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Abstract

This paper contributes to the literature on the role of technology shocks as
source of the business cycle in two ways. First, we document that time-series of
US productivity and hours are apparently affected by a structural break in the late
60’s, which is likely due to a major change in the monetary policy. Second, we show
that the importance of demand shocks over the business cycle has sharply increased
after the break.

Keywords: Business cycle, technology shocks, structural breaks.
JEL code: C32, E32.

∗We wish to thank Bertrand Candelon, Luigi Guiso, Fabrizio Mattesini, Francesco Nucci, and
Pasquale Scaramozzino, as well as an anonymous referee, for useful comments on a preliminary draft of
this paper. Gianluca Cubadda gratefully acknowledges financial support from University of Tor Vergata
2005-2006 grants. The usual disclaimers apply.

†Corresponding author. Dipartimento SEFEMEQ, Università di Roma "Tor Vergata", Via Columbia
2, 00133 Roma. Tel. +39 06 72595847, Fax +39 06 2040219, gianluca.cubadda@uniroma2.it.

1



1. Introduction

Determining what are the driving forces of aggregate fluctuations is a highly debated
research topic in macroeconomics. While real business cycle (RBC) models predict that
technological shocks generate most of business cycles (see, e.g., Kydland and Prescott,
1982), new-keynesian theorists focus on the relevance of nominal shocks. The second
viewpoint has recently gained empirical consensus on the basis of an influential paper
by Galí (1999), whose main finding is to reject a key prediction of the RBC paradigm,
namely the existence of positive comovements between output, employment and pro-
ductivity in response to technology shocks.

We contribute to this literature in two ways. First, we question that the data gen-
erating process (DGP) of labor productivity and hours is stable over time, as implicitly
assumed in most of previous analyses. In particular, we test for structural changes
with unknown break dates in a vector auto-regressive (VAR) model of these variables.
Second, we resort to a measure of the sources of the business cycles via a parametric
spectral analysis as proposed by Centoni and Cubadda (2003). Since this measure is di-
rectly derived from the structural VAR parameters, it is possible to evaluate its sample
variability through bootstrap techniques. This peculiarity is appealing when evaluating
changes in the determinants of the business cycle across sub-periods.

The paper is organized as follows. After shortly reviewing the Galí’s approach (1999)
in Section 2, in Section 3 we apply the parameter stability test by Bai et al. (1998) to
the Galí’s bivariate VAR model (1999, 2004), and find a single break in the late sixties.
In Section 4, we link this break to a decrease in the short-run response of monetary
policy to technology shocks. In section 5, we show that the conditional correlation
between hours and productivity on technology shocks changed over time. In section
6 we document that the break had a strong impact on the importance of sources of
cyclical fluctuations.

2. The Galí’s approach

The Galí’s (1999) key identifying assumption is that labor productivity is permanently
affected only by technology innovations. Formally, let nt, yt, and xt ≡ yt − nt denote,
respectively, the logarithms of hours, output, and labor productivity. The bivariate
time series ut ≡ (∆xt,∆nt)

0 is supposed to be generated by the following stationary
stochastic process

ut = δ + C(L)εt, (1)

where δ is a 2-vector of constant terms, εt ≡ (εzt , εmt )0 are i.i.d. N2(0, I2), εzt and εmt
denote, respectively, technology and non-technology shocks, C(L) =

P∞
i=0CiL

i is such
that

P∞
j=1 j |Cj | < ∞ and C(1) is a lower-triangular matrix. Hence, only technology

shocks εzt have permanent effects on labor productivity.
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For statistical inference, we assume that series ut admits the following VAR(p) rep-
resentation:

A(L)ut = µ+ νt, t = 1, . . . , T, (2)

where µ is a 2-vector of constant terms, νt are i.i.d. N2(0,Ω), and A(L) = In−
Pp

i=1AiL
i

is such that the roots of det [A(L)] are outside the unite circle.
Since the structural shocks εt are linked to reduced form VAR innovations νt by the

relation νt = Sεt, where S = A(1)C(1), and C(1) = chol
£
A(1)−1Ω(A(1)−1)0

¤
, consistent

estimates of the coefficients of model (1) are obtained from the estimated parameters
of model (2) through the relation C(L) = A(L)−1S.

3. Testing for structural breaks

The previous empirical model is specified assuming that the DGP of the time series
{ut, t = 1, . . . , T} is constant over time. As this assumption is rather questionable, we
test for the presence of structural breaks in model (2).

Let first test for one break at time τ = πT , where π ∈ (0, 1), and its date τ is
unknown. Model (2) is then generalized by the following sub-sample VAR models:

A−(L)ut = µ− + νt, t = 1, . . . , τ , (3)

A+(L)ut = µ+ + νt, t = τ + 1, . . . , T, (4)

where µ− and µ+ are 2-vectors of constant terms, and A−(L) = In −
Pp

i=1A
−
i L

i and
A+(L) = In −

Pp
i=1A

+
i L

i are such that the roots of det [A−(L)] and det [A+(L)] are
outside the unite circle.

Under the null hypothesis that the model is stable over time we have

H0: [A−(L) = A+(L)] ∩ [µ− = µ+]. (5)

Since the break date is unknown, we must resort to a testing procedure that allows us to
treat τ as a parameter to be estimated. A standard solution is to perform a sequence of
Chow tests, and date the break when the test statistic takes the largest value. Formally,
the test statistic is the following:

LR(bτ) = sup
τ∈[τ,τ ]

LR(τ), (6)

where LR(τ) is the likelihood ratio test for the null hypothesis (5) having fixed the break
date at time τ , and [τ , τ ] is the trimming region, which is usually set to [0.15T, 0.85T ].

Since the asymptotic distribution, which was provided by Bai et al. (1998), is often a
poor approximation of the exact distribution of parameter stability tests when applied to
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Table 1: Structural break test

Sample period Break date Test Asymptotic Bootstrap
statistic p-value p-value

1947:1-2004:4 1968:2 32.37 0.071 0.014
1947:1-1968:2 1952:2 12.39 0.997 0.853
1968:3-2004:4 1985:1 19.78 0.758 0.365

Note: p-values are obtained by 5000 bootstrap replications

multivariate dynamic models (Candelon and Lütkepohl, 2001), we also use a bootstrap
procedure to evaluate the significance of the test statistics (6).1

Finally, we investigate the existence of multiple breaks by the Bai and Perron (1998)
sequential method. Having found a significant break at date bτ , we test for an additional
break in each of the segments (1,bτ), (bτ + 1, T ). If no additional significant break is
found, the procedure stops. Otherwise, test again for the presence of another break in
each pair of adjacent segments that are separated by an additional significant break.
The rationale of this testing procedure is that the fraction τ/T will be consistently
estimated for the break that allows for the greatest reduction in the sum of residuals,
even if several breaks exist.

We use U.S. quarterly seasonally adjusted indexes of labor productivity and hours
of the business sector for the period 1947:1—2004:4. Having fixed p = 3 according to
the AIC, the testing results, reported in Table 1, favor the existence of a single break in
the second quarter of 1968, thus supporting previous empirical findings in studies of the
postwar productivity slowdown (Bai et al. (1998), and Candelon and Cubadda (2006)).

In order to separate more clearly the two regimes, the rest of the analysis excludes the
95% asymptotic confidence interval of the significant break date, namely 1967:2—1969:2.
Hence, we focus on the two sub-samples 1947:1—1967:1 and 1969:3—2004:4.

4. Changes in the conditional variances and deep parameters

The evidence of a structural break in the DGP calls for an economic interpretation.
Hence, we refer to the Galí’s stylized model (1999), which admits the following solutions
for output and hours:

∆yt = ∆ξt + γηt + (1− γ)ηt−1, (7)

1This procedure is based on three steps. First, estimate model (2) and store the estimated parameters
and the residuals bνt. Second, sample with replacement from bνt 5000 times, and take the estimated
parameters in (2) to rebuild the data that are used to bootstrap LR(bτ). Third, compute the bootstrap
p-value as the percentage of the simulated statistics that are larger than the actual statistic.
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Table 2: Estimates and confidence intervals of conditional variances
Variance Sample: 1947:1-1967:1 Sample: 1969:3-2004:4
Var(∆yt|z) 7.253 [2.557,15.228] 1.357 [0.669,3.979]
Var(∆yt|m) 15.031 [7.783,21.693] 10.871 [7.598,13.022]
Var(∆nt|z) 2.512 [1.283,5.630] 1.638 [0.612,3.401]
Var(∆nt|m) 9.116 [5.556,11.890] 5.011 [3.235,6.539]

nt =
1

ϕ
ξt +

γ − 1
ϕ

ηt, (8)

where ξt = σξε
m
t , ηt = σηε

z
t , ση > 0, σξ > 0, ϕ > 0 denotes the short-run return to

labor, and γ = ∂(∆mt)/∂ηt > 0 measures the short-run response of monetary policy to
technology shocks.

From equations (7) and (8), we derive the following conditional variances:

Var(∆yt|z) = (2γ2 + 1− 2γ)σ2η, (9)

Var(∆yt|m) = 2σ2ξ , (10)

Var(∆nt|z) = 2

ϕ
(γ2 + 1− 2γ)σ2η, (11)

Var(∆nt|m) = 2

ϕ2
σ2ξ , (12)

where Var(·|m) and Var(·|z) denote, respectively, the conditional variances on monetary
and technology shocks being the only source of fluctuations.

Interestingly, equation (9) is an increasing function of γ for γ > 0, equation (11) is an
increasing function of γ for γ > 0 and ϕ > 0, and, finally, equation (12) is a decreasing
function of ϕ, for ϕ > 0. In Table 2 we report the values of the conditional variances
in each sub-period, along with their bootstrap 90% confidence limits.2 The largest
percentage reduction is recorded for Var(∆yt|z), thus suggesting that a statistically
significant change occurred on the parameter γ across the two sub-periods.

In order to have further economic insights, it is necessary to estimate the parameters
ϕ and γ. We do this in two steps. First, we compute the parameter ϕ as the square
root of the ratio of the estimates of Var(∆yt|m) to Var(∆nt|m). Second, we substitute
the estimate of ϕ into the ratio of the estimates of Var(∆yt|z) to Var(∆nt|z) to obtain
a numerical value of γ as a root of the resulting second degree polynomial. Based on
Galí’s (1999) theoretical assumptions, we expect to find a unique root that falls within
the interval [0, 1). Remarkably, this estimation strategy has the appealing property of
canceling out the nuisance parameters σ2ξ and σ2η.

2Hereafter, all confidence bounds are obtained by 5000 bootstrap replications.
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Table 3: Estimates and confidence intervals of deep parameters
Parameter Sample: 1947:1-1967:1 Sample: 1969:3—2004:4
ϕ 1.284 [0.921,1.765] 1.473 [1.187,1.839]
γ 0.652 [0.275,0.779] 0.261 [0.093,0.686]

Table 3 reports both point and interval estimates of γ and ϕ in the two sub-samples.
Interestingly, all the estimated parameters fall in the value ranges suggested by Galí
(1999), namely ϕ ∈ (1, 2) and γ ∈ [0, 1).3 Moreover, the break seems to have more
significantly affected the coefficient γ, and its large decrease indicates that the monetary
authority became less reactive to technological shocks.

These results accord well with the economic events around 1968. Up to 1968 "the
Fed did not attach much significance to changes in the inflation rate from its target
value" (Duffy and Engle-Warnick, 2006). Similar conclusions have been reached by
Meulendyke (1990) and Mayer (1999). Indeed, the monetary authority was satisfied
with the monetary course as price stability had been achieved, while recessions did not
represent a major problem. This situation ended in late sixties, when the Fed policy
witnessed a shift toward inflation control in response to the Vietnam war deficit financing
and Great Society programs. Based on the FOMC minutes, Romer and Romer (1989)
provide further evidence along this direction by stating that "...at roughly the end of
1968 there appears to have been a change in the goals of policy: the Federal Reserve
began to feel that it should act to reduce inflation". Moreover, "The intent to do more
than offset expected increases in aggregate demand is clear".

However, despite this change in policy, inflation control was not fully achieved until
Paul Volcker’s appointment as Fed chairman, as forcefully stressed by the literature on
empirical interest rate rules (see, among others, Clarida et al., 2000, and Galí et al.,
2003). In order to check if our analysis fails to detect another major change in the
deep parameters, we split our second sub-sample into two segments, before and after
the reorientation of monetary policy on October 1979 (Romer and Romer, 1989). From
Table 4 we see that, although the estimate of γ appears slightly upward biased due to the
limited sample sizes, there is no evidence of significant changes of the deep parameters
between the two segments.

3 Interestingly, we obtained a unique bootstrapped value for γ that falls in [0, 1) in about 81% of the
replications. In the remaining cases, we obtained complex roots and we took the real part of them,
which always belonged to the same interval.
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Table 4: Estimates and confidence intervals of deep parameters after 1969:2
Parameter Sample: 1969:3-1979:3 Sample: 1979:4—2004:4
ϕ 1.537 [0.999, 2.389] 1.415 [1.040, 1.884]
γ 0.364 [0.119, 0.741] 0.305 [0.122, 0.773]

Table 5: Estimates and confidence intervals of conditional correlations
Correlation Sample: 1947:1—1967:1 Sample: 1969:3—2004:4
Corr(∆xt,∆nt|z) −0.483 [−0.818, 0.079] −0.825 [−0.907,−0.516]
Corr(∆xt,∆nt|m) 0.519 [−0.037, 0.611] 0.490 [0.296, 0.628]

5. Changes in the conditional correlations

Table 5 reports the estimates and 90% confidence intervals of the correlations between
productivity and hour growth rates conditional to technology shocks, Corr(∆xt,∆nt|z),
and non technology shocks, Corr(∆xt,∆nt|m), for the two sub-samples. Although the
main finding in Galí (1999) is confirmed, since the estimates of Corr(∆xt,∆nt|z) and
Corr(∆xt,∆nt|m) are, respectively, negative and positive in both periods, the sample
conditional correlation on technological shocks has almost doubled in magnitude after
the break. On the contrary, the correlation conditional on non technology shocks has
almost remained unaltered.

6. Changes in the business cycle effects of technology shocks

Based on Centoni and Cubadda (2003), we use a parametric measure of the contribution
of technological shocks to the spectral mass of output in the 6-32 quarter period range.
If the data are generated by model (2), the power spectrum of the process ∆yt is

F (ω) =
1

2π
C 0y(e

−iω)Cy(e
iω)

where C 0y(L) = (1, 1)C(L), and C(e−iω) = A(e−iω)−1S. We can measure the business
cycle effects of technology shock on output through the following statistic:

Rz(π/16, π/3) =

π/3R
π/16

Fz(ω)dω

π/3R
π/16

F (ω)dω

(13)

where
Fz(ω) =

1

2π
C0y(e

−iω)(1, 0)(1, 0)0Cy(e
iω)
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Table 6: Estimates and confidence intervals of measures of business cycle effects of
technology and non-technology shocks

Shock Sample: 1947:1—1967:1 Sample: 1969:3—2004:4
z 0.282 [0.045,0.653] 0.026 [0.017,0.200]
m 0.718 [0.347,0.955] 0.974 [0.800,0.983]

is the spectrum of ∆yt at frequency ω conditional to technology shocks being the only
source of fluctuations.

The statistic (13) measures the proportion of the variability of output at the business
cycle frequency band, namely [π/16, π/3], which is explained by technology shocks.
Since εt are i.i.d. N2(0, I2), it follows that the analogous measure of the business cycle
effects of non-technology shocks is obtained as

Rm(π/16, π/3) = 1−Rz(π/16, π/3) (14)

Evidently, when the data are generated by the sub-sample models (3)-(4), it is
required to use the polynomial matrices A−(L) and A+(L) in place of A(L).

Table 6 reports the point and interval estimates of these measures. We notice that
there is evidence of a sharp decrease in the role of technology shocks as a source of the
US business cycle. Indeed, the measure (13) shrank from about 28% to 3%, and this
change is clearly statistically significant.

Interestingly, Galì and Gambetti (2006) reached a different conclusion in their em-
pirical analysis of The Great Moderation. After fixing the break date at 1984, they
show that the contribution of non-technology shocks to the variance of output sharply
fell after the break. However, the results in Table 1 indicate that, conditionally to the
presence of a break in the late sixties, a second change of the VAR mean parameters in
the middle eighties is insignificant with our data.
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