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Abstract

This note contributes to the development of the theory of stochastic depen-
dence by employing the general concept of copula. In particular, it deals with
the construction of a new family of non-exchangeable copulas characterizing
the multivariate total positivity of order 2 (MTP2) dependence.

Keywords: Copulas, MTP2 dependence, Non-exchangeability

1. Introduction

In copula theory, exchangeability (see e.g. Ghiselli Ricci [10]) represents
an important feature which describes the symmetry of some classes of copu-
las. Archimedean copulas (see Alsina et al. [1], Durante et al. [9], Schweizer
& Sklar [17] for some recent results and extensive surveys and [13] for a de-
tailed discussion of the necessary and sufficient condition for an Archimedean
copula generator to generate a d-dimensional copula), semilinear copulas (see
Durante [6], Durante et al. [8]), and elliptical copulas (see e.g. Cambanis et al.
[2], Schmidt [16]) are among the most relevant examples of exchangeable cop-
ulas. Despite its mathematical relevance, exchangeability may represent a
strong requirement to be fulfilled by a set of random variables. In this re-
spect, it is worth paying attention to the concept of Archimedean asymmetric
copulas, which represent a non-exchangeable counterpart of the Archimedean
ones (see Liebscher [11, 12]).
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In this note, we move from Liebscher [11, 12] and construct a family of
asymmetric copulas generated by a one-dimensional function which is able to
characterize multivariate total positivity of order 2 (MTP2). In doing this,
we extend Müller & Scarsini [14] to the case of non-exchangeability property
for the considered set of dependent random variables.

The rest of the paper is organized as follows. Section 2 provides the
necessary preliminaries, notation and statistical concepts. The main results
are offered in Section 3. Some concluding remarks are given in Section 4.

2. Preliminaries and notation

For an easier reading of the model, we introduce the vectorial notation:

Notation 2.1. Fix m “ 1, 2, . . . . The following notations are introduced:

W “ pw1, . . . , wmq;X “ px1, . . . , xmq;Y “ py1, . . . , ymq;U “ pu1, . . . , umq.

We now recall the definition of the dependence concept we deal with.

Definition 2.2. Let f be the joint density function of the m-variate random
vector W . The components of W are said to be MTP2 if and only if, for
each X and Y in Rm, it results:

f pXq ¨ f pY q ě f pmintX,Y uq ¨ f pmaxtX,Y uq

where the min and max operators have to be intended componentwise.

Indeed, it is customary to represent the (linear) dependence among in-
dividual w’s in W by a non-diagonal variance-covariance matrix Σ “ pσi,jq
with i, j “ 1, . . . ,m. Hence, it is natural to guess the existence of a relation-
ship between the value of the covariances and the subsistence of MTP2. In
this respect, it is useful to recall a further definition of dependence among
random variables:

Definition 2.3. The random components of W are associated if

Cov rgpW q, hpW qs ě 0,

for any coordinatewise nondecreasing functions g and h for which this co-
variance exists.
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A classical result states that random variables which are MTP2 are also
associated. Therefore, by using Definition 2.3 with gpW q “ wi and hpW q “

wj, we can also say that if tw1, . . . , wmu are MTP2, then σi,j ě 0, for each
i, j “ 1, . . . ,m. This fact implies that if there exists a couple pwi, wjq, with
i ‰ j and i, j “ 1, . . . ,m, such that σi,j ă 0, then tw1, . . . , wmu are not
MTP2.

A rather general way to capture the stochastic dependence structure
among random variables is the introduction of the concept of multivariate
copula or, simply, copula (we refer the reader to Nelsen [15] for a detailed
discussion). In particular, Sklar’s Theorem [18] highlights how multivariate
copulas model the dependence structure among random variables (see, e.g.,
[15, Section 2.3]).

An important feature of some classes of copulas which turns out to be
relevant in our context is exchangeability (an accurate characterization of
exchangeable copulas can be found in Ghiselli Ricci [10]):

Definition 2.4. The copula C : r0, 1sm Ñ r0, 1s is exchangeable if, for each
U P r0, 1sm and a permutation % of t1, . . . ,mu, one has:

CpUq “ Cpu%p1q, . . . , u%pmqq.

When Definition 2.4 is not satisfied, then copula C is said to be nonex-
changeable.

3. Main result

The family of nonexchangeable copulas we deal with is generated by
a one-dimensional function, and represents a generalization of the usual
Archimedean copulas. We formalize it in the following:

Definition 3.1. Fix J P N and a set of mˆ J functions

hjk : r0, 1s Ñ r0, 1s, j “ 1, . . . , J ; k “ 1, . . . ,m (1)

such that:
(C3.1.i) hjk is differentiable in p0, 1q and strictly increasing in r0, 1s, for each
j, k;
(C3.1.ii) hjkp0q “ 0 and hjkp1q “ 1, for each j, k;

(C3.1.iii) 1
J

řJ
j“1 hjkpxq “ x, for each k “ 1, . . . ,m and x P r0, 1s.

Moreover, define
ψ : r0, 1s Ñ r0, 1s (2)
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such that:
(C3.1.iv) ψ is m` 2 times differentiable in p0, 1q;
(C3.1.v) ψpiq ą 0 in p0, 1q, for i “ 1, . . . ,m;
(C3.1.vi) ψp0q “ 0 and ψp1q “ 1.
We define an asymmetric copula generated by a one-dimensional function as
Cψ
AS : r0, 1sm Ñ r0, 1s such that:

Cψ
ASpU q “ ψ´1

˜

1

J

J
ÿ

j“1

m
ź

k“1

hjkpψpukqq

¸

. (3)

Remark 3.2. The case of symmetric copula is a subcase of the asymmetric
setting proposed in (3). To achieve the symmetric copula, it is sufficient to
set hjkpxq “ x, for each j “ 1, . . . , J, k “ 1, . . . ,m and x P r0, 1s.

Copula (3) has been first introduced and explored in Liebscher [11, 12]. It
is worth noting that, as far as the copula’s definition is concerned, conditions
(C3.1.iv) and (C3.1.v) could be weakened. However, our mildly stronger
version is required to prove the following general result:

Theorem 3.3. Assume that hjk is twice differentiable in p0, 1q, with

h2jkpxq ě 0, x P p0, 1q, j “ 1, . . . , J, k “ 1, . . . ,m, (4)

and that
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ź

k“k1,k2

”

h2jkpψpukqq pψ
1
pukqq

2
` h1jkpψpukqqψ

2
pukq

ı

ě

”

h2jk1 pψpuk1qqˆ

ˆ pψ1puk1qq
2
` h1jk1pψpuk1qqψ

2
puk1q

ı

ˆ h1jk2pψpuk2qqψ
1
puk2q

ź

k“k1,k2

h1jkpψpukqqψ
1
pukq ě

”

h2jk1pψpuk1qq pψ
1
puk1qq

2
`

`h1jk1pψpuk1qqψ
2
puk1q

ı

ˆ h1jk2pψpuk2qqψ
1
puk2q ,

(5)

holds for each j “ 1, . . . , J , k1, k2 “ 1, . . . ,m, k1 ‰ k2.
Moreover, suppose that

`

ψ´1
˘pm`2q `

ψ´1
˘pmq

´

”

`

ψ´1
˘pm`1q

ı2

ě 0, in p0, 1q. (6)

If the dependence among the components of the m-variate random vector W
is described by copula (3), then W is MTP2.
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Proof. In virtue of Müller & Scarsini [14], it is sufficient to check that the
density f of Cψ

AS is log-supermodular, that is equivalent to say that

logpfpU qq :“ log

ˆ

Bm

Bu1 . . . Bum
Cψ
ASpUq

˙

(7)

is supermodular.
By (3) we have

fpUq “
Bm

Bu1 . . . Bum
Cψ
ASpUq

“
`

ψ´1
˘pmq

˜

1

J

J
ÿ

j“1

m
ź

k“1

hjkpψpukqq

¸

ˆ

ˆ
1

J

J
ÿ

j“1

m
ź

k“1

h1jkpψpukqqψ
1
pukq . (8)

By (8) we can write

logpfpUqq “ log

«

`

ψ´1
˘pmq

˜

1

J

J
ÿ

j“1

m
ź

k“1

hjkpψpukqq

¸ff

`

` log

«

1

J

J
ÿ

j“1

m
ź

k“1

h1jkpψpukqqψ
1
pukq

ff

“: ApUq `BpUq , (9)

where the terms Ap¨q and Bp¨q are an intuitive shorthand for the two logr¨s
terms.
The supermodularity of log pfpUqq is equivalent to the following condition:

B2

Buk1Buk2
rApUq `BpUqs ě 0, (10)

for each k1, k2 P t1, . . . ,mu, and pu1, . . . , umq P r0, 1s
m. For an easier nota-

tion, we will pose hereafter

ξ :“
1

J

J
ÿ

j“1

m
ź

k“1

hjkpψpukqq. (11)
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We analyze the terms Ap¨q and Bp¨q separately.
First notice that

BApUq

Buk1
“
pψ´1q

pm`1q
pξq

pψ´1qpmq pξq
ˆ

1

J

J
ÿ

j“1

h1jk1pψpuk1qqψ
1
puk1q

ź

k‰k1

rhjkpψpukqqs

and

B2ApU q

Buk1Buk2
“

1
!

pψ´1qpmq
)2 ˆ

#˜

1

J

J
ÿ

j“1

h1jk1pψpuk1qqψ
1
puk1q

ź

k‰k1

rhjkpψpukqqs

¸

ˆ

ˆ

˜

1

J

J
ÿ

j“1

h1jk1pψpuk2qqψ
1
puk2q

ź

k‰k2

rhjkpψpukqqs

¸

ˆ

ˆ

„

`

ψ´1
˘pm`2q

pξq ˆ
`

ψ´1
˘pmq

pξq ´
”

`

ψ´1
˘pm`1q

pξq
ı2


`

`
`

ψ´1
˘pmq

pξq ˆ
`

ψ´1
˘pm`1q

pξq ˆ

ˆ
1

J

J
ÿ

j“1

h1jk1pψpuk1qqψ
1
puk1qh

1
jk2
pψpuk2qqψ

1
puk2q ˆ

ˆ
ź

k‰k1,k2

rhjkpψpukqqs

+

. (12)

Hence, under Condition (C3.1.v) and hypothesis (6), we have

B2ApUq

Buk1Buk2
ě 0. (13)

Let us now turn to Bp¨q:

BBpUq

Buk1
“

1
řJ
j“1

śm
k“1 h

1
jkpψpukqqψ

1pukq
ˆ

ˆ

!

J
ÿ

j“1

”

h2jk1pψpuk1qq pψ
1
puk1qq

2
` h1jk1pψpuk1qqψ

2
puk1q

ı

ˆ

ˆ
ź

k‰k1

h1jkpψpukqqψ
1
pukq

)

, (14)
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hence we have:

B2BpUq

Buk1Buk2
“

1
”

řJ
j“1

śm
k“1 h

1
jkpψpukqqψ

1pukq
ı2 ˆ

#«

J
ÿ

j“1

ź

k‰k1,k2

h1jkpψpukqqψ
1
pukqˆ

ˆ
ź

k“k1,k2

rh2jkpψpukqqpψ
1
pukqq

2
` h1jkpψpukqqψ

2
pukqs

ff

ˆ

ˆ

J
ÿ

j“1

m
ź

k“1

h1jkpψpukqqψ
1
pukq ´

´

«

J
ÿ

j“1

ź

k‰k1

h1jkpψpukqqψ
1
pukqˆ

rh2jk1pψpuk1qqpψ
1
puk1qq

2
` h1jk1pψpuk1qqψ

2
puk1qs

ff

ˆ

ˆ

«

J
ÿ

j“1

ź

k‰k2

h1jkpψpukqqψ
1
pukqˆ

rh2jk2pψpuk2qqpψ
1
puk2qq

2
` h1jk2pψpuk2qqψ

2
puk2qs

ff+

. (15)

By (15) we obtain that sufficient conditions for being B2BspU q{ pBuk1Buk2q ě
0 are given by relations in (4) and (5).
The result is proved, by the arbitrariness of k1 and k2.

It is important to note that the set of copulas described by Definition
3.1 and Theorem 3.3 is not empty, and contains a rather large number of
elements. We elaborate this point in the following example.

Example 3.4. Consider J ˆm positive real numbers α11, . . . , α1m, . . . , αJm
such that

J
ÿ

j“1

αjk “ J, @ k “ 1, . . . ,m,
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and define hjkpxq “ αjkx, for each j “ 1, . . . , J, k “ 1, . . . ,m and x P r0, 1s.
Moreover, define

ψpukq “
euk ´ 1

e´ 1
, (16)

for each k “ 1, . . . ,m.
Functions h’s and ψ satisfy the regularity conditions required by Definition
3.1 and Theorem 3.3. Moreover, it results

1

J

J
ÿ

j“1

hjkpxq “ x, @ k “ 1, . . . ,m, x P r0, 1s,

and hjkp0q “ ψp0q “ 0, hjkp1q “ ψp1q “ 1.
It is also easy to see that

ψpiqpxq “
ex

e´ 1
ą 0 @ i “ 1, . . . ,m, x P p0, 1q,

and
`

ψ´1
˘pm`2q

pxq
`

ψ´1
˘pmq

pxq ´
”

`

ψ´1
˘pm`1q

pxq
ı2

“ 0, @x P p0, 1q.

By definition of the h’s, condition (5) becomes

ψ1pxq “ ψ2pxq, @x P p0, 1q,

which is trivially satisfied by function ψ in (16). Then, the h’s and ψ satisfy
the set of conditions listed in Definition 3.1 and the assumptions (4)–(6) of
Theorem 3.3. This implies that copula

Cψ
ASpUq “ log

«

pe´ 1q

˜

1

J

J
ÿ

j“1

m
ź

k“1

αjk pe
uk ´ 1q

e´ 1

¸

` 1

ff

(17)

is associated to a MTP2 stochastic dependence.

4. Concluding remarks

Dealing with dependence among random variables is of paramount im-
portance, mainly in the context of multivariate analysis. In this respect, a
relevant role is played by the concept of copulas. This paper contributes to
this field of research by studying the relationship between copulas and the
MTP2 dependence property in the case of non-exchangeability.
A copula-based framework seems to be preferable to a setting adopting the
explicit definition of MTP2. The reason is twofold:
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• it is generally hard to check if the dependence structure among groups
of random variables is of MTP2-type by using the formal definition.
Therefore, a characterization of the MTP2 property through more af-
fordable and useful mathematical tools is needed. The concept of cop-
ula meets this need in that it is rather general and easy to be treated;

• recently, Durante et al. [7] introduced the concept of distorted copu-
las, which represents a new family of copulas obtained by applying an
isomorphism to a given copula. They showed that bivariate distorted
copulas retain the total positivity of order 2 (TP2) property under some
mild conditions on the isomorphism. This result allows us to interpret
copulas as generators of joint distributions whose couples of variables
exhibit TP2 dependence through distortion of a reference TP2 copula.
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