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parametric co-integration analysis for integrated processes of the sec-
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1 Introduction

The importance of notion of co-integration introduced by Engle and Granger

(1987) stimulated a vast amount of theoretical and empirical works. A wide

number of studies have investigated the properties of co-integrated system

of order one, I(1), (Engle and Yoo, 1987; Johansen, 1988, 1991; Johansen

and Juselius, 1994; Stock and Watson, 1988; Phillips, 1991). Some economic

series like prices, wages, money balances etc., seems to be more smooth and

more changing than what is usually observed for I(1) variables. Such process

are called I(2). Co-integration among I(2) process has been recently analyzed

in a growing number of theoretical and empirical studies (Johansen, 1995;

Paruolo, 1996; Jorgensen et al., 1996; Rahbek et al., 1999; Banerjee et al.,

2001; Nielsen, 2002; Kongsted, 2003; Kongsted and Nielsen, 2004).

Johansen (1995) discusses inference for I(2) variables in a VAR model.

A two reduced rank regressions estimation procedure is proposed and the

asymptotic distribution of the estimators is provided. A multivariate test for

the existence of I(2) variables is applied to U.K. and foreign price and interest

rates as well as the exchange rate. Paruolo (1996) proposed estimators of the

number of common components integrated of a given order in a VAR system.

The analysis is based on the Johansen (1995) approach and allows for a

determinist component in a VAR system. A joint test for the presence of a

linear trend is presented. Rahbek et al. define a VAR model for I(2) process

which allows for trend-stationary components and restricts the determinist

part of the process to be at most linear. A two step statistical analysis of

the model. An application for UK monetary data illustrates the approach

proposed. Banerjee it et al. empirically study the proposition that inflation

2



and murk-up are related in the long run in the sense proposed by Engel and

Granger (1987) and that higher inflation is associated with a lower murk

up and viceversa in a I(2) system. The findings show that levels of prices

and costs are characterized as integrated process of order 2 and that a linear

combination of the levels cointegrated with price inflation. In addition, a long

run-relationship where higher inflation is associated with a lower markup

and viceversa is found. Nielsen (2002) studies the long-run and short-run

structure in the price and quantity formation of Danish manufactured exports

by applying a multivariate cointegration model for I(2) variables. The data

evidence a level shift in the Danish Market share. To take into account this

effect, Nielsen includes a step dummy in the model and restrict it to allow

for level shifts in all directions.

Kongsted (2003) developed a sequential procedure for testing the hypoth-

esis that a common second order stochastic trends loads into a set of variables

in known proportions. The procedure is applied to the analysis of small im-

port price determination for the Danish data over the period 1975-1995.

Kongsted and Nielsen (2004) provide a general and formal characteriza-

tion of the partly differencing approach. Specifically, they derive the proper-

ties of a transformed vector process obtained by partly differencing an I(2)

process. The transformation eliminates the I(2) trends while retaining a

possible cointegrating relationship between the variables.

This paper proposes an extension of the Bierens (1997) nonparametric

approach to the I(2) process. Bierens (1997) proposes new consistent co-

integration tests and estimators of a basis of the space co-integrating vectors

that do not depend on the specification of the data-generating process. The
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tests proposed are conducted analogously to Johansen’s (1988, 1991) tests,

inclusive of the test for parametric restrictions on the co-integrating vectors.

The analysis is carried out on the construction of two random matrices.

To this end, we define a collection of weight functions involving the data

generating process. By imposing asymptotic conditions on such weights,

convergence results for the stochastic matrices are obtained.

The existence of such weights is assured by solving a differential equation

and their functional shape is provided. Thus, a generalized eigenvalue prob-

lem is solved and nonparametric co-integration results for I(2) process are

given. 1

The paper is organized as follows. Section 2 describes the data generating

process. In section 3 the random matrices are defined and their asymptotic

behavior is studied.

In section 4, non parametric results via convergence theorems are ob-

tained. Section 5 concludes.

2 Preliminary assumptions on the I(2) process

In this section we analyze the data generating process. We provide several de-

finitions, assumptions and results in order to let this work be self-containing.

We start from the definition of a multivariate integrated process of order

d ∈ N with drift.

Definition 1 Given p, d ∈ N, Yt is a discrete time p-variate integrated
process of order d with drift µ ∈ Rp if and only if

Yt = µ +∇−dεt = µ + (1− L)−dεt, (1)

1The same problem has been addressed in Cerqueti and Costantini (2005). A different
approach has been used to obtain nonparametric convergence results for I(d) processes.
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with Yt = (Y 1
t , . . . , Y p

t ), L is the lag difference operator, i.e. Lεt := εt−1, and
εt = (ε1

t , . . . , ε
p
t ) is a zero mean stationary process.

We denote Y an integrate process of order 2 as Yt ∼ I(2) (the presence of

the drift will be omitted in the notation).

We don’t lose of generality assuming Y0 = 0, and we make this assumption

for the rest of the paper. In fact, it is easy to verify that for each d ∈ N

Yt ∼ I(d) ⇒ Yt − Y0 ∼ I(d). (2)

Furthermore, denoting the difference operator ∆ := 1− L, we have

Yt ∼ I(2) ⇒ ∆Yt = Yt − Yt−1 ∼ I(1); (3)

Yt = ∆Yt + ∆Yt−1 + . . . + ∆Y1. (4)

By (3) and (4), we have that the t-th realization of an I(2) process can be

viewed as the sum of the first t realizations of an I(1) process.

Let us now describe the data generating process. We state some conditions

on the zero-mean process ε.

We assume that the Wold decomposition theorem for the process ε hold. Due

to this fact and fixed t = 1, . . . , n, we can write

εt =
∞∑

j=0

Cjρt−j =: C(L)ρt, (5)

where ρt is a p-variate stationary white noise process and C(L) is a p-squared

matrix of lag polynomials in the operator L.

We state now some assumptions on the process. The first one concerns the

matrix C(L).
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Assumption 2 The process εt can be written as (5), where ρt are i.i.d. zero
mean p-variate gaussian variables with variance Ip, and there exist C1(L)
and C2(L), p-squared matrices of lag polynomials in the lag operator L such
that all the roots of detC1(L) are outside the complex unit circle and C(L) =
C1(L)−1C2(L).

L = 1 is a root of the lag polynomial equation C(L)− C(1) = 0. Therefore,

there exists a lag polynomial D defined as

D(L) =
∞∑

k=0

DkL
k

such that C(L)− C(1) = (1− L)D(L).

We can write

εt = C(1)ρt + D(L)(1− L)ρt. (6)

Let us define ζt := D(L)ρt. Then, substituting ζt into (6), we get

εt = C(1)ρt + ζt − ζt−1. (7)

(7) implies that, given Yt ∼ I(2), by recursive calculation we obtain

∆Yt = ∆Y0 + ζt − ζ0 + µt + C(1)
t∑

j=1

ρj. (8)

If rank(C(1)) = p−r < p, then the process ∆Yt is co-integrated with r linear

independent co-integrating vectors γ1, . . . , γr.

Remark 3 By Assumption 2, we get that C(L)ρt and D(L)ρt are well-
defined stationary processes and the series

∞∑
k=0

Ck,
∞∑

k=0

CkC
T
k ,

∞∑
k=0

Dk,
∞∑

k=0

DkD
T
k

converge.
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Assumption 4 Let us consider Rr the matrix of the eigenvectors of C(1)C(1)T

corresponding to the r zero eigenvalues. Then the matrix RT
r D(1)D(1)T Rr

is nonsingular.

We formalize now the assumption related to an orthogonality condition be-

tween the eigenvectors matrix and the drift vector.

Assumption 5

RT
r µ = 0.

The last assumption is trivial in the case of µ = 0, in absence of drift.

3 The stochastic matrices and their asymp-

totic behavior

In this section we provide the tools used to achieve nonparametric results. A

pair of stochastic matrices related to the data generating process are defined.

Let us introduce an integer m ≥ p, an index k = 1, . . . ,m and the real

functions Fk and Gk.

We define the stochastic matrices as follows.

Am =
m∑

k=1

an,ka
T
n,k; (9)

Bm =
m∑

k=1

bn,kb
T
n,k, (10)

with

an,k =
MY,∆Y

n /
√

n√∫ ∫
Fk(x)Fk(y) min{x, y}dxdy

(11)

and

bn,k =

√
nM∆2Y

n√∫
Fk(x)2dx

, (12)
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where

MY,∆Y
n =

1

n

n∑
t=1

Gk(t/n)Yt +
1

n

n∑
t=1

Fk(t/n)∆Yt; (13)

M∆2Y
n =

1

n

n∑
t=1

Fk(t/n)∆2Yt. (14)

Remark 6 The introduction of a pair of stochastic matrices allows for a dis-
tinguishing between stationary and nonstationary part of the data generating
process. Am and Bm are related, respectively, to the non stationary part of
the process and to the stationary one. This fact is implied by the presence in
Am of Yt and ∆Yt, and in Bm of the second difference ∆2Yt.

Now we prove an important convergence result.

Theorem 7 Assume that Assumption 2 and the following properties for the
functions Fk and Gk hold.

lim
n→+∞

n · max
1≤t≤n

∣∣∣t(t + 1)

2
Gk(t/n)− tFk(t/n)

∣∣∣ = 0; (15)

1√
n

n∑
t=1

Fk(t/n) = o(1); (16)

1

n
√

n

n∑
t=1

tFk(t/n) = o(1); (17)

∫ ∫
Fi(x)Fj(y) min{x, y}dxdy = 0, i 6= j; (18)∫

Fi(x)
∫ x

0
Fj(y)dxdy = 0, i 6= j; (19)∫

Fi(x)Fj(x)dx = 0, i 6= j. (20)

Then we have the following convergence in distribution: MY,∆Y
n (Fk, Gk)/

√
n

M∆2Y
n (Fk)

√
n

 →

 C(1)
∫

Fk(x)W (x)dx

C(1)(Fk(1)W (1)−
∫

fk(x)W (x)dx)

 ,

(21)
where W is a p-variate standard Wiener process and fk is the derivative of
Fk.
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Proof. By (2), (3) and (4), we can write

MY,∆Y
n =

1

n

n∑
t=1

Gk(t/n)
[ t−1∑

j=0

(j + 1)εt−j

]
+

1

n

n∑
t=1

Fk(t/n)∆Yt. (22)

Using the definition of the p-variate normal random variable εt, we get

∆Yt =
t∑

j=1

εj + µt ∼ tε1 + µt. (23)

Therefore, by (23), (22) can be rewritten as

1√
n
·Mn

Y,∆Y =
ε1

n
√

n
·
[ n∑

t=1

(
Gk(t/n)

t(t + 1)

2
+tFk(t/n)

)]
+

µ

n
√

n

n∑
t=1

tFk(t/n).

(24)

By hypothesis (15) it results, for each t = 1, . . . , n,

Gk(t/n)
t(t + 1)

2
∼ tFk(t/n), (25)

as n → +∞.

Then, by Proposition 3, hypotheses (16)-(20) and by the theory on standard

Wiener measure calculus, we prove the theorem.2

The weight functions defining the matrices Am and Bm exist. Moreover,

it is possible to provide the functional shape of Fk and Gk, in order to be

the conditions (15)-(20) fulfilled. First of all, we can easily prove that the

weights Fk are trigonometric functions. We formalize this fact in the following

proposition.

Proposition 8 Let us consider, for each k,

Fk(x) = cos(2kπx).

Then the conditions (16), (17), (18), (19) and (20) hold.

2For the details on the Wiener measure calculus see Bierens (1994), Billingsley (1968)
and Phillips (1987).
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From Proposition (8), we obtain that the weight Gk exist. The following

result hold:

Proposition 9 Assume that, for each k, Fk is as in Proposition 8.
Moreover, assume that

Gk(t/n) =
2

n
· kπ(t/n) + 1

t/n + 1/n
+ γ, γ ∈ R. (26)

and

n ·max
{∣∣∣1

2
Gk(1/n)− cos(

2kπ

n
)
∣∣∣, ∣∣∣n(n + 1)

2
Gk(1)− n

∣∣∣} = o(
1

n
). (27)

Then the condition (15) holds.

Proof. We can replace in (15) the functions Fk with their explicit expression

provided in Proposition 8. We get

lim
n→+∞

n · max
1≤t≤n

∣∣∣t(t + 1)

2
Gk(t/n)− tcos(

2kπt

n
)
∣∣∣ = 0. (28)

Then there exists ε > 0 such that

max
1≤t≤n

∣∣∣t(t + 1)

2
Gk(t/n)− tcos(

2kπt

n
)
∣∣∣ ∼ 1

n1+ε
. (29)

Let us define

f(t) :=
t(t + 1)

2
Gk(t/n)− tcos(

2kπt

n
). (30)

The weight functions Gk can be found by imposing a growth condition on

the auxiliary function f and an asymptotic condition on the extremal values

f(1), f(n). At this aim, we provide an estimate of the first derivative of f .

f ′(t) :=
2t + 1

2
Gk(t/n)+

t(t + 1)

2n

∂

∂t
Gk(t/n)− cos(

2kπt

n
)+

2kπt

n
sin(

2kπt

n
) >

>
2t + 1

2
Gk(t/n) +

t(t + 1)

2n

∂

∂t
Gk(t/n)− 1− 2kπt

n
= 0. (31)
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The last term of (31) is a differential equation on Gk. Its solution is

Gk(t/n) =
2

n
· kπ(t/n) + 1

t/n + 1/n
+ γ, γ ∈ R.

Due to the fact that f is increasing with respect to t, the condition (27)

implies that (15) holds.

4 Nonparametric results

In this section we show the implications of the choices of the functions Fk and

Gk in the construction of the stochastic matrices. Substantially, we analyze

the consequences of Theorem 7.

From Theorem 7 the following result holds.

Theorem 10 Assume that the hypotheses of Theorem 7 hold.
Then we have the following convergence in distribution:

 MY,∆Y
n (Fk, Gk)/

√
n

M∆2Y
n (Fk)

√
n

 →


C(1)Xk

√∫ ∫
Fk(x)Fk(y) min{x, y}dxdy

C(1)Yk

√∫
Fk(x)2dx

 ,

(32)
for each k, where Xk and Yk are independent p-variate standard normally
distributed random vectors such that

Xk =

∫
Fk(x)W (x)dx√∫ ∫

Fk(x)Fk(y) min{x, y}dxdy
, (33)

Yk =
Fk(1)W (1)−

∫
fk(x)W (x)dx∫

Fk(x)2dx
. (34)

By the hypotheses of the previous theorem and the Assumption 4, we have

the following result.

Theorem 11 Assume that the hypotheses of Theorem 7 hold and there exist
r linear independent cointegrating vectors (thus, we get the existence of the
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matrix Rr defined as in Assumption 4) such that Assumption 5 holds.
Then we have the following joint in k = 1, . . . , n convergence in distribution: RT

r MY,∆Y
n (Fk, Gk)

√
n

RT
r M∆2Y

n (Fk)n

 →

 RT
r D(1)Yk

√∫
Fk(x)2dx

Fk(1)R
T
r D∗Z

 , (35)

where the Yk’s and Z are independent p-variate standard gaussian, Z inde-
pendent on Fk, Yk defined as in Theorem 10 and D∗ is such that

∞∑
k=0

DkD
T
k = D∗D

T
∗ .

Theorem 12 Let us assume rankC(1) = p − r. The following convergence
in distribution results are satisfied: Ip−r 0

0 nIr

 RT AmR

 Ip−r 0

0 nIr

 =

 RT
p−rAmRp−r nRT

p−rAmRr

nRT
r AmRp−r n2RT

r AmRr

 →

→

 RT
p−rC(1)

∑m
k=1 XkX

T
k C(1)T Rp−r RT

p−rC(1)
∑m

k=1 γkXkY
T
k D(1)T Rr

RT
r D(1)

∑m
k=1 γkYkX

T
k C(1)T Rp−r RT

r D(1)
∑m

k=1 γ2
kYkY

T
k D(1)T Rr


(36)

and Ip−r 0

0
√

nIr

 RT BmR

 Ip−r 0

0
√

nIr

 =

 RT
p−rBmRp−r

√
nRT

p−rBmRr

√
nRT

r BmRp−r nRT
r BmRr

 →

→

 RT
p−rC(1)

∑m
k=1 YkY

T
k C(1)T Rp−r RT

p−rC(1)
∑m

k=1 δkYkZ
T DT

∗ Rr

RT
r D∗

∑m
k=1 δkZY T

k C(1)T Rp−r RT
r D∗

∑m
k=1 δ2

kZZT DT
∗ Rr


(37)

where Xj, Yi and Z are the same defined in Theorems 10 and 11.
Furthermore, the following convergence in distribution holds:

RT A−1
m R

n2
→

 0 0

0 V −1
r,m

 (38)
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with

Vr,m = RT
r D(1)

m∑
k=1

γ2
kYkY

T
k D(1)T Rr −

(
RT

r D(1)
m∑

k=1

γkYkX
T
k C(1)T Rp−r

)
·

·
(
RT

p−rC(1)
m∑

k=1

XkX
T
k C(1)T Rp−r

)−1
·
(
RT

p−rC(1)
m∑

k=1

γkXkY
T
k D(1)T Rr

)
.

By Assumption 4, we deduce immediately that the matrix Vr,m is not singular

a.s..

Let us denote

X∗
k =

(
RT

p−rC(1)C(1)T Rp−r

) 1
2 RT

p−rC(1)Xk,

Y ∗
k =

(
RT

p−rC(1)C(1)T Rp−r

) 1
2 RT

p−rC(1)Yk. (39)

By Anderson et al. (1983), Bierens (1997) and using Theorem 12, we prove

the following result.

Theorem 13 Let us consider λ̂1,m ≥ . . . ≥ λ̂p,m the ordered solutions of the
generalized eigenvalue problem

det
[
Am − λ(Bm + n−2A−1

m )
]

= 0, (40)

and let us consider λ1,m ≥ . . . ≥ λp−r,m the ordered solutions of the general-
ized eigenvalue problem

det
[ M∑

k=1

X∗
kX∗T

k − λ
M∑

k=1

Y ∗
k Y ∗T

k

]
= 0, (41)

where the X∗
i ’s and Y ∗

j ’s are i.i.d. random variables following a Np−r(0, Ip−r)
distribution. If zt is co-integrated with r linear independent co-integrating
vectors, then Assumptions I, II and III assure that we have the following
convergence in distribution:

(λ̂1,m, . . . , λ̂p,m) → (λ1,m, . . . , λp−r,m, 0, . . . , 0)
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Let us define now

Y ∗∗
k = (RT

r D(1)D(1)T Rr)
− 1

2 RT
r D(1)Yk. (42)

We have that Y ∗∗
k ∼ Nr(0, Ir).

Moreover, we can write the matrix Vr,m as

Vr,m = (RT
r D(1)D(1)T Rr)

1
2 V ∗

r,m(RT
r D(1)D(1)T Rr)

1
2 , (43)

where

V ∗
r,m =

( m∑
k=1

γ2
kY

∗∗
k Y ∗∗T

k

)
−

( m∑
k=1

γkY
∗∗
k X∗T

k

)( m∑
k=1

X∗
kX∗T

k

)−1( m∑
k=1

γkX
∗
kY ∗∗T

k

)
.

(44)

Thus, we get the following result.

Theorem 14 Let us consider λ∗1,m ≥ . . . ≥ λ∗r,m the ordered solutions of the
generalized eigenvalue problem

det
[
V ∗

r,m − λ(RT
r D(1)D(1)T Rr)

−1
]

= 0, (45)

with V ∗
r,m defined as in (44) and the X∗

i ’s and Y ∗∗
j ’s are i.i.d. random vari-

ables following respectively a Np−r(0, Ip−r) and Nr(0, Ir) distribution.
Under the hypotheses of Theorem 13, we have the following convergence in
distribution

n2(λ̂p−r+1,m, . . . , λ̂p,m) → (λ∗21,m, . . . , λ∗2r,m)

In Theorem 14, the relationship between data generating process and sto-

chastic matrices is provided. In this way we formalize the theoretical non-

parametric approach to give an estimate of an I(2) process with drift.

5 Conclusions

Co-integration among I(2) process has been recently analyzed in a growing

number of theoretical and empirical studies. This paper proposes a new ap-

proach for co-integration analysis of I(2) process. The differential equations
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approach is used to provide an explicit shape of the parameters involved in

the model. A generalized eigenvalue problem is solved and nonparametric

convergence results are obtained.
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