distributed random vectors such that

Xk =

∫
Fk(x)W (x)dx√∫ ∫

Fk(x)Fk(y) min{x, y}dxdy
, (26)

Yk =
Fk(1)W (1)− ∫

fk(x)W (x)dx∫
Fk(x)2dx

. (27)

The interaction between the hypotheses of the previous theorem and the
Assumption II bring to the following result.

Theorem 11 Assume that the hypotheses of Theorem 9 hold and there exist
r linear independent co-integrating vectors (thus, we get the existence of the
matrix Rr defined as in Assumption II).
Then we have the following joint in k = 1, . . . , n convergence in distribution:




RT
r MY,∆Y,...,∆d−1

n (Fk, Gk)
√

n

RT
r M∆dY

n (Fk)n


 →




RT
r D(1)Yk

√∫
Fk(x)2dx

Fk(1)RT
r Z


 , (28)
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where the Yk’s and Z are independent p-variate standard gaussian, Z inde-
pendent on Fk and Yk defined as in Theorem 10.

The weight functions defining the matrices Am and Bm exist.
By a simple computation we get the following result:

Proposition 12 Let us consider, for each k,

• Fk(x) = cos(2kπx)

• for each h = 1, . . . , d− 1, it results

Gh(k, x) =
N∑

j=1

ajx
αj ,

for each N ∈ N, aj, αj ∈ R, ∀ j ∈ {1, . . . , N}.
Then the conditions (13), (14), (15), (16), (17) and (18) hold.

¿From Theorems 10 and 11, we have

Theorem 13 Let us assume rankC(1) = p − r. The following convergence
in distribution results are satisfied:




Ip−r 0

0 nIr


 RT AmR




Ip−r 0

0 nIr


 =




RT
p−rAmRp−r nRT

p−rAmRr

nRT
r AmRp−r n2RT

r AmRr


 →

→



RT
p−rC(1)

∑m
k=1 XkX

T
k C(1)T Rp−r RT

p−rC(1)
∑m

k=1 γkXkY
T
k D(1)T Rr

RT
r D(1)

∑m
k=1 γkYkX

T
k C(1)T Rp−r RT

r D(1)
∑m

k=1 γ2
kYkY

T
k D(1)T Rr




(29)
and



Ip−r 0

0
√

nIr


 RT BmR




Ip−r 0

0
√

nIr


 =




RT
p−rBmRp−r

√
nRT

p−rBmRr

√
nRT

r BmRp−r nRT
r BmRr


 →

→



RT
p−rC(1)

∑m
k=1 YkY

T
k C(1)T Rp−r RT

p−rC(1)
∑m

k=1 δkYkZ
T DT

∗ Rr

RT
r D∗

∑m
k=1 δkZY T

k C(1)T Rp−r RT
r D∗

∑m
k=1 δ2

kZZT DT
∗ Rr




(30)
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where Xj, Yi and Z are the same defined in Theorems 10 and 11.
Furthermore, the following convergence in distribution holds:

RT A−1
m R

n2
→




0 0

0 V −1
r,m


 (31)

with

Vr,m = RT
r D(1)

m∑

k=1

γ2
kYkY

T
k D(1)T Rr −

(
RT

r D(1)
m∑

k=1

γkYkX
T
k C(1)T Rp−r

)
·

·
(
RT

p−rC(1)
m∑

k=1

XkX
T
k C(1)T Rp−r

)−1 ·
(
RT

p−rC(1)
m∑

k=1

γkXkY
T
k D(1)T Rr

)
.

Due to Assumption II, we deduce immediately that the matrix Vr,m is not
singular.
Let us denote

X∗
k =

(
RT

p−rC(1)C(1)T Rp−r

) 1
2 RT

p−rC(1)Xk,

Y ∗
k =

(
RT

p−rC(1)C(1)T Rp−r

) 1
2 RT

p−rC(1)Yk. (32)

By [1], [2] and using Theorem 13, we prove the following result.

Theorem 14 Let us consider λ̂1,m ≥ . . . ≥ λ̂p,m the ordered solutions of the
generalized eigenvalue problem

det
[
Am − λ(Bm + n−2A−1

m )
]

= 0, (33)

and let us consider λ1,m ≥ . . . ≥ λp−r,m the ordered solutions of the general-
ized eigenvalue problem

det
[ M∑

k=1

X∗
kX∗T

k − λ
M∑

k=1

Y ∗
k Y ∗T

k

]
= 0, (34)

where the X∗
i ’s and Y ∗

j ’s are i.i.d. random variables following a Np−r(0, Ip−r)
distribution. If zt is co-integrated with r linear independent co-integrating vec-
tors, then Assumptions I and II assure that we have the following convergence
in distribution:

(λ̂1,m, . . . , λ̂p,m) → (λ1,m, . . . , λp−r,m, 0, . . . , 0)
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Let us define now

Y ∗∗
k = (RT

r D(1)D(1)T Rr)
− 1

2 RT
r D(1)Yk. (35)

We have that Y ∗∗
k ∼ Nr(0, Ir).

Moreover, we can write the matrix Vr,m as

Vr,m = (RT
r D(1)D(1)T Rr)

1
2 V ∗

r,m(RT
r D(1)D(1)T Rr)

1
2 , (36)

where

V ∗
r,m =

( m∑

k=1

γ2
kY

∗∗
k Y ∗∗T

k

)
−

( m∑

k=1

γkY
∗∗
k X∗T

k

)( m∑

k=1

X∗
kX∗T

k

)( m∑

k=1

γkX
∗
kY ∗∗T

k

)
.

(37)
So, we get the following result

Theorem 15 Let us consider λ∗1,m ≥ . . . ≥ λ̂∗r,m the ordered solutions of the
generalized eigenvalue problem

det
[
V ∗

r,m − λ(RT
r D(1)D(1)T Rr)

−1
]

= 0, (38)

with V ∗
r,m defined as in (37) and the X∗

i ’s and Y ∗∗
j ’s are i.i.d. random vari-

ables following respectively a Np−r(0, Ip−r) and Nr(0, Ir) distribution.
Under the hypotheses of Theorem 14, we have the following convergence in
distribution

n2(λ̂p−r+1,m, . . . , λ̂p,m) → (λ∗21,m, . . . , λ∗2r,m)

5 Conclusions

In this work, a nonparametric co-integration approach for I(1) process de-
veloped by Bierens (1997) is extended to the I(d) process. The approach
followed by Bierens is linked to the construction of two matrices taking
into account the stationary and non-stationary part of the data generat-
ing process. Via some convergence results, the author provided the solution
of a generalized eigenvalue problems, and thus the construction of random
matrices independent of the process.
In our work we adopt the same strategies and techniques. We focus our at-
tention on writing a pair of data generating process matrices, showing the
distinction between the stationarity and non-stationarity part of the data
generator. Moreover, we check that the weight we use in order to construct
the model does exist. By imposing asymptotic conditions on the model’s
parameters, non parametric results are obtained.
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