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Abstract
Sequential panel selection methods (spsms) are based on the repeated application of panel unit root
tests and are increasingly used to identify I(0) time series in macro-panels. We check the reliability
of spsms by using Monte Carlo simulations based on generating the individual test statistics and
the p values to be combined into panel unit root tests, both under the unit root null and under se-
lected local alternatives. The analysis is carried out considering both independent and dependent
test statistics. We show that spsms do not possess better classification performances than conven-
tional univariate tests.

1. Introduction

Panel unit root (ur) tests are powerful tools to check the null hypothesis that all the time
series in a panel are I(1). However, they are unsuitable to classify individual time series
into nonstationary and stationary ones. In order to overcome this shortcoming, Chortar-
eas & Kapetanios (2009) proposed using a sequential panel selection method (spsm) based
on the application of a panel ur test recursively, at each iteration eliminating from the
panel the single series for which individual evidence in favour of the stationary hypothe-
sis is strongest. This procedure was initially conceived using individual Dickey-Fuller (df)
tests jointly with the panel unit root test developed by Im et al. (2003). However, different
flavours of the spsm can be obtained using different tests.

Although the procedure has received increasing interest,1 not much is known about
its real merits as a classification tool, the only evaluation being limited to the experiments
carried out in Chortareas & Kapetanios (2009).

In this paper we investigate the performance of the spsm as a classification device. We
complement and extend Chortareas & Kapetanios’s (2009) analysis along five directions:

(i) we study the performance of the procedure using four different panel ur tests. Of
course, the classification performance of each spsm may depend on the characteristics
of the selected ur test. In this paper we consider the tests developed in Im et al. (2003),
Choi (2001), Demetrescu et al. (2006), and Hanck (2013). We label the corresponding
spsms as i-spsm, c-spsm, d-spsm, and h-spsm, respectively. For reasons explained below,
all the panel ur tests used in this paper are built upon univariate Dickey-Fuller (df)
tests. The classification performance of the spsms is also compared to the results

∗ Preliminary versions of this paper were presented at the Economics Seminars at the Department of
Economics and Finance, Brunel University and at the 7th International Conference on Computational and
Financial Econometrics (CFE 2013). We are grateful to all participants for their comments and suggestions.
We owe special thanks to Gaia Becheri and Xuguang Sheng for discussion.

JEL classification numbers: C12, C15, C23.
Key words: Unit root, Panel data, Simulation, roc curve, Discrete classifier.

1At the time of writing (January 2014), Chortareas & Kapetanios’s (2009) paper has received more than 60
citations.
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obtained by applying individual df tests as well as Hommel’s (1988) multiple testing
procedure;

(ii) we use local-to-unit root alternatives (Phillips, 1987), rather than fixed alternatives
as done in Chortareas & Kapetanios (2009). This choice allows us to treat the test
statistics and the p values under the null and under the alternative in a consistent
way;

(iii) we analyze the effect of cross-section dependence on the classification ability of the
procedure. This aspect is of crucial practical importance, given that typical macro-
panels can be expected to be cross-sectionally correlated (see, e.g., O’Connell, 1998);

(iv) we focus on the classification performance of the procedure in a way which is not
influenced by the finite-sample performance of the underlying individual df tests.
In practice, our simulation results can be read as quality upper bounds of the results
that can be attained by using spsms in practical circumstances;

(v) simulation results are illustrated using Receiver Operating Characteristic (roc) graphs,
consistently with the literature on discrete classifiers (see, e.g., Fawcett, 2006).

The analysis is carried out by using extensive Monte Carlo experiments. Since we
want to isolate the properties of the sequential procedure from those of the underlying
individual and panel tests, rather than simulating the individual time series, we simulate
the asymptotic (with T → ∞) df individual t statistics and p values under the ur null and
under selected local-to-unit root alternatives. These simulated values constitute the input
for the different classification procedures. In so doing, the classification results depend
only on the procedure, not on the specification and the finite-sample properties of the
underlying df tests. The asymptotic power of the individual df tests can be varied by
varying the distance between the null and the (local) alternative hypothesis.

The remainder of this paper is organized as follows: Section 2 describes the panel tests
considered in the paper and draws some implications for their use jointly with the spsm;
Section 3 is devoted to the description of the Monte Carlo experiments; Section 4 discusses
the simulation results, and Section 5 concludes.

2. Panel unit root tests

In our opinion there are some classes of panel ur tests that are better suited than others
to be applied jointly with the spsm. In particular, it is necessary to consider panel ur tests
whose null hypothesis is that all the series are I(1), whereas the alternative hypothesis
must be that at least one of the series is I(0). Furthermore, the selected panel test should
preferably be built by aggregating the results of individual time series tests, so that the re-
sulting panel test is consistent with the selection criterion used to eliminate from the panel
one series at each iteration. Finally, given that the selected panel test is going to be applied
over a decreasing number N of series, panel tests that do not rely on N-asymptotics should
be preferred. All these requirements drastically reduce the number of suitable panel ur
tests and we argue that, beside Im et al.’s (2003) test, p value combination tests (see, e.g.,
Choi, 2001; Demetrescu et al., 2006) and Hanck’s (2013) intersection test are natural can-
didates to be used jointly with the spsm. Although in this paper we adhere to the panel
ur tests based on individual df tests, as far as the p value combination and intersection
tests are considered, different individual unit root tests could be utilized as well (see, e.g.,
Costantini & Lupi, 2013). Finally, since Hanck’s (2013) approach is based on Simes’s (1986)
test, and given that Hommel’s (1988) procedure is equivalent to applying Simes’s (1986)
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test to each intersection hypothesis of a closed testing procedure, the classification perfor-
mance of the multiple testing approach proposed by Hommel (1988) is also considered in
our Monte Carlo analysis.

The mean-t test

Im et al. (2003, p. 60) showed that for fixed N and T, under the joint ur null the distribution
of the average of N independent individual df t statistics

t̄N,T :=
1
N

N

∑
i=1

ti,T . (1)

is non-standard but does not depend on nuisance parameters. The test built on eq. (1) re-
jects the null for large (in absolute value) negative values of the t̄N,T statistic. The asymp-
totic (in T) distribution of the test statistic shifts to the right as N increases, so that the
critical values become “less negative” for large values of N. This fact, together with the
observation that under the alternative hypothesis the test statistic diverges, makes it clear
that the power of the test increases with N and with the number of I(0) series in the panel.
However, the mean-t test may be heavily biased in the presence of cross-dependent series
(see, e.g., O’Connell, 1998; Maddala & Wu, 1999).

The p value combination test

Choi (2001) proved that under mild regularity conditions, if N < ∞ time series in a panel
are cross-sectionally independent, then under the joint ur null

Zc :=
1√
N

N

∑
i=1

Φ−1(pi)
w−→ N(0, 1) (2)

as T → ∞, where Φ(·) is the standard normal cumulative distribution function (cdf) and
pi (i = 1, . . . , N) are the individual p values from N ordinary df tests carried out on each
series in the panel. The test is one-sided and the null is rejected for Zc < Φ−1(α) for a
given significance level α.

Choi’s (2001) test has high power: in the presence of, say, N = 10 individual p values
all around 0.3, no ur test would individually reject the null, but the panel test would
reject the global null hypothesis that all the series are I(1) at the 5% significance level. In
general, eq. (2) implies that the panel test will reject in the presence of N equal p values
smaller than Φ

(
Φ−1(α)/

√
N
)

, which (for the usual significance levels α) is increasing
in N. From eq. (2) it is also clear that for the panel test to reject it is sufficient that the
average probit t̄ := N−1 ∑N

i=1 Φ−1(pi) be smaller than N−
1
2 Φ−1(α), which is decreasing

in absolute value with N. Furthermore, the density of the p values under the alternative
is markedly skewed to the right, with the skewness increasing with the distance of the
alternative from the null. This makes rejection more likely the larger is the number of
hypotheses under the alternative and the larger is their distance from the null. This in
turn means that for a given set of alternatives the power of the panel ur test increases
with the fraction of hypotheses under the alternative and their distance from the null.

Choi’s (2001) test can be extended to cover the case of cross-dependent time series, as
suggested in Demetrescu et al. (2006).

The intersection test

The panel ur intersection test proposed in Hanck (2013) is based on the testing procedure
developed in Simes (1986) and tests the global hypothesis that all the series have a unit
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root, while controlling for the probability of falsely rejecting at least one individual true
null hypothesis at the chosen significance level α. By controlling the family-wise error
rate, the intersection test tends to be more conservative than other tests. Indeed, Hanck
(2013) showed that the intersection test has lower power than those proposed in Maddala
& Wu (1999) and Demetrescu et al. (2006) in many circumstances.

Contrary to what happens with the previously discussed tests, the number of series
under the alternative hypothesis has no direct influence on power. In fact, it is sufficient
a single small p value for the intersection test to reject the null, whereas the presence of
large p values does not influence the result (there is no averaging).

Being based on Simes’s (1986) procedure, the intersection test can be used in the pres-
ence of positively dependent tests (Sarkar & Chang, 1997).

Implications for SPSMs

Following Chortareas & Kapetanios’s (2009) argument, the case for spsms is stronger the
larger is the power gain of the panel ur tests over the individual time series ones. There-
fore, as far as the i-spsm, the c-spsm, and the d-spsm are concerned, a few implications can
be advanced:

(i) The case for the i-spsm, the c-spsm, and the d-spsm is stronger when N is fairly large
and most of the series are I(0).

(ii) The performance of the i-spsm, of the c-spsm, and of the d-spsm should deteriorate as
the sequence of panel ur tests proceeds, since both N and the proportion of series
under the alternative decrease at each step.

Implication (i) was already suggested by Chortareas & Kapetanios (2009) with refer-
ence to the i-spsm. However, the fact that panel ur tests are more powerful when the frac-
tion of stationary series is large may be somewhat disturbing for macroeconomists who
are often more interested in the opposite situation where most of the series in a panel are
I(1) and only a few are I(0).

Panel test power is not the only element that influences the ability of spsms to correctly
classify time series. In fact, in order for spsms to correctly classify a I(0) time series the
panel test should reject the null and the minimum individual p value, pmin, should corre-
spond to a truly I(0) series. While this happens with probability 1 asymptotically when
fixed alternatives are considered, this is not guaranteed either in finite samples or asymp-
totically with local alternatives. Indeed, the probability that a p value as small or smaller
than pmin corresponds to a test under the alternative is

Pr(H1|p ≤ pmin) =
Pr(p ≤ pmin|H1)Pr(H1)

Pr(p ≤ pmin|H1)Pr(H1) + Pr(p ≤ pmin|H0)Pr(H0)

=
F1(pmin)Pr(H1)

F1(pmin)Pr(H1) + pmin(1− Pr(H1))
(3)

where F1(·) is the cdf of the p values of the individual ur tests under the alternative which
is determined by the test used and by the distance between the null and the local alterna-
tive hypothesis. From eq. (3) it can be verified that

∂ Pr(H1|p ≤ pmin)

∂ Pr(H1)
=

pminF1(pmin)

D2 > 0 (4)

and
∂ Pr(H1|p ≤ pmin)

∂F1(pmin)
=

pmin Pr(H1) [1− Pr(H1)]

D2 > 0 (5)
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with D2 the squared denominator of eq. (3). In other words, denoting by N1 the number
of tests (or series) under the alternative, the probability that a p value as small or smaller
than pmin corresponds to a hypothesis under H1 increases with Pr(H1) = N1/N as well
as with the distance between the null and the local alternative.

Following a similar line of reasoning for Pr(H0|p ≤ pmin) makes it possible to write
the odds

Ω10 :=
Pr(H1|p ≤ pmin)

Pr(H0|p ≤ pmin)
=

Pr(p ≤ pmin|H1)Pr(H1)

Pr(p ≤ pmin|H0)Pr(H0)

=
F1(pmin)

pmin
× N1/N

1− N1/N
(6)

from which it is clear that ∂Ω10/∂(N1/N) > 0. Of course, for a given ratio N1/N,

Ω10 ∝
F1(pmin)

pmin
. (7)

Since the skewness of the density of the p values under the alternative increases with the
distance between the null and the alternative, the odds (6) also increase with the distance
between the null and alternative. These results have important implications as far as the
classification procedure is concerned. Indeed, eq. (6) implies a deterioration of the proce-
dure’s performance as the iteration process proceeds that goes beyond the effect related to
the power of the panel ur test. Furthermore, for a given value of the ratio N1/N, mean-t
and p value combination tests will tend to reject the global null more easily for increasing
values of N. However, if the alternative is sufficiently close to the null, the odds ratio (7)
indicates that there is a non trivial probability that a truly null individual hypothesis is
rejected in the iterative procedure, and this phenomenon will tend to increase with N,
given that the panel test will be able to reject the global null in the presence of higher in-
dividual p values (smaller, in absolute value, test statistics). On the other hand, when the
null and the alternative hypotheses are well separated, this effect reduces and it is more
likely that the individual hypothesis rejected in the iterative procedure is indeed correctly
rejected. However, as far as the null and the alternative hypotheses are well separated, the
power of conventional univariate ur tests is satisfactory, rendering the application of spsms
potentially superfluous.

3. Monte Carlo design

Six different classification procedures are compared, namely the i-spsm, the c-spsm, the
d-spsm, the h-spsm, the univariate df, and Hommel’s (1988) method.

The null hypothesis is that all the N series in the panel are generated by

yt = $yt−1 + εt (8)

with $ = 1 whereas under the alternative a fraction N1/N of series in the panel are gen-
erated by eq. (8) with

$ = exp
(
−γ

T

)
≈ 1− γ

T
(9)

with γ > 0. In our simulations we considered four distinct local-to-unit root alternatives
(γ ∈ {1, 5, 10, 20}).

All experiments have been simulated over 5,000 replications taking the nominal sig-
nificance level α = 0.05, the number of time series N ∈ {10, 20, 40, 80}, and the fraction of
stationary alternatives N1/N ∈ {0.20, 0.50, 0.80}. Finally, the correlation among individ-
ual test statistics has been taken as ρ ∈ {0, 0.4, 0.8}. In order to maintain the paper within
a reasonable length, we considered only individual df tests with drift and no trend. All
simulations were carried out using R 3.0.1 (R Development Core Team, 2013).
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Simulation of the individual t statistics and p values

The simulation algorithm can be divided into 5 steps:

1. define the correlation matrix among the test statistics as

Σ =


1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
...

... . . . ...
...

ρ ρ ρ . . . 1


with ρ ∈ {0, 0.2, 0.4, 0.8};

2. draw N (with N ∈ {10, 20, 40, 80}) values n from the N-variate normal N(0, Σ);

3. draw N possibly correlated uniform variables u as u = Φ(n) and partition the result
as u = (u′1, u′0)

′, where u1 and u0 have N1 and N0 elements, respectively;

4. draw N1 test statistics under the alternative hypothesis as s1 = F−1
1 (u1) and N0 test

statistics under the null as s0 = F−1
0 (u0), where F1(·) and F0(·) are the cdfs of the

test statistics under the alternative and under the null hypothesis, respectively;

5. generate the p values under the alternative as F0(s1) and set the p values under the
null simply equal to u0.

Step 4 requires inverting the cdf of the test statistics under the null and under the
alternative. Therefore, we simulated 200,000 values of the test statistics under the null
and under the alternative and used the empirical cdf’s F̂0(·) and F̂1(·) in step 4. More
specifically, under the null the t statistics are asymptotically distributed according to the
df distribution, so that their simulation rises no special difficulty (see, e.g., Hatanaka, 1996,
Chapter 7). Furthermore, Phillips (1987) showed that the asymptotic distribution of the df
t statistics under the local-to-unit root alternative can be written in terms of functionals of
the Ornstein-Uhlenbeck process, which we simulated following Chan (1988), method II.
Finally, the empirical cdf F̂0(·) is again used to derive the p values.

In order to apply Im et al.’s (2003) test recursively, the critical values of the panel ur
test for all the possible values of N ∈ {1, . . . , 80} are needed. In order to derive the critical
values for the panel test, we simulated t̄N,∞ under the null over 50,000 replications with
N ∈ {1, 2, . . . , 10, 15, 20, . . . , 100, 120, 140, . . . , 200} and computed the 100α-th percentile
of each simulated distribution, cvN,α. Finally, we estimated a response surface of the form

cvN,α = β0 + β1 ln(N) + β2 ln(N)2 + β3 ln(N)3 + ξN,α . (10)

The approximation we got from the response surface for α = 0.05 is excellent, with R2 =
0.9998. The 5% critical values were finally computed as

ĉvN,0.05 = β̂0 + β̂1 ln(N) + β̂2 ln(N)2 + β̂3 ln(N)3

≈ −2.851 + 0.597 ln(N)− 0.108 ln(N)2 + 0.007 ln(N)3 (11)

for any N ∈ {1, . . . , 200}. As a by-product of our analysis, eq. (11) generalizes and extends
Table 2 in Im et al. (2003).
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Figure 1. Five discrete classifiers plotted on the roc space. The dashed lines are pre-
cision isometrics (for N1/N = 0.7). The lowest precision isometric coincides with the
random guessing line. The broken solid line is the roc convex hull.

4. Monte Carlo results

The procedures considered in the Monte Carlo simulations can be thought of as different
discrete classifiers, and we analyze the simulation results accordingly. In particular, in
order to compare the ability of the different procedures to correctly classify the time series
into I(0) series (the positives) and I(1) ones (the negatives), we represent the outcome of
the Monte Carlo simulations on the Receiver Operating Characteristics (roc) space (see,
e.g., Fawcett, 2006). More precisely, the result of each procedure in each experiment is
represented as a point on the roc space.

A roc graph is built by plotting the true positive rate (tpr) of a classifier against its
false positive rate ( f pr), with the tpr and the f pr being defined as

tpr :=
number of correctly classified positives

total number of true positives

f pr :=
number negatives incorrectly classified as positives

total number of true negatives .

Figure 1 presents an explicating example, where five discrete classifiers are plotted on
the roc space. The diagonal line tpr = f pr represents the situation of randomly guessing
the classification. Points below this line (point E, in Figure 1) identify classifiers that per-
form worse than random guessing. The perfect classifier is represented by the point (0, 1).
Precision isometrics (the dashed lines in Figure 1) help identifying those classifiers that
have the same performance in terms of precision (Flach, 2003), where precision is defined
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Figure 2. Independent test statistics. 5,000 replications with the fraction of stationary
series N1/N = 0.2. The local-to-unit root alternative is $ = exp(−γ/T) with γ ∈
{1, 5, 10, 20}. Larger symbols correspond to larger panels with N ∈ {10, 20, 40, 80}.
The dashed lines are precision isometrics. The lowest precision isometric coincides
with the random guessing line. The broken solid line is the roc convex hull. � = c-
spsm;4 = i-spsm;© = h-spsm; + = df; × = Hommel.

as
prec :=

number of correctly classified positives
total number of classified positives .

The level of precision relative to each precision isometric is reported on the border of the
graph. The broken line is the roc convex hull (Provost & Fawcett, 2001), the most “up-
left” broken line joining some classifiers on the roc space. Classifiers lying between the
random guessing line and the convex hull (e.g., point D in Figure 1), despite doing better
than random guessing, are sub-optimal.

We contend that analyzing the simulation results using the roc framework is more
appropriate than just reporting the estimated probability of correctly classifying a series
as stationary. In fact, by using roc graphs we can jointly examine not only the true positive
rate, but also the false positive rate and the precision of each classifier. Furthermore, the
graphical representation of the results eases comparisons and makes evident details that
could go unnoticed in large tables.

Independent test statistics

To save space, in this Section we report only the simulation results relative to N1/N ∈
{0.2, 0.8}: the results with N1/N = 0.5 are qualitatively similar and are available in the
supplementary material reported in the appendix.
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Figure 3. Independent test statistics. 5,000 replications with the fraction of stationary
series N1/N = 0.8. The local-to-unit root alternative is $ = exp(−γ/T) with γ ∈
{1, 5, 10, 20}. Larger symbols correspond to larger panels with N ∈ {10, 20, 40, 80}.
The dashed lines are precision isometrics. The lowest precision isometric coincides
with the random guessing line. The broken solid line is the roc convex hull. � = c-
spsm;4 = i-spsm;© = h-spsm; + = df; × = Hommel.

The i-spsm and c-spsm procedures have very similar performances. When the frac-
tion of stationary time series is small (see Figure 2), either procedure does not provide
advantages over the standard time series approach, as predicted. Quite on the contrary,
irrespective of the “distance” of the local alternative from the ur null hypothesis, these
two spsm-based procedures tend to be too conservative and to be sub-optimal for small
N. When γ = 20, the predicted effect of panel dimension (N) on the classification perfor-
mance is evident. The h-spsm and Hommel’s method are very conservative and of scarce
practical use under these conditions. In a classification exercise, control of the family-wise
error rate implied by the two procedures is probably excessive, giving rise to an overall
weak classification criterion. Although expected, these results are nevertheless quite dis-
appointing given that it is easy to imagine situations in which the main interest lies in
distinguishing a few I(0) time series in a panel made of mostly nonstationary macroe-
conomic time series. In such a setting the spsm will not be of great help, whereas the
conventional approach related to individual ur testing ensures better results.

When most of the series in the panel are I(0) (see Figure 3) the results are more ar-
ticulated. When the alternative hypothesis is very close to the null (as is the case when
γ = 1), then no method is significantly better than random guessing (in fact, the same
is true also when the fraction of tests under the alternative is small). When the null and
the alternative hypotheses are more separated (e.g., when γ = 5 or γ = 10), both the
true positive rate and the false positive rate of the i-spsm and of the c-spsm increase with
N. In particular, the false positive rate exceeds 0.15 for γ = 10 and N > 40. In this re-
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spect, our results square nicely with those reported in Chortareas & Kapetanios (2009,
Table 2). Since Chortareas & Kapetanios (2009) used a fixed alternative where on average
$ = 0.85, the most appropriate comparison is between their results relative to the i-spsm
with N1/N = 0.80 (I(1)% = 0.20, in their notation) and T = 50, with our results relative
to the same procedure with N1/N = 0.80 and γ = 10 (the exactly corresponding value
of γ would be 7.5). The results are indeed quite similar. However, given that Chortareas
& Kapetanios (2009) focused on fixed alternatives, in their simulations the performance
of the i-spsm improves substantially for larger values of T. On the contrary, we show that,
when appropriate local alternatives are considered, large false positive rates persist even
asymptotically (in T). When the hypotheses are well separated, as in the case γ = 20, then
this distortion reduces, but since the power of the df test increases, there is little gain (if
any) in using either the i-spsm or the c-spms, especially in the presence of relatively small
panels (N ≤ 20).

The observed behaviour is not related to the cumulation of small size distortions de-
scribed in Hanck (2008): rather, it is the result of the interaction of the power of the panel
ur test with the probability that a small p value be associated with a test under the alter-
native, as anticipated in Section 2. When the local alternative is close to the null, there is
a non-trivial probability that some of the small p values do not correspond to tests un-
der the alternative. When γ increases, the null and the alternative hypotheses become
more clearly separated and a better classification can be attained. However, in this case
correctly specified conventional df tests have approximately the same tpr with greater
precision than that obtained using either the i-spsm or the d-spsm.

The overall classifiers’ behaviour synthesized in Figure 3, while consistent with the
implications outlined in Section 2, contradicts Chortareas & Kapetanios’s statement that

“An ideal situation for spsm is one where most series considered are stationary
and very persistent.” (Chortareas & Kapetanios, 2009, p. 393)

The other procedures remain very conservative. In fact, the h-spsm and the related
closed testing procedure (Hommel, 1988) never reach a better result than a half of the
true positive rate that can be attained using conventional df tests, with only a very limited
increase of precision.

Dependent test statistics

As is well known, the panel ur tests proposed by Choi (2001) and Im et al. (2003) are
valid only in the presence of independent tests statistics. Therefore, in the presence of
positively dependent test statistics we expect high fpr’s as far as the i-spsm procedure is
concerned. Furthermore, we substitute the c-spsm with the d-spsm, based on Demetrescu
et al. (2006), in order to take into account dependence in the p value combination test. The
h-spsm remains valid also in the presence of positively dependent test statistics (see Hanck,
2013). To save space, in this Section we report only the simulation results relative to the
case ρ = 0.8 and N1/N ∈ {0.2, 0.8}: the results with ρ = 0.4 and those with N1/N = 0.5
are qualitatively similar and are available in the supplementary material in the appendix.

When the fraction of stationary time series is small (see Figure 4), apart from the ex-
pected large values of the fpr for the i-spsm, the results are qualitatively similar to those
obtained under independence (Figure 2). However, the true positive rate and precision
of the panel-based classification procedures are even lower than those obtained in the
presence of independent tests.

Compared to the case of independent tests, when the fraction of stationary series is
large (see Figure 5) the excess of positives disappears, except again for the i-spsm. This is
due to the fact that dependence makes the p values under the null and under the alter-
native more clearly separated, so that a smaller number of null hypotheses are wrongly
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Figure 4. Dependent test statistics (ρ = 0.8). 5,000 replications with the fraction of
stationary series N1/N = 0.2. The local-to-unit root alternative is $ = exp(−γ/T)
with γ ∈ {1, 5, 10, 20}. Larger symbols correspond to larger panels with N ∈
{10, 20, 40, 80}. The dashed lines are precision isometrics. The lowest precision isomet-
ric coincides with the random guessing line. The broken solid line is the roc convex
hull. � = d-spsm;4 = i-spsm;© = h-spsm; + = df; × = Hommel.

classified as alternative. However, also in this case the panel-based classification methods
have in general worse classification performances than those obtained by using standard
df tests directly. Only in one case (when γ = 20) the d-spsm gets the same true positive
rate and better precision than the df. Despite this, the precision increment is so small that
it is legitimate to ask if it justifies the extra conceptual and computational burden involved
in using the d-spsm.

5. Conclusions

Panel unit root tests are powerful tools, but rejection of the joint unit root null hypoth-
esis does not convey information about which series in a panel are stationary. In order
to overcome this difficulty, Chortareas & Kapetanios (2009) suggested using a recursive
panel testing procedure, which they labelled Sequential Panel Selection Method.

This paper investigates the relative merits of this procedure as compared to the stan-
dard time series approach based on individual Dickey-Fuller tests. In particular, the clas-
sification performance of four adaptations of the Sequential Panel Selection Method are
considered, the first being the original one proposed by Chortareas & Kapetanios (2009),
which is based on the panel unit root test proposed in Im et al. (2003); the second and
third are based on the p value combination tests suggested in Choi (2001) and Deme-
trescu et al. (2006), respectively; the fourth version is based on the intersection test advo-

11



0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.
8

0.950.980.99

●●●●

γ = 1

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.
8

0.950.980.99

●●●●

γ = 5

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.
8

0.
95

0.980.99

●
●●●

γ = 10

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.
8

0.
95

0.980.99

●

●
●●

γ = 20

Figure 5. Dependent test statistics (ρ = 0.8). 5,000 replications with the fraction of
stationary series N1/N = 0.8. The local-to-unit root alternative is $ = exp(−γ/T)
with γ ∈ {1, 5, 10, 20}. Larger symbols correspond to larger panels with N ∈
{10, 20, 40, 80}. The dashed lines are precision isometrics. The lowest precision isomet-
ric coincides with the random guessing line. The broken solid line is the roc convex
hull. � = d-spsm;4 = i-spsm;© = h-spsm; + = df; × = Hommel.

cated in Hanck (2013). The method suggested in Hommel (1988), which is directly related
to Hanck’s (2013), is also considered.

In order to focus on the relative merits of the classification procedures and not on
the finite sample properties of the underlying individual unit root tests, the analysis is
based on the direct simulation of the asymptotic test t statistics and p values, either under
the null or under selected local-to-unit root alternatives. This can be seen equivalent to
analyzing the classification ability of the different procedures under the best conditions,
where no specification errors in the Dickey-Fuller equations or finite sample biases take
place.

Our results show that the investigated procedures offer no special advantages to ap-
propriately used time series-based ur tests. Furthermore, the results confirm that the
panel-based classification procedures are sensitive to the composition of the panel in
terms of the fraction of time series under the null and under the alternative and to the
existence and strength of dependence across individual tests. The only classification pro-
cedure which in all Monte Carlo experiments lies on the convex hull is the one based on
the individual ur tests. Therefore, we should conclude that the time series-based tests
are the most efficient classification tools among those considered here. Given the nature
of our Monte Carlo analysis, the general conclusion should remain unchanged if more
powerful individual unit root tests and/or different panel ur tests are used.
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Figure 6. Independent test statistics. 5,000 replications with the fraction of stationary
series N1/N = 0.5. The local-to-unit root alternative is $ = exp(−γ/T) with γ ∈
{1, 5, 10, 20}. Larger symbols correspond to larger panels with N ∈ {10, 20, 40, 80}.
The dashed lines are precision isometrics. The lowest precision isometric coincides
with the random guessing line. The broken solid line is the roc convex hull. � = c-
spsm;4 = i-spsm;© = h-spsm; + = df; × = Hommel.
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Figure 7. Dependent test statistics (ρ = 0.4). 5,000 replications with the fraction of
stationary series N1/N = 0.2. The local-to-unit root alternative is $ = exp(−γ/T)
with γ ∈ {1, 5, 10, 20}. Larger symbols correspond to larger panels with N ∈
{10, 20, 40, 80}. The dashed lines are precision isometrics. The lowest precision isomet-
ric coincides with the random guessing line. The broken solid line is the roc convex
hull. � = d-spsm;4 = i-spsm;© = h-spsm; + = df; × = Hommel.
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Figure 8. Dependent test statistics (ρ = 0.4). 5,000 replications with the fraction of
stationary series N1/N = 0.5. The local-to-unit root alternative is $ = exp(−γ/T)
with γ ∈ {1, 5, 10, 20}. Larger symbols correspond to larger panels with N ∈
{10, 20, 40, 80}. The dashed lines are precision isometrics. The lowest precision isomet-
ric coincides with the random guessing line. The broken solid line is the roc convex
hull. � = d-spsm;4 = i-spsm;© = h-spsm; + = df; × = Hommel.
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Figure 9. Dependent test statistics (ρ = 0.4). 5,000 replications with the fraction of
stationary series N1/N = 0.8. The local-to-unit root alternative is $ = exp(−γ/T)
with γ ∈ {1, 5, 10, 20}. Larger symbols correspond to larger panels with N ∈
{10, 20, 40, 80}. The dashed lines are precision isometrics. The lowest precision isomet-
ric coincides with the random guessing line. The broken solid line is the roc convex
hull. � = d-spsm;4 = i-spsm;© = h-spsm; + = df; × = Hommel.
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Figure 10. Dependent test statistics (ρ = 0.8). 5,000 replications with the fraction of
stationary series N1/N = 0.5. The local-to-unit root alternative is $ = exp(−γ/T)
with γ ∈ {1, 5, 10, 20}. Larger symbols correspond to larger panels with N ∈
{10, 20, 40, 80}. The dashed lines are precision isometrics. The lowest precision isomet-
ric coincides with the random guessing line. The broken solid line is the roc convex
hull. � = d-spsm;4 = i-spsm;© = h-spsm; + = df; × = Hommel.
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