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Abstract

Interacting Fock spaces are the most general N0–graded (pre-)Hilbert spaces with creation

operators that have degree 1 and generate everything out of a single vacuum vector Ω. It is

the creators alone that generate the space out of the vacuum; so the same is true for the non-

selfadjoint operator algebra generated be the creators. A formal definition has been given by

Accardi, Lu, and Volovich (1997). Forthcoming work by Accardi and Skeide (2008), gave

a different but equivalent definition, and also several desirable properties (embeddability,

and what we are going to call here regularity, but also embeddability in Cuntz-Pimsner

-Toeplitz type algebras) have been pointed out there.

In these notes we show that every interacting Fock space is embeddable, provided we

ask the question if it is the right way. (This requires a new more flexible definition. The

definition does not allow for more interacting Fock spaces, but for more freedom how to

obtain them and capture their structure, eliminating a piece of construction that is present

in the preceding definitions. The theorem is, that this missing piece can always be chosen

so that the interacting Fock space becomes embeddable. The same statement for regularity

fails.) Embeddability allows to recover an interacting Fock space as so-called κ–interacting

Fock space. (κ is an operator on a usual full Fock space and the creators a∗(x) of the

former are recovered as κ`∗(x) on the latter, where `∗(x) are the usual creators.) We show

that interacting Fock spaces are classified by the κ. We give criteria for when the creators

of an interacting Fock spaces are bounded in general and under regularity. If all creators

are bounded, then the Banach algebra and the C∗–algebra generated by them, embed into

the tensor algebras and the Cuntz-Pimsner-Toeplitz algebras, respectively, associated with

several suitably chosen C∗–correspondences.

We illustrate all this in the case of interacting Fock spaces coming from so-called sub-

product systems, and determine for which κ the κ–interacting Fock space comes from a

subproduct system.
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†MG is partially supported in the DFG-project ”Non-Commutative Stochastic Independence: Algebraic and

Analytic Aspects”
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1 Introduction

The gist of the definition of interacting Fock space by Accardi, Lu, and Volovich [ALV97,

Definition 18.1], is:

1.1 Definition. Let H be a (complex) vector space and form the tensor algebra F(H) := ΩC ⊕⊕
n∈N H⊗n over H,where Ω is some nonzero reference vector, the vacuum. For each x ∈ H,

define the creation operator `∗(x) on F(H) by

`∗(x)Xn := x ⊗ Xn (Xn ∈ H⊗n, n ≥ 1), `∗(x)Ω := x

(that is `∗(x)X = xX, the product in the tensor algebra with unit Ω, for all X ∈ F(H)). Put

H⊗0 := ΩC. Suppose on each H⊗n (n ∈ N) we have a semiinner product (•, •)n with kernel Nn

and put (Ω,Ω)0 := 1, so that (•, •) :=
⊕

n∈N0
(•, •)n is a semiinner product on F(H) with kernel

N =
⊕

n∈N0
Nn. Put Hn := H⊗n/Nn and I := F(H)/N. Then

I =
⊕
n∈N0

Hn

(we omit the simple proof; essentially Hn 3 Xn + Nn = Xn + N ∈ I for Xn ∈ H⊗n). We

say the pre-Hilbert space I is an ALV-interacting Fock space (denoting this situation by I =

(H,
(
(•, •)n

)
n∈N0

)), if

H ⊗Nn ⊂ Nn+1 (∗)

(that is, H ⊗ N ⊂ N), so that a∗(x) : X + N 7→ `∗(x)X + N well-defines the creation operators
a∗(x) on I.

1.2 Remark. We collect some notes that should be mentioned but, otherwise (like all our re-

marks), should not interrupt the flow of reading.

1. The notion of interacting Fock space was motivated by an example due to Accardi and Lu

[AL92, AL96], emerging from QED. In this example, actually, the semiinner product is

on the tensor algebra over a B–bimodule (all tensor products over B), turning the quotient

into a pre-Hilbert module. In fact, one might study also these more general interacting
Fock modules. We emphasize that, here, we are concerned only with the scalar case. The

full Fock module does occur, however, in its “unperturbed” form, when we discuss that

the algebras generated by the creators on an interacting Fock space embed into Cuntz-

Pimsner-Toeplitz algebras. Still, it might be noteworthy that the papers [AL92, AL96]

are likely to host the first occurrence of full Fock modules even before Pimsner [Pim97]

and Speicher [Spe98], and that the three contexts are entirely different.

2



2. The only true difference between Definition 1.1 and [ALV97, Definition 18.1] is (apart

from some unnecessary requirements in the latter that are fulfilled automatically) that,

here, we do not require that the creators possess a (formal) adjoint (in which case they

are well-defined, automatically), but that we produce well-definedness by the kernel con-

dition. In fact, as a minor side effect, in these notes we also free a number of results from

Accardi and Skeide [AS08] from the requirement that creators have adjoints.

3. As the reader will have noticed, by the construction in Definition 1.1, we are concerned

with pre-Hilbert spaces, and both tensor products and direct sums are algebraic. De-

spite the fact that in the end we are interested basically in the case when the creators are

bounded and that, therefore, we may and will complete the pre-Hilbert spaces in this case,

for several of the strongest results it is indispensable to wait with this step until the last

moment. In fact, even when all creators are bounded, certain operators that parametrize

interacting Fock spaces, will remain unbounded.

4. The scope of the notion of interacting Fock space is to capture, in some sense, the most

general situation of a Fock type pre-Hilbert space. What in some sense means, becomes

clearer in a moment when we discuss the definition from [AS08]. We do not claim that

all spaces that are somehow related to Fock spaces are captured. (The GNS-spaces of

temperature states on the CCR-algebras are not. Also Fock spaces from species discussed

by Guta and Maassen [GM02] are not. Actually, the latter would fit quite nicely into a

description by Fock modules.) But we would not like to dispense with the properties that

interacting Fock spaces possess.

The, in a sense, simplest class of interacting Fock spaces possible is captured in the following

example by Accardi and Bozejko [AB98]. Despite its striking simplicity, it captures to a sur-

prisingly large extent rudimentary forms of the most important structure results on interacting

Fock spaces; for this reason we repeat it here once more.

1.3 Example. We consider the case H = C, a so-called one-mode interacting Fock space. So,

F(C) =
⊕

n∈N0
C⊗n and we denote e0 := Ω and en := 1⊗n. A family of semiinner products is

determined by the numbers `n = (en, en) ≥ 0. For that the (•, •)n determine an interacting Fock

space, we must have `0 = 1 and `n = 0 ⇒ `n+1 = 0. These conditions are also sufficient. It

follows that there are (unique, if kn = 0⇒ kn+1 = 0) numbers kn such that `n = kn . . . k1.

Suppose µ is a (nonzero) symmetric measure on the real line with finite moments of all

orders. Then the orthogonal polynomials Pn of µ satisfy and are determined by the following

recursion

P0(t) = 1, P1(t) = t, tPn(t) = Pn+1(t) + knPn−1(t) (n ≥ 1),
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for unique (positive) numbers kn. (If µ is not symmetric, then on the right-hand side of the

recursion there is also term proportional to Pn. [AB98] take into account also this case; here,

we ignore it.)

Since
∫

Pm(t)Pn(t)µ(dt) = δm,n`n and since the Pn are real, it follows that en + Nn 7→ Pn

defines an isometry from I onto span PN0 ⊂ L2(µ). The creation operator a∗ := a∗(1) : en+Nn 7→

en+1 +Nn+1 has an adjoint (a∗)∗ =: a : en +Nn 7→ (en−1 +Nn−1)kn (with e−1 := 0), and the crucial

observation in [AB98] is that (for symmetric µ) he isomorphism I → span PN0 acts as

(a∗ + a)(en + Nn) 7−→ tPn,

that is, a∗ + a on span PN0 is nothing but multiplication with the function t. In the context of

these notes, we are more interested in the following fact. Suppose we equip F(C) with the

canonical inner product where the en are orthonormal. Then we may embed I into F(C) via the

(adjointable) isometry ξ : en + Nn 7→ en
√
`n and

ξa∗(x)ξ∗ = κ`∗(x), (∗∗)

where κ is some square root of the operator k : en 7→ enkn on F(C). In fact, one of the main

results of these notes is that every interacting Fock space I can be recovered as ξI ⊂ F(H)

for a suitable pre-Hilbert space H in such a way that the creators have the same form as above.

Moreover, the κ suitably parametrize interacting Fock spaces.

After this example, we return (really only for a moment) to the situation in Definition 1.1

where H is just a vector space. An ALV-interacting Fock space I = (H,
(
(•, •)n

)
n∈N0

) comes

shipped with the creator map a∗ : H → L(I) from H into the linear operators on I, which is

linear and satisfies

span a∗(H)Hn = Hn+1. (∗∗∗)

This means, in particular, that everything in I is created out of the vacuum Ω by successive ap-

plication of creation operators a∗(x). In the definition by Accardi and Skeide [AS08], emphasis

is put on the family of pre-Hilbert spaces Hn and the creator map a∗. A formulation of [AS08,

Definition 2.2] that matches the situation of Definition 1.1 is:

1.4 Definition. Let
(
Hn

)
n∈N0

be a family of pre-Hilbert spaces where H0 = ΩC for a fixed

unit vector Ω, the vacuum, and put I :=
⊕

n∈N0
Hn. Let H be a vector space and suppose

a∗ : H → L(I) is a linear map satisfying (∗∗∗). Then I is an interacting Fock space based on

H (denoted as I = (
(
Hn

)
n∈N0

, a∗)).

Let us convince ourselves that Definitions 1.1 and 1.4 speak about “the same” thing.

• We know already that every ALV-interacting Fock space I = (H,
(
(•, •)n

)
n∈N0

) is an in-

teracting Fock space based on H via Hn = H⊗n/Nn and a∗ : x 7→ a∗(x) (obviously, by

definition, having the same creators a∗(x)).
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• Every interacting Fock space I = (
(
Hn

)
n∈N0

, a∗) based on H, comes along with a linear

surjective map Λ :=
⊕

n∈N0
Λn : F(H)→ I where Λn ∈ L(H⊗n,Hn) is defined by

Λn : xn ⊗ . . . ⊗ x1 7−→ a∗(xn) . . . a∗(x1)Ω (∗∗∗∗)

and Λ0 : Ω 7→ Ω. Then for the semiinner products (•, •)n := 〈Λn•,Λn•〉 on H⊗n, the map

Λn(xn ⊗ . . . ⊗ x1) 7→ xn ⊗ . . . ⊗ x1 + Nn establishes a unitary Hn → H⊗n + Nn. Moreover,

from

Λn+1(`∗(x)Xn) = a∗(x)ΛnXn,

it follows that the semiinner products fulfill (∗) (and (Ω,Ω)0 = 1) and that, under the stated

isomorphism, the ALV-interacting Fock space (H,
(
(•, •)n

)
n∈N0

) has the same creators as

I = (
(
Hn

)
n∈N0

, a∗).

(This has not been clarified that explicitly in [AS08].) Note that an ALV-interacting Fock space,

with the structures defined in the first part of the preceding discussion, is an interacting Fock

space based on H, while the isomorphism that identifies in the second part an interacting Fock

space as an ALV-interacting Fock space cannot be discussed away. We, therefore, as a conven-
tion, will always consider ALV-interacting Fock space as interacting Fock spaces based on H.

With this convention, being ALV for an interacting Fock space is an extra information telling

how the interacting Fock space has been obtained.

We stated Definition 1.4 for H just a vector space in order to be compatible with Definition

1.1. As compared with [AS08, Definition 2.2] (where H is required to be a pre-Hilbert space),

in Definition 1.4 (like in Definition 1.1; see Remark 1.2(2)), we also have removed the condition

that the a∗(x) be adjointable. In either case, we will speak of an adjointable interacting Fock

space if all creators have an adjoint. However, in applications H is (almost) always a pre-Hilbert

space; so, from now on, as a convention, we shall always assume (adding to Definitions 1.1 and

1.4) that H is a pre-Hilbert space. This means, F(H) does already possess an inner product

〈•, •〉 arising from tensor product and direct sum of pre-Hilbert spaces. In other words, F(H)

is not just the tensor algebra over vector space H, but the (algebraic) full Fock space over the

pre-Hilbert space H.

As already illustrated in Example 1.3, the interplay between the semiinner product (•, •) on

F(H) and the inner product 〈•, •〉 on F(H) plays a very important role. In fact, when interacting

Fock spaces are obtained by introducing a semiinner product on F(H), then in practically all

examples of this type the semiinner product is obtained from the original inner product of the

pre-Hilbert space F(H) with the help of a positive operator L =
⊕

n∈N0
Ln (with L0Ω = Ω) as

(•, •) := 〈•, L•〉. We discuss such positive operator induced or POI-interacting Fock spaces in

Section 2. In particular, we push forward to the more general Definitions 1.1 and 1.4 the result

from [AS08] that POI-interacting Fock spaces are precisely those ALV-interacting Fock spaces
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that are regular interacting Fock spaces based on a pre-Hilbert space H in the sense that the

canonical surjection Λ : F(H) → I has an adjoint I → F(H). In Theorem 3.5, we show that a

large class of interacting Fock spaces is non-regular.

As we just mentioned, almost all examples that have been recognized as interacting Fock

spaces, are explicitly given as POI-interacting Fock spaces. A large class of examples arising

as Fock spaces of so-called (discrete, one-parameter) subproduct systems (crucial for us, as the

title of these notes tells), despite in the end being regular, too, comes along from the beginning

as an interacting Fock space based on H. (The QED-example from [AL92, AL96] would be an

example for an in interacting Fock module defined by analogy with Definition 1.1; we do not

know if it could be obtained as the analogue of POI or not.) We discuss this in Section 7 and

characterize all interacting Fock spaces that come from subproduct systems.

Already [AS08] pointed out embeddability, that is, existence of an even, vacuum-preserving

isometry ξ : I → F(H), as a crucial property, which an interacting Fock space based on H may

possess or not. Under embeddability, creators can be written as in (∗∗) for a suitable (even,

vacuum-preserving) operator κ (that goes from the dense subspace ξI ⊕ (ξI)⊥ of F(H) to the

dense subspace (H ⊗ (ξI⊕ (ξI)⊥))⊕ΩC). Apart from the (minor) effort to push this forward to

the situation of Definition 1.4 (dropping adjointability), we show two major results. Firstly, the

operator κ is uniquely determined by (∗∗) (and ξ) and satisfies two extra conditions; moreover,

varying κ and the subspaces corresponding to ξI � I, we get a parametrization (up to suitable

isomorphism) of all interacting Fock spaces based on H in terms of κ (Theorem 4.5), so-called

κ–interacting Fock spaces (Definition 4.6). Secondly, we show that missing embeddability is

a consequence of a badly chosen basing a∗ : H → L(I); in fact, in Theorem 3.4 we show that

every interacting Fock space can be based embeddably. Putting these two results together, in

Theorem 4.8 we get that every interacting Fock space is (isomorphic to) a κ–interacting Fock

space.

Both definitions, ALV-interacting Fock spaces (with its subclass of POI-interacting Fock

spaces) and interacting Fock spaces based on a pre-Hilbert space (with its subclass of regular

interacting Fock spaces), are relative to a chosen pre-Hilbert space H. For several reasons it is

indispensable to come up with yet another (new) definition of (abstract) interacting Fock space

(see Definition 3.1) that abandons this dependence on H. The pre-Hilbert space H parametrizes

the set A∗ := a∗(H) of all creation operators by means of the creator function a∗. But what inter-

ests in quantum probability and operator algebras is the algebraA (or ∗–algebraA∗) generated

by these operators (plus, in some contexts, the vaccum state 〈Ω, •Ω〉). If the parametrization

is not well-done (for instance, if an interacting Fock space based on H is not embeddable),

maybe it can be done better (changing the pre-Hilbert space H and the creator map a∗, but
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maintaining the set of creators A∗); Theorem 3.4 tells that precisely this is always possible.

And regarding regularity, Theorem 3.5 tells precisely that there is no possibility to turn a so-

called non-nilpotent full interacting Fock space into a regular interacting Fock space based on

some pre-Hilbert space H. Moreover, Davidson, Ramsey, and Shalit [DRS11] showed that a

subclass of subproduct systems (closely related to question from algebraic geometry and mul-

tivariate operator theory) is classified up to isomorphism by the isomorphism classes of the

(non-selfadjoint) operator algebras A generated by its creators. (This fails for the selfadjoint

operator algebrasA∗.)

Motivated by all this, Definition 3.1 substitutes in Definition 1.4 the pre-Hilbert space H

and the creator map a∗ by the vector subspace A∗ of L(I) and the cyclicity condition in (∗∗∗)

with span A∗Hn = Hn+1. We will say, I is an (abstract) interacting Fock space, and denote

this situation by I = (
(
Hn

)
n∈N0

, A∗). Of course, choosing a pre-Hilbert space H and a linear

surjection a∗ : H → A∗ we turn I into an interacting Fock space based on H.

1.5 Remark. Maintaining, at least in principle, the cyclicity condition in (∗∗∗) and the one-

dimensional vacuum sector ΩC, what could possibly be further generalizations of the definition

of interacting Fock space? The spaces Hn characterize a common domain of the creation opera-

tors; requiring (as we do) that the common domain is invariant under creation operators, makes

sure that we can consider the algebra generated by the creators. But, suppose we weaken that

condition requiring only that the creators map Hn into Hn+1. Let us define Dn to be the span of

the right-hand side of (∗∗∗∗), that is, what n creators can create out of the vacuum Ω. Then

we would have to require that Dn is a subspace of Hn (in order to be able to apply the (n + 1)st

creator) and we would have to require the Dn is dense in Hn (substituting (∗∗∗)). The direct sum

over the Dn (with D0 = H0) is, then, an interacting Fock space in its own right, sitting densely

in the direct sum over the Hn. One would, then, expect that what the creators do on the bigger

domain Hn has to be determined by what they do on the smaller domain Dn. This amounts

to requiring that the former sits in the closure of the latter, that is, a mild regularity condition

without which probably nobody wants to work. In particular, bounded creators fulfill this, and

the procedure is very similar to what we do in Section 7 when extracting from a subproduct

system of Hilbert spaces the pre-Hilbert spaces that form an interacting Fock space. So, this

does not add anything to the existing definitions.

A last possibility to get something more general, would be to allow that each creator has

its own domain. But also here, any attempt to formulate (∗∗∗) also in this context, would lead

to same result that nothing new is added. So, we really think that, in this sense, probably the

definition of interacting Fock space has reached its maximum generality.

In Section 6 we address the question when the creators a∗(x) are bounded. This question is

interesting only when I is embeddably based on H, because in the case of an interacting Fock
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space based on H and an abstract interacting Fock space, it depends just on how a∗ and A∗,

respectively, are chosen. Consequently, our results are expressed in terms of the parameter κ

in the general case and of the positive operator L in the case of POI-interacting Fock spaces.

Among the results there are: Boundedness of all a∗(x) (even boundedness of the creator map

a∗) does not imply regularity; boundedness of κ is sufficient, but not necessary; boundedness

of L is neither sufficient, nor necessary. The necessary and sufficient criterion that all a∗(x) are

bounded, given by the following (unbounded operator) inequality

`(x)L`∗(x) ≤ MxL

for all x ∈ H (together with an analogue criterion for boundedness of the creator map), answers

the long standing question when POI-interacting Fock spaces have bounded creators (creator

maps).

It is known since [AS08] how, in the case of adjointable interacting Fock spaces, to embed

the (∗–)algebra A(∗) generated by the creators into the (∗–)algebra generated by usual creators

in a (usual) full (not interacting!) Fock module. (In [AS08], this was done in the general case,

and in the case of unbounded creators it was a tough problem to control positivity of the inner

products on this algebraic full Fock module over a bimodule over a ∗–algebra of unbounded

operators.) Once we assured (for instance, by the criteria in Section 6) that all creators are

bounded, we are back in the framework of C∗–correspondences and the (∗–)algebraA(∗) embeds

into a usual Pimsner-Toeplitz algebra on a (completed) Fock module; this is subject of Section

5. (A recent example is due to Kakariadis and Shalit [KS15].) This embedding into a tensor

algebra (the non-selfadjoint version of Pimsner-Toeplitz algebra; see Muhly and Solel [MS98]),

the containing Pimsner-Toeplitz algebra, and in the end the universal Cuntz-Pimsner algebras

[Pim97] opens a whole range of new questions for future work.

Notation. For the discussion of interacting Fock spaces we need to work with pre-Hilbert

spaces. Direct sums and tensor products are understood algebraically.[1] Consequently, we need

the following spaces of operators. The space L(H,H′) of linear maps from the pre-Hilbert

space H to the pre-Hilbert space H′. Of course, here and in a similar way for all other spaces
[1] For at least two reasons, this is not exaggerated generality, but necessary and unavoidable flexibility. Firstly,

it actually quite a bit lightens notation when we discuss spaces where, like the Boson Fock space (this is Example
2.3(1) for q = 1), the creation operators are unbounded; and we, surely, would not be happy to exclude classical
examples like the Boson Fock space from the discussion. Secondly, yes, in the end we are interested in the case of
bounded creation operators as they occur, for instance, from subproduct systems, and will complete the interacting
Fock spaces; but, as our Theorems 6.4 and 6.6 show, it is not possible to characterize efficiently interacting Fock
spaces with bounded creators by just bounded parameters κ or L. (This resembles a bit the characterization of
morphisms of time ordered product systems from Barreto, Bhat, Liebscher, and Skeide [BBLS04, Secion 5.2],
which is quite a bit easier than the characterization of bounded morphisms; see Bhat [Bha01, Section 6].) And we
do not wish to loose these cases.
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of operators, in the case H′ = H we will write L(H). The space La(H,H′) contains those

elements of L(H,H′) that have an adjoint in L(H′,H). We do not assume that an adjoint has

maximal domain. (For a ∈ La(H,H′), the domain of a∗ is H′ and H′ is mapped by a∗ into

its codomain H.) We use the letter B to indicate the bounded parts of these spaces. For fixed

H,H′, an operator a ∈ L(H,H′) is called weakly adjointable if there exists a∗ ∈ La(H′,H) such

that 〈ah, h′〉 = 〈h, a∗h′〉 for all h ∈ H, h′ ∈ H′. (Note: Weakly adjointable is a notion relative to

two chosen pre-Hilbert spaces H and H′. So if G = H′, being weakly adjointable as element

of L(H,G) is a different thing from being weakly adjointable as element of L(H,H′).) If a is

weakly adjointable, then (a∗)∗ = a considered as an element in L(H,H′) is a weak adjoint of

a∗. If a is weakly adjointable, then it is a closeable densely defined operator H → H′ in the

usual sense, with core H. In particular, if H is a Hilbert space, then a weakly adjointable a is

bounded. A (weakly) adjointable operator a is (weakly) self-adjoint if a∗ = a. (Note: This

means two different notions of what usually is called a symmetric operator. They differ by the

implicit assumptions on domain and codomain. Weakly self-adjoint corresponds to the more

frequent definition in functional analysis.)

Pre-Fock notation. All Fock-type spaces – in these notes and elsewhere – are in the first place

graded vector spaces. This makes available the notion of linear maps with a degree in Z. It is

useful to do this once for all, and introduce a unified way to address these structures. However,

they are more than just graded vector spaces, but have an important specialty about them: The

vacuum; that is, a grade-zero space of a particular form. A pre-Fock space I is a(n N0–)graded

vector space, that is, I =
⊕

n∈N0
Hn for vector spaces Hn, with a distinguished non-zero vector

0 , Ω ∈ I, the vacuum, such that H0 = ΩC. We sometimes write I = (
(
Hn

)
n∈N0

,Ω).

For every pair I =
⊕

n∈N0
Hn and J =

⊕
n∈N0

Gn of graded vector spaces, a linear map

a ∈ L(I,J) has degree n ∈ Z if aHm ⊂ Gm+n for all m ∈ N0 (where we use the conventions

that Hk = {0} for k ≤ −1). We denote the set of all maps from I to J that have degree n by

L(n)(I,J). The elements of L(0)(I,J) are called even.

We say, an even map a from a pre-Fock space I = (
(
Hn

)
n∈N0

,Ω) to a pre-Fock space J =

(
(
Gn

)
n∈N0

,Ω′) is a Fock map if it is vacuum-preserving, that is, if aΩ = Ω′.

If I and J are direct sums of pre-Hilbert spaces, then Ω and Ω′ will be required to be unit

vectors. Moreover, a vacuum-preserving map a : I → J will also be called a Fock map if

aHn ⊂ Gn, that is, if a is a Fock map into the algebraic direct sum over the completions Gn.

We use analogue terminology in the category of right modules (bimodules) over a fixed

unital algebra B with the variation that H0 = ΩB is required to be isomorphic as right module

(as bimodule) to B via Ω 7→ 1.
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2 POI-Interacting Fock spaces

2.1 Definition. Let H be a pre-Hilbert space. An operator L ∈ L(H,H) is positive (writing

L ≥ 0) if 〈x, Lx〉 ≥ 0 for all x ∈ H.

• We might have called this weakly positive, reserving positive for operators in L(H). We

opted not to do so, and will refer to the latter situation as a positive operator on H.

• A positive operator is weakly selfadjoint. A positive operator on H is selfadjoint.

• Positivity induces a partial order among operators in L(H,H) by defining L ≥ L′ if L −

L′ ≥ 0.

2.2 Definition. An ALV-interacting Fock space I = (H,
(
(•, •)n

)
n∈N0

) (according to Definition

1.1 and, by our convention, with H being a pre-Hilbert space) is a positive operator induced or

POI-interacting Fock space if there is a Fock map L ∈ L(F(H),F(H)) such that (•, •) = 〈•, L•〉.

• Recall the pre-Fock notations from the end of Section 1: L being a Fock map means that

L goes into the pre-Fock space
⊕

n∈N0
H⊗n ⊂ F(H) and as such is is even and vacuum-

preserving. That is, L =
⊕

n∈N0
Ln and L0 = idH0 .

• A Fock map L induces a POI-interacting Fock space via (•, •) := 〈•, L•〉 if and only if

L ≥ 0 (that is, Ln ≥ 0 for all n) and H ⊗ ker L ⊂ ker L (that is, H ⊗ ker Ln ⊂ ker Ln+1). The

latter follows from N = ker L. (Indeed, if X ∈ ker L, then (X, X) = 〈X, LX〉 = 0, so X ∈ N.

If X ∈ N, so that (X, X) = 0, then, by Cauchy-Schwartz inequality, 0 = (Y, X) = 〈Y, LX〉

for all Y ∈ F(H). Since, F(H) is dense, F(H) 3 LX = 0, so X ∈ ker L.)

Typical classes of examples are:

2.3 Example. 1. By setting

Ln : xn ⊗ . . . ⊗ x1 7−→
∑
σ∈S n

xσ(n) ⊗ . . . ⊗ xσ(1)qinv(σ),

for q ∈ [−1, 1] (inv(σ) being the number of inversions of the permutation σ ∈ S n), we get

Bozejko’s and Speicher’s [BS91] q–Fock space, whose creators and their adjoints satisfy

the q–commutation relations

a(x)a∗(y) − q(a∗(y)a(x) = 〈x, y〉.

q = 0 (hence, L = idF(H)) is just the full Fock space. The cases q = 1 and q = −1 give the

Boson (or symmetric) and the Fermion Fock space, respectively. While in these extreme

cases the Ln
n are projections and, therefore, easily established to be positive, in the general

case 0 < |q| < 1 showing positivity is a tough problem.
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2. A large class of examples, so-called standard interacting Fock spaces [ALV97], arises

from H ⊂ L2(M, µ) (usually, referred to as test function space) for some (σ–finite) mea-

sure space (M, µ) and Ln given by multiplication of the elements in H⊗n ⊂ L2(Mn, µ⊗n)

with (measurable) positive functions on Mn. Standard interacting Fock spaces have been

examined in particular by Lu and his coworkers. For instance, multiplying with the in-

dicator function of the set {αn ≥ . . . ≥ α1 ≥ 0} on Rn, gives rise to the time-ordered or

chronological or monotone Fock space examined first as interacting Fock space by Lu

and Ruggieri [LR98].

Note that the first class has operators Ln that map into H⊗n, while in the second class (unless in

very special cases) we will need completion.

2.4 Remark. Note that Example 1.3 is a standard interacting Fock space. In fact, C is the L2 of

a probability measure concentrated in a single point. What we did in that example, can be gen-

eralized to standard interacting Fock spaces. So, let Ln be positive measurable functions on Mn

acting as multiplication operators on L2(Mn, µ⊗n) in such a way that for the dense subspace H

of L2(M, µ) all H⊗n are in the natural domain of Ln. By the Radon-Nikodym theorem, the kernel

condition on the Ln is satisfied (if and) only if there are positive (“L–almost surely” unique) mea-

surable functions Kn on Mn such that Ln+1(tn+1, tn, . . . , t1) = Kn+1(tn+1, tn, . . . , t1)Ln(tn, . . . , t1),

almost surely. In terms of operators, this reads

Ln+1 = Kn+1(idH ⊗Ln),
so that

Ln = Kn(idH ⊗Kn−1) . . . (idH⊗(n−1) ⊗K1)

for all n ∈ N (with initial condition L0 = idΩC). Also here, ξ :=
√

L, considered as operator

I → F(L2(M, µ)), defines an isometry fulfilling (∗∗), where (modulo adjusting domain and

codomain appropriately) κ =
√

K.

Applying brute force linear algebra to the kernel condition ker Ln+1 ⊂ H ⊗ ker Ln (see

[AS08, Lemma 5.4]), also for a general POI-interacting Fock space there exist Kn+1 ∈ L(H ⊗

H⊗n,H⊗(n+1)) such that Ln is given by the preceding recursion. The recursion, yes, does cap-

ture entirely the kernel condition, by expressing the Ln in terms of the Kn. However if Ln+1

and idH ⊗Ln do not commute, it leaves completely out of control the question for which Kn the

preceding sequence would consist of positive operators. We come back to this problem (and

resolve it) in Section 4.

It is natural to ask, if all ALV-interacting Fock spaces are POI (answer no), and (if not) how

they are distinguished. We, first, answer the second question.

2.5 Lemma. Let H be a pre-Hilbert space. For another semiinner product (•, •) on H, put

HN := H/N where N := ker(•, •). Define the quotient map Λ : x 7→ x +N. Then (•, •) = 〈•, L•〉

for some positive operator L ∈ L(H,H) if and only if Λ has an adjoint in L(HN,H).

11



Proof. If Λ has an adjoint, then L := Λ∗Λ is the positive operators we seek. Conversely, if

〈Λx,Λy〉 = (x, y) = 〈x, Ly〉, then for each z = Λy ∈ HN (Λ is surjective!), the linear functional

x 7→ 〈Λx, z〉 on H is bounded by ‖Ly‖, so that there is a unique element in H, denoted by Λ∗z,

such that 〈x,Λ∗z〉 = 〈Λx, z〉. The map Λ∗ : z 7→ Λ∗z is an adjoint of Λ.

2.6 Corollary. For an interacting Fock space I based on H the following properties are equiv-

alent:

1. The operator Λ defined by (∗∗∗∗) has an adjoint Λ∗ ∈ L(I,F(H)).

2. The corresponding ALV-interacting Fock space is POI.

We say, an interacting Fock space based on H is regular or regularly based on H if Λ has an

adjoint. The corollary says, then, that the POI-interacting Fock spaces obtainable from F(H)

via positive Fock maps L, are precisely the interacting Fock spaces regularly based on H.

Based on the following lemma, POI-interacting Fock spaces share an important property.

2.7 Lemma. Let H be a pre-Hilbert space with a positive operator L ∈ L(H,H). Define the

inner product (x, y) := 〈x, Ly〉 and put HL := H/NL. Then there exists an isometry HL → H.

Equivalently: dim HL ≤ dim H.

Proof. By Friedrich’s theorem, L has a positive extension L : DL → H which is self-adjoint

in the usual sense (that is, DL = DL
∗ is the maximal domain in H for an adjoint of L). By

spectral calculus, L has a unique positive square root λ : Dλ → H, where Dλ ⊃ DL ⊃ H and

〈λx, λx〉 = 〈x, Lx〉 for all x ∈ DL. By x + NL 7→ λx we define an isometry HL → H, which

extends as an isometry HL → H.

2.8 Corollary. If the interacting Fock space I based on H is a POI-interacting Fock space, then

I is embeddable in the sense that there exists an isometric Fock map ξ : I → F(H).

Proof. Apply Lemma 2.7 to I = F (H)/N, component-wise.

2.9 Example. Suppose H is a separable infinite-dimensional Hilbert space and choose a Hamel

basis S of H. Let H1 be a pre-Hilbert space with orthonormal Hamel basis
(
es

)
s∈S . Put Hn := {0}

for n > 1. Then I := CΩ ⊕ H1 with a∗(s)Ω := es is an AS-interacting Fock space based on H.

But, dim H1 = 2ℵ0 > dim H = ℵ0, so that H1 does not embed into H, so I is not embeddable.

A fortiori, by Corollary 2.6, this non-embeddable I is not regular, too. But while missing

embeddability can be repaired (and after “repairing” the example is regular; see the discussion

following Definition 3.2), there are examples of non-regularity that cannot be repaired. Both is

subject of the next section.
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3 (Abstract) interacting Fock spaces

The notion of embeddability of an interacting Fock based on H, as defined in Corollary 2.8,

has been recognized in Accardi and Skeide [AS08] as a property of outstanding importance; we

reconfirm this in these notes by, in particular, the results in Section 4.

When an interacting Fock space I based on H is embeddable, we also will say, I is em-
beddably based on H. This formulation already suggests what comes next, in that the space I

may be embeddably based on H or it may not be embeddably based on H, depending on how

we base it on H. This choice includes both different choices for the creator map a∗ : H → I

(for fixed H) and different choices for H itself. The following new, more flexible, and hopefully

final (see Remark 1.5) definition of (abstract) interacting Fock space makes this precise.

3.1 Definition. Let
(
Hn

)
n∈N0

be a family of pre-Hilbert spaces where H0 = ΩC for a fixed unit

vector Ω, the vacuum, and put I :=
⊕

n∈N0
Hn. Let A∗ be a linear subspace of L(I) satisfying

span A∗Hn = Hn+1

for all n ∈ N0 (a condition that, clearly, replaces (∗∗∗) in Definition 1.4). Then I is an (abstract)
interacting Fock space (denoted as I = (

(
Hn

)
n∈N0

, A∗)). Usually, we will omit ‘abstract’, and

just say ‘interacting Fock space’.

Clearly, an interacting Fock space based on H (and, therefore, any other interacting Fock

space in the preceding sections) is turned into an interacting Fock space by setting A∗ := a∗(H).

Conversely, choosing a pre-Hilbert space and a linear surjection a∗ : H → A∗, we base an

interacting Fock space on H. Of course, the latter is always possible by choosing an arbitrary

inner product on A∗, turning it that way into a pre-Hilbert space denoted H, and choosing for

a∗ the identification of H and A∗. Note that the resulting interacting Fock space based on H is

injective in the sense that the creator map a∗ is injective. So, every interacting Fock space is

trivially not only baseable but even injectively baseable.

3.2 Definition. An interacting Fock space I = (
(
Hn

)
n∈N0

, A∗) is embeddable (regular) if we

can base it on a pre-Hilbert space H embeddably (regularly), that is, the resulting interacting

Fock space based on H is embeddable (regular).

We know from Example 2.9 that there are interacting Fock spaces based on H that are not

embeddable, hence, not regular. In this Section we will show that all interacting Fock spaces can

be embeddably based, hence, are embeddable (Theorem 3.4), while there exist (in abundance)

interacting Fock spaces that cannot be regularly based, hence, are not regular (Theorem 3.5).

For instance, in Example 2.9 we just have chosen a bad basing a∗ : H → A∗ := a∗(H). If

we replace H with H1 (that is, if we change the inner product on the vector space H = H1) and
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the same a∗ now considered as map H1 → A∗, then I is perfectly embeddable. In fact, it sits

already as a subspace ΩC⊕H1 in F(H1) and for ξ we may choose the canonical embedding. Of

course, I based in this way on H1 is regular. (Indeed, L = idH0 ⊕ idH1 ⊕
⊕

n≥2 0.) So, this is not

an example of an interacting Fock space that is not regular.

Example 2.9 and the proof of Lemma 2.7 suggest that missing orthogonal dimension of

H is an obstacle to embeddability. We show now that this is essentially the only obstacle.

The following lemma, making a somehow quite obvious statement with a surprisingly difficult

proof, is key.

3.3 Lemma. Let S be a total subset of a Hilbert space H. Then dim H ≤ #S .

Proof. Choose a well-order ≤ on S . For each s ∈ S define

Hs :=
{
s′ : s′ < s

}⊥⊥
if s is non-minimal, and define Hs := {0} if s is minimal. (Hs is the Hilbert subspace of H

generated by all s′ with s′ < s. Note that s may be an element of Hs or not.) Define the function

f : S → H by setting

f (s) := (idH −ps)s,

where ps is the projection onto Hs. Note that Cs + Hs = C f (s) + Hs, but f (s) is perpendicular to

Hs, while s need not be. In particular, both spaces are closed since C f (s) + Hs is closed. Note,

too, that Hs can also be written as

Hs =
⋃
t<s

{s′ : s′ ≤ t}⊥⊥.

We claim
{
s′ : s′ ≤ s

}⊥⊥
=

{
f (s′) : s′ ≤ s

}⊥⊥ for all s ∈ S . Indeed, denote by Σ the set of

all s ∈ S for which the statement is true. For some s ∈ S suppose that t ∈ Σ for all t < s. This

means in particular that

Hs =
⋃
t<s

{s′ : s′ ≤ t}⊥⊥ =
⋃
t<s

{ f (s′) : s′ ≤ t}⊥⊥.

Then

{s′ : s′ ≤ s}⊥⊥ =
{
{s}∪

⋃
t<s

{s′ : s′ ≤ t}
}⊥⊥

= Cs +
⋃
t<s

{s′ : s′ ≤ t}⊥⊥ = Cs+Hs = C f (s)+Hs

= C f (s) +
⋃
t<s

{ f (s′) : s′ ≤ t}⊥⊥ =
{
{ f (s)} ∪

⋃
t<s

{ f (s′) : s′ ≤ t}
}⊥⊥

= { f (s′) : s′ ≤ s}⊥⊥,

so that also s ∈ Σ. By transfinite induction, Σ = S .

Define S 0 := {s ∈ S : f (s) , 0}. For each s ∈ S 0 put es := f (s)
‖ f (s)‖ so that all es (s ∈ S 0) are unit

vectors. Put E :=
(
es

)
s∈S 0

. Since span{es : s ∈ S 0} = span{ f (s) : s ∈ S }, E is total. Since es ⊥ Hs

for all s ∈ S , the set E is orthonormal. So E is an ONB. Therefore, dim H = #S 0 ≤ #S .
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3.4 Theorem. Every (abstract) interacting Fock space is embeddable.

Proof. Let I = (
(
Hn

)
n∈N0

,Ω, A∗) be an interacting Fock space. Choose a vector space basis S

of A∗. Equip A∗ with the inner product that makes S orthonormal and denote the arising pre-

Hilbert space by H. Let a∗ denote the canonical identification. Then I is an interacting Fock

space based on H.

For each n ∈ N, the set Λn(S ⊗ . . .⊗ S ) spans Hn. In particular, it is total for Hn. By Lemma

3.3, dim Hn ≤ #S n = dim H⊗n. By Lemma 2.7, there exists an isometry ξn : Hn → H⊗n. Then the

Fock map ξ with components ξn is the desired isometry.

In a sense, this shows that it is good to look at interacting Fock spaces as abstract ones.

If they come along with a basing a∗ : H → A∗ and turn out to be embeddable, this is fine.

However, if an interacting Fock space based on H turns out to be not embeddable, then it is

better to change the basing. The results that follow from embeddability (see Section 4) are too

important to allow their loss by insisting in an unfortunate choice of a basing.

We thank Roland Speicher who asked, when the second author was on sabbatical leave in

Kingston, if the condition of embeddability might not be automatic. The answer, it is automatic

provided we choose a reasonable basing, confirms his suspect cum grano salis. The proof turned

out to be much more subtle than expected. It would not have been possible without the crucial

Lemma 3.3. Despite making a sufficiently natural and intuitive statement, we felt that its proof

was particularly difficult to find.

After having shown that every interacting Fock space is embeddable, of course, we wish

to know if the same is true for regularity: Is every interacting Fock space regular, that is, does

every interacting Fock space arise, by basing it appropriately on a suitable pre-Hilbert space,

as a POI-interacting Fock space? The following theorem answers this question in the negative

sense.

Clearly, for every interacting Fock space I = (
(
Hn

)
n∈N0

, A∗), necessarily A∗ ⊂ L(1)(I).

On the other hand, for every sequence
(
Hn

)
n∈N0

of pre-Hilbert spaces Hn with H0 = ΩC for

some unit vector Ω, the pair I = (
(
Hn

)
n∈N0

,L(1)(I)) is an interacting Fock space, provided that

Hn = {0} implies Hn+1 = {0}. (This is the only, necessary and sufficient, condition that assures

that we get all of Hn+1 by applying degree one maps to elements of Hn.) We call such I the

full interacting Fock space over
(
Hn

)
n∈N0

. We say, an interacting Fock space is non-nilpotent
if Hn , {0} for all n.

3.5 Theorem. Every non-nilpotent full interacting Fock space is non-regular.

Proof. Let I = (
(
Hn

)
n∈N0

,L(1)(I)) be a non-nilpotent full interacting Fock space. Choose a

(sufficiently big) pre-Hilbert space H and a surjective linear map a∗ : H → L(1)(I).
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Since Hn , {0} for all n, we may fix a sequence of unit vectors Ωn ∈ Hn (for sim-

plicity, with Ω0 = Ω). For every sequence
(
cn

)
n∈N of complex numbers define the operator

c :=
∑

n∈NΩncnΩ
∗
n−1 in L(1)(I). Since a∗ is surjective, there exists xc ∈ H such that a∗(xc) = c.

By definition,

Λ(x⊗n
c ) = cnΩ = Ωncn . . . c1,

so, 〈Ωn,Λ(x⊗n
c )〉 = cn . . . c1.

Now, if Λ had an adjoint Λ∗ ∈ L(I,F(H)), then

|cn . . . c1| =
∣∣∣〈Λ∗Ωn, x⊗n

c 〉
∣∣∣ ≤ ‖Λ∗Ωn‖ ‖x⊗n

c ‖ = ‖Λ∗Ωn‖ ‖xc‖
n

Since Λ∗Ωn , 0 (for instance, because Λ is surjective, or by inserting the special choice ck = 1

for all k), we would get

‖xc‖ ≥
n

√
|cn . . . c1|

‖Λ∗Ωn‖

for all c and n. Choosing cn > 0 recursively by setting c1 := ‖Λ∗Ω1‖ and

cn+1 := (n + 1)n+1 ‖Λ
∗Ωn+1‖

cn . . . c1
,

we would get for this particular choice of c that

‖xc‖ ≥
n+1

√
cn+1

cn . . . c1

‖Λ∗Ωn+1‖
= n + 1

for all n. As this is not possible, Λ cannot have an adjoint.

Note that, in particular, the interacting Fock space I = ⊕n∈N0ΩnC with A∗ = L(1)(I) is

not regular. Of course this changes entirely if we take I = F(C) with the usual creators

`∗(C) = `∗(1)C which are only a quite small subset of L(1)(F(C)). More generally, also the

one-mode interacting Fock spaces (Example 1.3) are regular independently of the number of

direct summands. This shows how very much the structure of an interacting Fock space de-

pends on how many creators we allow on the pre-Hilbert space I.

In Theorem 3.4, we completely settled the question of embeddability; we will not be able to

do the same for regularity in these notes. Some (non-)possibilities open up several direction for

future work, and will be discussed there. Example 6.3 presents another non-regular interacting

Fock space.

Full interacting Fock spaces with their operator (∗–)algebras generated by A∗ = L(1)(I)

are not “bad guys”. In fact, we will see in Section 5 that these (possibly unbounded) opera-

tor (∗–)algebras are analogues of tensor algebras [MS98] (Pimsner-Toeplitz algebras [Pim97]).

Theorem 3.5 just tells we might be better up, not looking at them as operator algebras of an

interacting Fock space.
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4 Squeezings: Embedded interacting Fock spaces

In this section, we examine the consequences of having a Fock embedding ξ : I → F(H) of an

interacting Fock space based on H into F(H). The formula in (∗∗), which expresses the images

ξa∗(x)ξ∗ of the creators when acting on the subspace ξI of F(H) in terms of the usual Fock

creators `∗(x) squeezed by an operator κ as κ`∗(x), has been observed already in [AS08]. But in

this section we go far beyond [AS08, Theorem 5.5 and Corollary 5.7], and obtain a classification

of interacting Fock spaces (based on H or not) in terms of such squeezings κ.

This is the moment to specify better when we consider two interacting Fock spaces to be

“the same”. Recall that we have the two fundamentally different notions of interacting Fock

space and interacting Fock space based on H, the latter being “the same” as ALV-interacting

Fock space, while POI-interacting acting Fock spaces are a subspecies of ALV-interacting Fock

spaces corresponding to interacting Fock spaces that are based regularly.

4.1 Definition. 1. The interacting Fock spaces I = (
(
Hn

)
n∈N0

, A∗) and I′ = (
(
H′n

)
n∈N0

, A∗′)

are isomorphic if there exists a Fock unitary u =
⊕

n∈N0
un (that is, the un are unitaries

H⊗n → H′⊗n and u0 = idΩC, where H0 = ΩC = H′0) such that

uA∗u∗ = A∗′.

2. The interacting Fock spaces I = (
(
Hn

)
n∈N0

, a∗) and I′ = (
(
H′n

)
n∈N0

, a∗′) based on (the

same) H are isomorphic if

ΛX 7−→ Λ′X

(X ∈ F(H)) defines a unitary u : I → I′.

There are other reasonable notions of isomorphism, which we postpone to future work. We

collect some more or less obvious properties.

4.2 Observation. Recall that for an interacting Fock space based on H not only Λ is defined in

terms of a∗ by (∗∗∗∗), but that also Λ determines a∗ via a∗(x)ΛX = Λ(x ⊗ X).

1. Clearly, the unitary u for isomorphic interacting Fock spaces based on H, is a a Fock

unitary. Moreover, by the preceding reminder, ua∗(x)u∗ = a∗′(x) for all x ∈ H. Therefore,

isomorphic interacting Fock spaces based on H are also isomorphic as interacting Fock

spaces.

Conversely, suppose we have two interacting Fock spaces that are isomorphic via u. If

we base the first one on H via a∗ : H → A∗, then by a′∗ : x 7→ ua∗(x)u∗ we turn the second

one into an isomorphic interacting Fock space based on H. Moreover, by ΛX 7→ Λ′X we

recover the u we started with.
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2. By the discussion following Definition 1.4 we know: Every ALV-interacting Fock space

I = (H,
(
(•, •)n

)
n∈N0

) is (understood as) an interacting Fock space based on H with

the canonical basing a∗ : x 7→ a∗(x) (where a∗(x) are the creators with which an ALV-

interacting Fock space comes along); every interacting Fock space I = (
(
Hn

)
n∈N0

, a∗)

based on H is (canonically) isomorphic to the ALV-interacting Fock space coming from

the semiinner product (•, •) := 〈Λ•,Λ•〉 on F(H). Moreover, if I′ = (H,
(
(•, •)′n

)
n∈N0

) is

another ALV-interacting Fock space isomorphic to the interacting Fock space I based on

H, then (•, •)′ = 〈Λ′•,Λ′•〉 = 〈Λ•,Λ•〉 = (•, •), that is, as ALV-Fock spaces it is identi-

cal to the ALV-interacting Fock space arising from I. A fortiori there is one and only one

POI-interacting Fock space isomorphic to a given interacting Fock space regularly based

on H.

We now fix an interacting Fock space I based on H and assume it is embedded via a fixed

ξ : I → F(H). In this situation, we say I is an embedded interacting Fock space, and it is

understood that an interacting Fock space to be embedded has to be based.

By assuming that I is embeddably based (always possible by Theorem 3.4), we do not

loose any interacting Fock space. (After all, choosing a basing does not change the interacting

Fock space.) Clearly, the Fock isometry ξ may be viewed as a Fock unitary uξ onto ξI ⊂

F(H). Clearly, defining a∗ξ : x 7→ uξa∗(x)u∗ξ turns ξI into an interacting Fock space based on

H isomorphic to I. (And if we started with another embedding ξ′, then the interacting Fock

spaces ξI and ξ′I based on H are isomorphic via uξ′u∗ξ.) So, starting with an interacting Fock

space embeddably based on H, actually embedding it, we stay in the same isomorphism class

of interacting Fock spaces based on H.

We distinguished carefully between the unitary uξ onto ξI and the isometry ξ into F(H).

We, tacitly, used already that a unitary u between pre-Hilbert spaces always has an adjoint,

namely, u∗ = u−1. This is not so, for an isometry. (One may show that an isometry has an

adjoint if and only if its range is complemented in its codomain; see, for instance, Skeide

[Ske01, Proposition 1.5.13].) Fortunately, our isometry ξ goes into a Hilbert(!) space and, like

every isometry from a pre-Hilbert space into a Hilbert space, it has a densely defined, surjective

adjoint ξ∗ : Dξ∗ := ξI ⊕ (ξI)⊥ → I, determined by ξ∗(ξx) = x and ξ∗y = 0 for y ∈ (ξI)⊥. (The

complement (ξI)⊥ is taken in the Hilbert space F(H), and since Dξ∗ has zero-complement in

this Hilbert space, it is dense; the last conclusion may fail for subspaces of pre-Hilbert spaces.)

It follows that

a 7−→ ξaξ∗

defines an algebra monomorphism from the algebra L(I) onto the corner L(ξI) ⊂ L(Dξ∗) = L(ξI) L((ξI)⊥ , ξI)
L(ξI, (ξI)⊥) L((ξI)⊥)

. If a has an adjoint, a∗, then ξa∗ξ∗ is, clearly, an adjoint of ξaξ∗. So, ξ•ξ∗, when

restricted to La(I) is actually a ∗–monomorphism. Moreover, since ξ respects the vacuum, ξ•ξ∗
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also respects the vacuum expectation 〈Ω, •Ω〉. Since ξ is even, also the degree of a is preserved,

that is, the monomorphism itself is an even map.

So, via ξ, we have identified I as a subspace ξI of Dξ∗ ⊂ F(H) and we have identified

A∗ (and the algebras generated by it) as a subspace ξA∗ξ∗ (and the algebras generated by it)

of L(Dξ∗). The map corresponding to Λ for this interacting Fock space ξI is Λξ = uξΛ, when

considered as map onto ξI, as it has to be by definition. However, we prefer to consider it as map

λ := ξΛ : F(H) → F(H), taking also into account that its range is actually ξI ⊂ Dξ∗ ⊂ F(H).

Recall that λ depends on ξ. But for reasons of readability in formulae with indices, we dispense

with the idea, calling it λξ. (We will rather write λ′ to indicate when it is originating in another

ξ′. It is clear that λ′ = ξ′ξ∗λ.)

We are now almost ready to formulate and prove (∗∗) in this general context. The only

question that remains to be made precise in order to make sense out of κ`∗(x), is the question of

the appropriate domain and codomain of κ. As we wish that κ`∗(x) = ξa∗(x)ξ∗, the codomain

should coincide with domain Dξ∗ of ξ∗. The domain should contain what `∗(x) generates out

of Dξ∗ . We just mention that F(H) = (H ⊗ F(H)) ⊕ ΩC in the obvious way; consequently, for

every subspace D of F(H) we get the subspace (H ⊗ D) ⊕ ΩC of F(H), and the latter is dense

if (and only if) the former is dense.

4.3 Theorem. Let I be an embedded (via ξ) interacting Fock space (based on H). There exists

a unique vacuum-preserving map (necessarily also a Fock map) κ ∈ L((H ⊗ Dξ∗) ⊕ CΩ,Dξ∗)

such that

κ`∗(x) = ξa∗(x)ξ∗

(that is, Equation (∗∗)).Therefore, the algebra monomorphism a 7→ ξaξ∗ sends a∗(x) to κ`∗(x).

If a∗(x) has an adjoint a(x) ∈ L(I), then ξa(x)ξ∗ = (κ`∗(x))∗ (though, κ need not be ad-

jointable).

In either case, the (∗–)monomorphism respects the vacuum state 〈Ω, •Ω〉.

Moreover, λ can be recovered as the unique Fock map satisfying the equation

λ = κ((idH ⊗λ) + idΩC), (4.1)

that is, as the unique λ whose components satisfy the recursion

λn+1 = κn+1(idH ⊗λn) and λ0 = idCΩ,

that is,

λn = κn(idH ⊗κn−1) . . . (id⊗(n−1)
H ⊗κ1) (n ≥ 1).

Notes on the proof. Why ‘notes on the proof’? Well, for adjointable interacting Fock spaces

and without the uniqueness statement, this theorem is [AS08, Theorem 5.5 and Corollary 5.7].
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The proof in [AS08] does not depend on adjointability, and once we have κ satisfying (∗∗), it

was just an omission in [AS08] not to have noticed uniqueness. However, the proof in [AS08]

went by first proving (by brute-force linear algebra [AS08, Lemma 5.4]) existence of κ satis-

fying the recursion with λ. And while (∗∗) fixes κ, the recursion alone does not. (It may be

considered a sort of “lucky punch” that the freedom in choosing κ for satisfying the recursion

has been used “wisely” to also satisfy (∗∗).) Starting from (∗∗) and uniqueness, straightens up

and simplifies the proof considerably, so we sketch this briefly.

κ is determined uniquely by κ`∗( f ) = ξa∗( f )ξ∗ on the span of the ranges of all `∗(x), that is,

on H ⊗Dξ∗ . The remaining uncertainty is taken away by the requiring κ as vacuum-preserving.

For existence of κ, we simply put κΩ := Ω and define it on H ⊗ Dξ∗ = H ⊗ (ξI ⊕ (ξI)⊥)

as (∗∗) suggests: Necessarily, κ(x ⊗ Y) = ξa∗(x)ξ∗Y = 0 for Y ∈ (ξI)⊥. And for ξX ∈ ξI we

obtain κ(x ⊗ ξX) = ξa∗(x)ξ∗ξX = ξa∗(x)X. Since ξ is an isometry, this map κ is well defined.

By definition, this κ satisfies (∗∗). And it is routine (using how Λ and a∗ determine each

other as explained in the beginning of Observation 4.2 and the interplay between Λ and λ via ξ)

to verify (4.1).

Let us sum up again what we achieved. From an interacting Fock space I based on H and

embedded via ξ, we extracted the pre-Fock subspace ξI of F(H) and the operator κ from the

(dense, pre-Fock) subspace (H ⊗ Dξ) ⊕ ΩC to the (dense, pre-Fock) subspace Dξ∗ := ξI ⊕

(ξI)⊥. From κ we reconstruct λ via the recursion encoded in (4.1), and from λ we reconstruct

ξa∗(x)ξ∗ (or, better, from Λξ, the surjective corestriction of λ, we reconstruct uξa∗(x)u∗ξ ∈ L(ξ) as

explained in the beginning of Observation 4.2), which, when embedded into L(Dξ∗), becomes

ξa∗(x)ξ∗). That is, we have encoded the entire information about the embedded interacting Fock

space I, and up to isomorphism about the interacting Fock space I based on H, in the operator

κ (including, of course, how its domain and codomain are made up out of ξI), and κ, on the

other hand, is uniquely determined by I and ξ, that is, by the embedded interacting Fock space

I. Moreover, if we started from another embedding, ξ′, then the everything is under control via

the partial isometry ξ′ξ∗ in the sense that κ′ = ξ′ξ∗κ((idH ⊗ξξ
′∗) ⊕ idΩC) and the corresponding

uξ′u∗ξ is an isomorphism between the interacting spaces ξI and ξ′I based on H.

Additionally, let us observe that κ fulfills the following two properties: Firstly, κ is onto ξI

(simply because λ is onto ξI)). Secondly, κ is 0 on the subspace H ⊗ (ξI)⊥ (as computed in the

proof of Theorem 4.3).

We now show that these two conditions are the only conditions a Fock-map κ has to satisfy

in order to be the κ of an embedded interacting Fock space. To that goal, we now free the

discussion from the embedding ξ.

4.4 Definition. Let I be a pre-Fock subspace of F(H), and define the dense, pre-Fock subspace

DI := I ⊕ I⊥ of F(H). A Fock map κ : ((H ⊗DI) ⊕ ΩC→ DI is called a squeezing (relative
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to I) if κ is onto I and vanishes on H ⊗ I⊥.

Observe that the squeezed creators κ`∗(x) (co)restrict to maps I → I, which we denote by

a∗κ(x). This gives rise to the linear map a∗κ : H → L(I). Occasionally, we leave out the subscript

κ when there is no danger of confusion.

4.5 Theorem. If κ is a squeezing relative to I =
⊕

n∈N0
Hn ⊂ F(H), then Iκ := (

(
Hn

)
n∈N0

, a∗κ)

is an interacting Fock space based on H. Moreover, the (unique) κξκ constructed by Theorem

4.3 from the canonical embedding ξκ : I → I ⊂ F(H) is κ.

4.6 Definition. We call Iκ a κ–interacting Fock space, and denote it by Iκ = (H, κ) (also here

leaving occasionally out the subscript).

Proof of Theorem 4.5. There is not really much to prove. κ being a squeezing, by surjectivity

of κ it follows that κ`∗(x) maps H⊗n onto I ∩ H⊗(n+1) = Hn+1 and by κ being 0 on H ⊗ I⊥

it follows that to exhaust the range it is sufficient to restrict to I ∩ H⊗n = Hn. Therefore,

span aκ(H)Hn = Hn+1. Clearly, κ does satisfy (∗∗) for the canonical embedding ξκ, so by the

uniqueness statement in Theorem 4.3, κ coincides with κξκ .

4.7 Corollary. We, thus, established a one-to-one correspondence between embedded interact-

ing Fock spaces and squeezings.

The following theorem is a mere corollary of Theorems 3.4 and 4.3.

4.8 Theorem. Every interacting Fock space is isomorphic to a κ–interacting Fock space (suit-

ably varying H, I ⊂ F(H), and κ relative to I).

Every interacting Fock spaces based embeddably on H is isomorphic to a κ–interacting

Fock space for a squeezing κ relative to a pre-Fock subspace I of F(H).

We have already discussed the influence of different choices ξ how to embed into F(H) a

given interacting Fock space based on H. Maybe a bit surprisingly, the answer is the same if

we vary also H, that is, if we vary also the basing. Without the obvious proof, we state the

following:

4.9 Proposition. Let κ and κ′ be squeezings relative to pre-Fock subspaces I ⊂ F(H) and

I′ ⊂ F(H′), respectively. Then the interacting Fock spaces Iκ and I′κ′ are isomorphic (as

interacting Fock spaces) if and only if there is a partial Fock isometry v ∈ B(DI,DI′) with

v∗v = idI and vv∗ = idI′ such that

κ′ = vκ((idH ⊗v
∗) ⊕ idΩC).
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We see for getting an interacting Fock space as a κ–interacting Fock space, it does not only

not matter (via an extremely obvious relation among different κ) how we embed it, but it does

not even depend (up to the same obvious relation) on how we based it, as long as we based it

embeddably.

Recall that κ–interacting Fock spaces are embedded Fock spaces and, therefore, based.

Some properties of an interacting Fock space (for instance, boundedness of the set A∗) are

intrinsic; other properties (for instance, regularity of a basing) depend on the basing. This raises

several question how these properties can be seen by looking only at κ, or by guaranteeing

existence of certain good choices for κ. Regarding regularity – a property with reference to

a given basing –, we close this section by stating the quite obvious result that regularity does

not depend on the representative within the same isomorphism class of interacting Fock spaces

based on the same pre-Hilbert space H.

4.10 Proposition. If I and I′ are isomorphic interacting Fock space based on H, then I is

regular if and only if I′ is regular.

Proof. Let u be the isomorphism. Then if Λ∗ exists, Λ∗u∗ is an adjoint of Λ′, and vice versa.

4.11 Corollary. Suppose ξ is a Fock embedding into F(H). Then I is regular if and only if ξI

is regular, that is, if λ has an adjoint.

In the following section we address questions of boundedness. More general questions

require more refined notions of isomorphism and more reasonable choices for our basings. As

with this we run into problems that do not allow for a single solution but split into subclasses,

we postpone the discussion to future work.
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5 Boundedness: Cuntz-Pimsner-Toeplitz algebras

As already noticed in Accardi and Skeide [AS08, Section 4], if I is an adjointable(!) interacting

Fock space (in [AS08] based on H, but that is irrelevant), then we may define the full Fock
module

F(La
(1)(I)) := La

(0)(I) ⊕
⊕
n∈N

span
(
La

(1)(I) . . .La
(1)(I)︸               ︷︷               ︸

n times

)
(La

(n) denoting the adjointable part of L(n)) on which the adjointable operators on I (that is,

in particular, the elements of A∗) act by operator multiplication. How is this a Fock module?

Well, La
(0)(I) is a ∗–algebra of operators in La(I) and for each n (n = 0 included), La

(n)(I) is

a bimodule over La
(0)(I) with an inner product 〈Xn,Yn〉 := X∗nYn. Moreover, the tensor product

La
(n)(I) � La

(m)(I) over La
(0)(I) sits naturally as spanLa

(n)(I)La
(m)(I) in La

(n+m)(I). We do not

explain in detail how to make this more precise.[2] Here, we are interested in the case when A∗

consists of bounded operators. In this case we really get a (completed) full Fock module and

embed the operators and algebras into Cuntz-Pimsner-Toeplitz algebras. In the end, we free this

from the unnecessary hypothesis that the elements of A∗ are adjointable. Criteria that show how

boundedness of A∗ is reflected by other ways to describe interacting Fock spaces (κ, λ, L, ...),

are postponed to Section 6.

Since in this section we put emphasis on A∗ and do not consider I to be based (Example 5.6

being the only exception), a∗ stands for a typical element of A∗, and not for a basing.

Clearly, if A∗ ⊂ Ba(I), then we restrict everything to the bounded portions, and define

F(Ba
(1)(I)) := Ba

(0)(I) ⊕
⊕
n∈N

span
(
Ba

(1)(I) . . .Ba
(1)(I)︸               ︷︷               ︸

n times

)
,

on which, again, the elements of A∗ act by operator multiplication. Now, Ba
(0)(I) is a pre-

C∗–algebra of operators in Ba(I) and Ba
(n)(I) is a pre-correspondence (that is like a correspon-

dence but not necessarily complete and possibly over a pre–C∗–algebra with contractive left

action) over Ba
(0)(I). (Even if all Hn are Hilbert spaces, I, and with I also Ba

(0)(I) and Ba
(n)(I),

will not be complete, unless I is nilpotent.) We may complete, and obtain

F(Ba
(1)(I)) := Ba

(0)(I) ⊕
⊕
n∈N

span
(
Ba

(1)(I) . . .Ba
(1)(I)︸               ︷︷               ︸

n times

)
=

⊕
n∈N0

Ba
(1)(I)�n. (5.1)

5.1 Remark. Still, while Ba
(n)(I) �Ba

(m)(I) is contained in Ba
(n+m)(I), it is usually only a proper

subset. If we insist in equality, we have to pass to the von Neumann objects B(0)
(
I

)
= Ba

(0)(I)
s

and B(1)
(
I

)
= Ba

(1)(I)
s

(strong closure in B(I)). We ignore this ramification in these notes.

[2] It occupies the whole lengthy [AS08, Section 3] (see also Skeide [Ske01, Appendix C]) to develop a notion of
positivity in general ∗–algebras that is sufficiently general for applications (for instance, the square of white noise

Fock module in [AS00]) and still allows to control positivity in the tensor product, before the Fock module of an
interacting Fock space I can be defined in [AS08, Section 4].
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Let us briefly recall a couple of general facts about full Fock modules and inducing repre-

sentations.

Firstly, if E is a correspondence over a C∗–algebra B, then the full Fock module over E

is the correspondence F(E) :=
⊕

n∈N0
E�n. (Here E�0 := B. But if B is unital, then we will

write it as E�0 := ωB, with the central unit vector ω := 1 ∈ B.) For each x ∈ E, the creator
`∗(x) : X 7→ x � X is an adjointable operator on F(E), denoted `∗(x) ∈ Ba(F(E)). Since F(E) is

a correspondence and since B acts faithfully from the left on the direct summand E�0 = B, also

B sits as a C∗–subalgebra in Ba(F(E)). The tensor algebra over E is the Banach subalgebra of

Ba(F(E)) generated by `∗(E) and B (Muhly and Solel [MS98]). The Cuntz-Pimsner-Toeplitz
algebra over E is the C∗–subalgebra of Ba(F(E)) generated by `∗(E) and B (Pimsner [Pim97]).

Secondly, if E is Hilbert B–module and if G is a correspondence from B to C (that is, G is

a Hilbert space with a nondegenerate representation of B), then Ba(E) acts (nondegenerately)

on the Hilbert space E � G via Ba(E) 3 a 7→ a � idG ∈ B(E � G). If the correspondence G

is faithful (that is, if the left action defines a faithful representation of B), then also the action

of Ba(E) on B(E � G) is faithful. (In our applications to the Fock module F(E), G will be

“very non-faithful” and we have to work to show by hand that the action of Ba(E) for that G

is, nevertheless, faithful.) If E is a correspondence from A to B (that is, the left action of

A on the Hilbert B–module E defines a nondegenerate homomorphism), then the canonical

homomorphism A → Ba(E) → B(E � G) defines a nondegenerate representation of A on

E �G (turning E �G into a correspondence fromA to C), the representation induced from (the

representation on) G by E.[3]

After these reminders, we return to the beginning. The F(Ba
(1)(I)) defined above is, indeed

the full Fock module F(E) for the correspondence E := Ba
(1)(I) over the (unital!) C∗–algebra

B := Ba
(0)(I). We wish to identify the C∗–algebra Ba(F(E)) as a subalgebra of B

(
I
)
; and we

wish to do it in such a way that the creators `∗(a1) ∈ Ba(F(E)) ⊂ B
(
I
)

act like the operators

a1 ∈ E ⊂ Ba(I) ⊂ B
(
I
)

act on I ⊂ I. For that goal, we tensor F(E) with the representation

space G := H0 = ΩC ⊂ I of B, which is left invariant by B because all elements of B are

even. (Tensoring with I would, yes, guarantee faithfulness of the representation on F(E)�I �⊕
n∈N0

Hn+1
n , but this space would be much too big, and it also would be quite tedious to invent

a good notation for how `∗(a1) � idI acts between the several direct summands.) The following

is obvious; it provides a correct proof for [AS08, Theorem 4.1].

[3] There are several definitions of C∗–correspondence around. Despite the possibility to construct (tensor prod-
ucts and) the full Fock module also over Hilbert B–modules with a degenerate left action by B, in several places
in the theory to our taste degeneracy of the left action is not acceptable. (Just one instance: The algebra should act
as “identity correspondence” under tensor product.) So, we insist that a correspondence, to merit the name, has
nondegenerate left action, by definition. On the other hand, while many authors allow for degenerate left action, in
the construction of the full Fock module they insist in that the correspondence should be full, which we do not.
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5.2 Proposition. The map(
a∗n � . . . � a∗1

)
�Ω 7−→ a∗n . . . a

∗
1Ω (a∗i ∈ A∗ ⊂ E)

defines a unitary F(E) �̄ H0 → I and, under this isomorphism, `∗(a1) � idH0 = a1 for all

a1 ∈ E ⊂ B
(
I
)
. Therefore, the map a∗ 7→ `∗(a∗) (a∗ ∈ A∗) extends to a completely isometric

isomorphism from the (∗–)algebra A(∗) generated by A∗ onto the (∗–)subalgebra of the tensor

algebra (the Cunt-Pimsner-Toeplitz algebra) of E generated by `∗(A∗).

5.3 Remark. Note that also the representation of B ⊂ Ba(F(E)) on F(E) � H0, under the

isomorphism with I, is just the identity representation. This is enough to show that the repre-

sentation Ba(F(E)) → Ba(F(E)) � idH0 ⊂ B
(
I
)

of Ba(F(E)) (containing the Cuntz-Pimsner-

Toeplitz algebra of E, containing the tensor algebra of E) on I is faithful. (Indeed, first of

all for 0 , a ∈ Ba(F(E)) there exist k,m, n and Xn ∈ E �̄ n, Ym ∈ E �̄ m, Zk,Z′k ∈ E �̄ k such

that 〈(Zk � Ω), (〈Xn, aYm〉 � idH0)(Z
′
k � Ω)〉 , 0. (Recall that 〈Xn, aYm〉 ∈ B is even, and that if

〈Xn, aYm〉 , 0, then also 〈Xn, aYm〉 � idH0 , 0.) By

0 , 〈(Zk �Ω), (〈Xn, aYm〉 � idH0)(Z
′
k �Ω)〉 =

〈
((Xn � Zk) �Ω) , (a � idH0) ((Yn � Z′k) �Ω)

〉
,

we see a � idH0 , 0.) We do not really need that result. Nevertheless, it is surely worthwhile

mentioning it.

B and E, as defined above, are rather big. (If we passed to the von Neumann case, that is,

taking strong closures everywhere, we would end up with the type I von Neumann algebras B
s

and Ba(F(E))
s

which have isomorphic atomic centers `∞.) In view of our interest in the Banach

(∗–)algebra generated by A∗, we had better try and keep the tensor algebra (the Cuntz-Pimsner-

Toeplitz) algebra into which we embed as small as reasonably possible. More precisely, instead

of E and B we had better pass to a subspace F ⊂ E and to a C∗–subalgebra C ⊂ B such that F

still contains A∗ and such that F is a correspondence over C with respect to the inner product

and bimodule operations inherited from B
(
I
)
⊃ F,C.

5.4 Corollary. Under these conditions, Proposition 5.2 remains true. That is, F(F) �̄ H0 �

I via the same isomorphism, and a∗ 7→ `∗(a∗) (a∗ ∈ A∗) extends to (completely isometric)

embeddings of the tenor algebra and the Cuntz-Pimsner-Toeplitz algebra of F into Ba(F(F)).

(Also Remark 5.3 remains true.)

Note that even for fixed F, the Fock module F(F) and Ba(F(E)) and its tensor and Cuntz-

Pimsner-Toeplitz subalgebras still depend on the choice of C. The corollary is, of course, true

for all possible choices.

The condition that F be a Hilbert module over some C∗–subalgebra C of B, means that F

is a closed subspace of E invariant under the ternary product (x, y, z) 7→ x〈y, z〉; the minimal
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choice for C is CF := span〈F, F〉 (in which case F is full) and every other choice must contain

CF as an ideal. (See, for instance, the lemma in Skeide [Ske18, Section 0].) It is easy to see that

the smallest choice containing A∗, the closed ternary subspace generated by A∗, is

EA∗ := span
⋃
n∈N0

A∗((A∗)∗A∗)n; BA∗ := span
⋃
n∈N

((A∗)∗A∗)n.

No smaller choice for F and C fitting the assumptions of Corollary 5.4 is possible. But is EA∗

a correspondence over BA∗? Or, more generally, if we have a closed ternary subspace F of E

containing A∗ and a C∗–subalgebra C of B containing CF (so that F is a Hilbert C–module), is

F a C–correspondence? This means actually two questions regarding the left action of C:

1. Is F invariant under C, that is, is CF ⊂ F?

2. Does C act nondegenerately on F, that is, is spanCF ⊃ F?

Both questions together may be united in the single question whether spanCF = F; but we

prefer to keep the two questions separate.

As far as the second question is concerned, this problem can be resolved once for all by

passing to the unitalization C̃ of C, provided the answer to the first question is affirmative.

(Recall that B is unital, so if 1B < C, then by identifying the new unit 1̃C with 1B, C̃ may be

naturally identified as a subalgebra of B. This is independent on whether C has its own unit 1C
or not.) Note that if we do so, then even if F was a full Hilbert C–module, it is now a definitely

non-full Hilbert C̃–module. But, as explained in Footnote [3], for us this is not a problem. (This

also explains as simply as possible how and why, as claimed in Footnote [3], the construction

of F(F) for degenerate left actions of C works, too. Simply pass to C̃ and construct F(F) for

the C̃–correspondence F. Then pass to F(F) �̄ C = spanF(F)C, which removes from F(F)

the only (one-dimensional subspace spanned by the) element that has inner products outside

C. Corollary 5.4 remains true for F(F) �̄ C.) A case where nondegeneracy is clear, is when

C 3 1B. It is easy to see that for interacting Fock spaces coming from subproduct systems (to be

discussed in Section 7) BA∗ acts non-degenerately on EA∗ if and only if the subproduct system

is actually a product system (in which case the interacting Fock space is actually a full Fock

space F(H) and we really recover BA∗ = C and EA∗ = H). Also if I , H0 is nilpotent, then BA∗

necessarily acts degenerately on EA∗ . (Indeed, since HN+1 = {0}, A∗ annihilates HN , {0}, so

none of the (even!) elements in BA∗ can reach HN\{0}.)

So, after we have resolved (in an uncomplicated, pragmatic way) the second question (non-

degeneracy), we are left with the first question (invariance). For EA∗ and BA∗ , the only answer

we can give is “rather no than yes”; it depends highly on the interacting Fock space in question.

Typical elements of EA∗ are products or words of elements or letters that come aternatingly from

A∗ and from (A∗)∗, starting and ending with a letter from A∗. The typical elements of BA∗ are
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similar alternating words, but the first letter is from (A∗)∗ instead of A∗ (while the last one is still

from A∗). If we multiply a word of EA∗ from the left with a word of BA∗ , then the last letter of

the latter (an element of A∗) meets the first letter of the former (also an element of A∗). So the

resulting product word is no longer alternating. Whether or not it can be written as the limit of

linear combinations of alternating words is totally unclear.

With the notation εi = ±1, putting aεn
n . . . aε1

1 = 1B for n = 0, and, for a∗ ∈ A∗, putting

a1 := a∗, a−1 := (a∗)∗, one smaller choice is

BI := span
{
aεn

n . . . aε1
1 : n ∈ N, a∗i ∈ A∗,

∑n
i=1 εi = 0

}
(5.2a)

and

EI := span
{
aεn

n . . . aε1
1 : n ∈ N, a∗i ∈ A∗,

∑n
i=1 εi = 1

}
. (5.2b)

Clearly, EI is a full Hilbert BI–module. It is unclear if BI acts nondegenerately, but, clearly, it

leaves EI invariant. If BI should act degenerately on EI, then we would pass to B̃I by adding

to the generating set in (5.2a) the term for n = 0. (Modulo completion, this is the choice that

has been discussed in [AS08, Theorem 4.6].) Then EI is considered a (definitely non-full)

correspondence over B̃I.

An even smaller choice, not discussed before, is

BNC
I

:= span
{
aεn

n . . . aε1
1 : n ∈ N, a∗i ∈ A∗,

∑k
i=1 εi ≥ 0∀k ≤ n,

∑n
i=1 εi = 0

}
(5.3a)

and

ENC
I

:= span
{
aεn

n . . . aε1
1 : n ∈ N, a∗i ∈ A∗,

∑k
i=1 εi ≥ 0∀k ≤ n,

∑n
i=1 εi = 1

}
. (5.3b)

(NC is referring to the fact that the difference of tuples occurring in (5.2a) and (5.3a) resembles

the difference between pair partitions and non-crossing pair partitions of the set {1, . . . , n} for

even n.) Clearly, BNC
I

is an algebra and ENC
I

is invariant under left and right multiplication by

elements of BNC
I

.

5.5 Proposition. BNC
I

is a C∗–algebra and the restriction of the inner product of E turns ENC
I

into a full Hilbert BNC
I

–module.

Proof. Suppose we have a word aεn
n . . . aε1

1 from the generating set in (5.3a), that is,
∑k

i=1 εi ≥

0∀k ≤ n and
∑n

i=1 εi = 0. Then∑k
i=1(−εn+1−i) = −

∑n
i=n−k+1 εi = − (0 −

∑n−k
i=1 εi) ≥ 0

for all k ≤ n. Therefore, also the word (aεn
n . . . aε1

1 )∗ = a−ε1
1 . . . a−εn

n is from the generating set.

Therefore the Banach subalgebra BNC
I

of B is a C∗–algebra.
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In a similar way one shows that x, y ∈ ENC
I

implies 〈x, y〉 ∈ BNC
I

. So, ENC
I

is a Hilbert

BNC
I

–module.

Since every generating word aεn
n . . . aε1

1 of BNC
I

contains a factor of the form a−i+1a+
i , the

Hilbert BNC
I

–module ENC
I

is full.

Again, if BNC
I

should act degenerately on ENC
I

, we may pass to the unitalization B̃NC
I
3 1B.

Summing up, we have presented three (usually) different ways to embed the Banach (C∗–)al-

gebraA(∗) generated by A∗ into a tensor (Cuntz-Pimsner-Toeplitz) algebra. It is noteworthy that

the latter (two) have no choice but containing BA∗ , which coincides with the Banach algebra

generated by the set (A∗)∗A∗ and is a C∗–algebra. It is usually not contained in A, so the

containing tensor algebras will usually be bigger thanA.

5.6 Example. Let I = ΩC ⊕ H ⊕ Ω2C for a pre-Hilbert space H and some unit vector Ω2, and

assume H has an anti-unitary involution x 7→ x̄. Turn I into an interacting Fock space based on

H by defining a∗(x) as

Ω 7−→ x, y 7−→ Ω2〈x, y〉, Ω2 7−→ 0.

(The involution serves to assure that x 7→ a∗(x) is linear.) One easily checks that the adjoint

a(x) of a∗(x) acts as

Ω 7−→ 0, y 7−→ Ω〈x, y〉, Ω2 7−→ x.

We prefer to write these as finite-rank operators, getting a∗(x) = xΩ∗ + Ω2x∗ and, consequently,

a(x) = Ωx∗ + xΩ∗2. Clearly, a(x) leaves I invariant, so I with A∗ := a∗(H) is an adjointable

interacting Fock space with bounded creators.

For simplicity (in particular, notationally), we assume H is a Hilbert space. We find B =

C ⊕ B(H) ⊕ C and E = B(1)(I) =

HΩ∗

Ω2H∗

. From a(x)a∗(y) = Ω〈x, y〉Ω∗ + x y∗, we see

that BA∗ ⊂ C ⊕ K(H) ⊕ 0. Given x, x′, by choosing a unit vector y perpendicular to both, we

see that a(x)a∗(y)a(y)a∗(x′) = x̄x̄′∗, so BA∗ contains all rank-one operators on H. Therefore,

BA∗ = C ⊕K(H) ⊕ 0 and, consequently, EA∗ = E. From EA∗ ⊂ F ⊂ E for any possible choice

fulfilling the hypotheses of Corollary 5.4, we find ENC
I

= EI = E. The only nonzero word

in BI that does not evidently factor as a product of a word from BA∗ and smaller words, is

a(x′)a(x)a∗(y)a∗(y′) = Ω〈x′, x̄〉〈ȳ, y′〉Ω∗ and, therefore, already in BA∗ , so, BI = BA∗ . From

BA∗ ⊂ B
NC
I
⊂ BI, we conclude that also BNC

I
= BA∗ .

So, EA∗ , ENC
I

, and EI all coincide with E = B(1)(I), and BNC
I

and BI both coincide with

BA∗ but are different from B = B(0)(I). Since E is invariant under B, it is invariant under any

subalgebra of B. However, since BA∗E =

HΩ∗

0

 , E, the action of BA∗ is degenerate. So,

we have to pass to the unitalization B̃A∗ = BA∗ + idI C. (Note that this does not coincide with
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C ⊕ K̃(H) ⊕ C; indeed, the latter contains idH ∈ K̃(H), while the former does not.) So, the

tensor (Cuntz-Pimsner-Toeplitz) algebras into which we embed A(∗) differ only by how much

B differs from B̃A∗ (respectively, from BA∗ if we do not insist in nondegenerate left actions).

Going one step further to I = ΩC ⊕ H1 ⊕ H2 ⊕ Ω3C with various choices for A∗, allows to

produce more distinctive examples.

So far, we assumed an interacting Fock space I with bounded A∗ that is adjointable. We

briefly show how to free the preceding discussion and results from the hypothesis of adjointabil-

ity.

So, we now only assume that all elements of A∗ are bounded, but not necessarily adjointable.

(Of course, they are all weakly adjointable.) We may complete all pre-Hilbert spaces I and Hn

and extend every element a∗ of A∗ to a (now adjointable) operator in B
(
I

)
, which we continue

denoting by a∗. (We do not assume that I is based. In fact, completing H, wishing to extend

also the map H → A∗ involves unavoidably to change also A∗.) Clearly, span A∗Hn = Hn+1.

We also may immediately start with a family
(
Hn

)
n∈N0

of Hilbert spaces where H0 = ΩC,

the Hilbert space I =
⊕

n∈N0
Hn, and with a subset A∗ ⊂ B(I) such that

span A∗Hn = Hn+1. (5.4)

In this case, we may define the pre-Hilbert subspaces

Hn := span A∗nΩ

of Hn. Since all elements of A∗ are bounded, we may show by induction that Hn is dense in Hn

for all n. Obviously, the elements of A∗ send Hn into Hn+1. It follows that the Hn and I may

be obtained by the completion procedure described above, from the interacting Fock space I

obtained from the Hn with the set A∗ of all (co)restrictions of the elements of A∗ to operators on

I.

So, it does not really matter if we complete an interacting Fock space with bounded (but not

necessarily adjointable) creators, or if we start start with a Hilbert-space-version of interacting

Fock space where the axiom corresponding to (∗∗∗) is replaced with the weaker condition in

(5.4). But, once we have Hilbert spaces, the elements of A∗ are adjointable. It is clear that

everything about E, EA∗ , ENC
I

, and EI (with the corresponding versions of B) goes through

exactly, as before. We do not give details.
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6 Boundedness: Criteria

In the preceding section we have seen the nice consequences when A∗ has only bounded ele-

ments; in this section we wish to examine when the latter happens. Well, if we just have an

(abstract) interacting Fock space, then we cannot do much more than just look at A∗ and check

if its elements are bounded. What we mean is that in this section we will assume that I is based

on H via the creator map a∗ : H → A∗ (so that there is Λ) or even embeddably based (so that

there is κ) or that it is regularly based (so that there is L). Recall that the first two things can

be done for every interacting Fock space, while the last is limited to regular ones. We wish to

understand boundedness of the creators in A∗ in terms of Λ, κ, or L.

The question of boundedness has several layers. First of all, note that a∗(x) is bounded if and

only if all restrictions to the n–particle sectors Hn have finite norms ‖a∗(x)‖n := ‖a∗(x) � Hn‖

and if supn ‖a
∗(x)‖n (= ‖a∗(x)‖) is finite. (The same is true for Λ, κ, L ...) For being unbounded

it is sufficient to show that ‖a∗(x)‖n = ∞ for one n. On the other hand, if all ‖a∗(x)‖n are finite

and a∗(x) is unbounded just because the supremum is not finite, then this unboundedness is of

a much nicer type. (For instance the symmetric Fock space, that is, Example 2.3(1) for q = 1,

has creators of that type.) Such operators, clearly, have adjoints on the same invariant domain;

their unboundedness is technically not more complicated than that of a selfadjoint operator

with discrete spectrum. a∗(x) that are unbounded on an n–particle sector, may be arbitrarily

irregular. All the criteria for boundedness in this section have (more or less obvious) versions

for boundedness on each n–particle sector (but not necessarily global), but we dispense with

formulating them.

On the other hand, apart from the question whether a∗(x) is bounded for every x, we may

ask whether the creator map a∗ itself is bounded or not. This is a question we will address.

Let us start with an example illustrating that even for a POI-interacting Fock space bound-

edness of the operator L (or its square root Λ) does not guarantee boundedness of the creators

a∗(x).

6.1 Example. Let H = L2[0, 1] (as functions of t ∈ [0, 1]). For L1 choose multiplication by t,

for L2 choose idH⊗H, and put Ln = 0 for n ≥ 3, so that L is bounded. Then for yn = II[0, 1
n ] we find

‖yn‖I =

√∫ 1
n

0
t dt = 1

√
2n

. For any x ∈ H we find ‖a∗(x)yn‖I = ‖x‖
√

1
n

‖a∗(x)yn‖I

‖yn‖I
= ‖x‖

√
2n,

that is, despite L is bounded, the operator a∗(x) is unbounded whenever x , 0.

We see, looking directly at boundedness of the operators L or Λ is not promising. So, in the

sense of concluding from boundedness of something to boundedness of all a∗(x), the following

obvious theorem in terms of κ is the best we can do.
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6.2 Theorem. Let I = (H, κ) be a κ–interacting Fock space. If κ is bounded, then the creator

map a∗ is bounded by ‖a∗‖ ≤ ‖κ‖.

Proof. ‖a∗(x)‖ = ‖κ`∗(x)‖ ≤ ‖κ‖ ‖x‖.

The condition that κ be bounded is not necessary.

6.3 Example. Returning to Example 5.6, we consider the interacting Fock space I = ΩC⊕H⊕

Ω2C based on H as embedded by choosing for Ω2 a unit vector in H ⊗ H. The norm of a∗(x) is

the norm of x, so the creator map a∗ is an isometry.

λ1(x) = a∗(x)Ω = x, so κ1 = λ1 = idH. For κ2 we compute λ2(x ⊗ y) = a∗(x)a∗(y)Ω =

〈x, y〉Ω2, so

κ2(x ⊗ y) = κ2(x ⊗ κ1y) = λ2(x ⊗ y) = Ω2〈x, y〉.

If dim H ≥ ∞, we may choose a self-adjoint orthonormal sequence en. Since
∥∥∥∑N

n=1
en⊗en

n

∥∥∥2
is

bounded uniformly by
∑

n
1
n2 < ∞, but

∑N
n=1

〈en,en〉

n =
∑N

n=1
1
n diverges, the map κ2, hence, κ, is

unbounded.

Note that λ2 is not weakly adjointable. (The linear functional 〈Ω2, λ2•〉 is unbounded, so

there is no vector Z = λ∗2Ω2 ∈ H ⊗ H generating it as 〈Z, •〉.) That is, I is not regular. Note,

too, that there is no difference if we assume H is a Hilbert space. In Example 6.7, we will see a

regular example.

The preceding example is based on (and an example for) the fact that the tensor product of

Hilbert spaces does not share the usual universal property of tensor product: Not every bounded

bilinear map j : H×H → C gives rise to a linear map j̆ : H ⊗̄H → C satisfying j̆(x⊗y) = j(x, y).

This gives the right idea. For boundedness of a∗(x) or a∗ : x 7→ a∗(x) not boundedness of κ is

the relevant question, but boundedness of the bilinear map (x, X) 7→ κ(x⊗X). (We could replace

the pre-Hilbert norm on H ⊗ F(H) with the projective norm on the tensor product, that has the

universal property. But it would not give any better insight, so we dispense with this idea.)

Keeping this in mind, the following improvement of Theorem 6.2 is immediate.

6.4 Theorem. Let I = (H, κ) be a κ–interacting Fock space. Then:

1. a∗(x) is bounded if and only if there exists a constant Mx such that ‖κ(x ⊗ X)‖ ≤ Mx ‖X‖

for all X ∈ DI.

2. a∗ is bounded if and only if there exists a constant M such that ‖κ(x ⊗ X)‖ ≤ M ‖x‖ ‖X‖

for all x ∈ H and X ∈ DI.

Recalling the properties of κ and the interrelation of κ with λ, we observe that ‖κ(x ⊗ X)‖, for

fixed x, takes its supremum varying over vectors of the form λX (X ∈ F(H)). The first condition
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transforms into

‖λ`∗(x)X‖ = ‖λ(x ⊗ X)‖ = ‖κ(x ⊗ λX)‖ ≤ Mx ‖λX‖ ,

and analogously for the second condition. Recalling that the Λ of an interacting Fock space

I embeddably based on H is related to the λ, when we actually identify I as a κ–interacting

Fock via the embedding ξ, by λ = ξΛ, we obtain the following criterion in terms of Λ, which is

independent of how we actually embedded I. The nice thing is that (as the equation Λ(x⊗X) =

a∗(x)X, which we used already so many times and which holds for arbitrary interacting Fock

space based on H) the inequalities expressed in terms of Λ hold independently on whether I is

based embeddably or non-embeddably.

6.5 Corollary. Let I be an interacting Fock space based on H. Then:

1. a∗(x) is bounded if and only if there exists a constant Mx such that ‖Λ`∗(x)X‖ ≤ Mx ‖ΛX‖

for all X ∈ F(H).

2. a∗ is bounded if and only if there exists a constant M such that ‖Λ`∗(x)X‖ ≤ M ‖x‖ ‖ΛX‖

for all X ∈ F(H).

Now suppose I is regular, that is, Λ has a weak adjoint so that L := Λ∗Λ ≥ 0 induces I as

POI-interacting Fock space. Then

‖Λ`∗(x)X‖2 = 〈X, (`(x)L`∗(x))X〉, ‖ΛX‖2 = 〈X, LX〉.

This allows, finally, to answer the long standing question, when a POI-interacting Fock spaces

has bounded creators, in terms of operator inequalities.

6.6 Theorem. Let I be a POI-interacting Fock space induced by the positive Fock operator

L ∈ L(F(H),F(H)). Then:

1. a∗(x) is bounded if and only if there exists a constant Mx such that

`(x)L`∗(x) ≤ M2
x L.

2. a∗ is bounded if and only if there exists a constant M such that

`(x)L`∗(x) ≤ M2 ‖x‖2 L.

It is noteworthy that for the components Ln of L, the inequalities read

`(x)Ln+1`
∗(x) ≤ M2

x Ln, `(x)Ln+1`
∗(x) ≤ M2 ‖x‖2 Ln

(with Mx and M, respectively, independent of n; in fact, if the constants exist, but dependent on

n, this means, the restriction of a∗(x) and a∗, respectively, to Hn are bounded).

We know from Example 6.1 that boundedness of L is not sufficient for L to fulfill the condi-

tions in Theorem 6.6. The following example shows that boundedness of L is also not necessary.
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6.7 Example. The construction of a counter example is based on the following computation.

Denote by e1, . . . , en the standard ONB of Cn, and define the unit vector en :=
∑

i
ei⊗ei√

n ∈ C
n⊗Cn.

Then 〈en, x ⊗ y〉 = 1
√

n

∑
i xiyi. With the projection pn := enen∗, it follows that

〈xn ⊗ yn, (npn)(xn ⊗ yn)〉 ≤ ‖xn‖
2
‖yn‖

2 , so, (xn ⊗ idCn)∗(npn)(xn ⊗ idCn) ≤ ‖xn‖
2 idCn .

Consequently, if we define H :=
⊕

n∈N C
n and the unbounded operator L2 :=

⊕
m,n∈N δm,nnpn

on H ⊗ H, then for x =
⊕

n∈N xn we get

(x ⊗ idH)∗L2(x ⊗ idH) =
⊕
n∈N

(xn ⊗ idCn)∗(npn)(xn ⊗ idCn)

≤
⊕
n∈N

‖xn‖
2 idCn ≤ sup

n∈N
‖xn‖

2
⊕
n∈N

idCn ≤ ‖x‖2 idH .

Therefore, putting L1 := idH and Ln = 0 for n ≥ 3, we get a POI-interacting Fock space with

bounded creator map but unbounded L2 ≤ L.

Let us collect the (non)implications we have in a diagram.

‖a∗‖ < ∞

||

v~

||

 (

‖κ‖ < ∞ +3

6>

‖λ‖ < ∞||ks

||

`h

+3
‖L‖ < ∞ +3ks ‖Λ‖ < ∞ks

The tail that starts from ‖λ‖ < ∞ to the right, needs a comment. Clearly, a bounded Λ is weakly

adjointable, so there exists L = Λ∗Λ and, necessarily, is bounded, too. And if L exists, so that

I is embeddable, then also λ exists (and is bounded, if L is). If λ exists (because we started

with an embeddable interacting Fock space based on H), then λ is just the Λ for an isomorphic

interacting Fock space based on H; again λ bounded implies existence of L, which is bounded,

too. So, bounded λ and bounded Λ are “the same”, but only the situtation with Λ is one that

does not come along with an explicitly chosen embedding; and if Λ is not bounded, then the

situation is more general in that I need not be embeddably based. So, it would add to the

diagram if we made the same non-arrows which are there between λ and a∗ also between Λ and

a∗. Last but not least, also the the non-arrow from ‖λ‖ < ∞ to ‖κ‖ < ∞ requires a word; indeed

if ‖λ‖ < ∞ implied ‖κ‖ < ∞, then together with the arrow from ‖κ‖ < ∞ to ‖a∗‖ < ∞ we would

get the arrow from ‖λ‖ < ∞ to ‖a∗‖ < ∞, which , as we know, is not true.
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7 Subproduct systems: A class of examples

A class of operator algebras (∗ or not) generated by creators on Fock type spaces arises from

so-called subproduct systems. Subproduct systems (even of correspondences) have been in-

troduced by Shalit and Solel [SS09] and, independently, (under the name of inclusion systems

and limited to Hilbert spaces) by Bhat and Mukherjee [BM10]. The operator algebras of our

interest in these notes, have been introduced by Davidson, Ramsey, and Shalit [DRS11] and led

to several forthcoming papers by Shalit and his collaborators. During the 2011 Spring School

and Conference on “Product Systems and Independence in Quantum Dynamics” in Greifswald,

when listening to Shalit’s talk, several participants noted instantaneously, that the Fock type

spaces of subproduct systems are interacting Fock spaces; this also includes the same set of

creators in a canonical basing.

The scope of this section is to examine the structure of these interacting Fock spaces arising

from subproduct systems (namely, κ–interacting Fock spaces, where κ = π is a projection,

apart from being a squeezing, fulfilling an extra condition). On the fly, we examine the general

structure of κ–interacting Fock spaces, where κ = π is a projection.

A (discrete) subproduct system (of Hilbert spaces) is a family H5 =
(
Hn

)
n∈N0

of Hilbert

spaces Hn with isometric coproduct maps wm,n : Hm+n → Hm ⊗̄ Hn iterating coassociatively,

and with H0 = C such that the marginal maps vn,0, v0,n become the canonical identifications

Hn ⊗ C � Hn � C ⊗ Hn. (In several places, there occurred also superproduct systems, replacing

the isometries with coisometries. A far reaching generalization of both (arising in the dilation

theory of multi-parameter CP-semigroups) is work in progress; Shalit and Skeide [SS18].)

For our purposes, it is better to pass to the product maps vm,n := w∗m,n : Hm ⊗̄ Hn →

Hm+n, which are coisometries. The associativity condition, then, really means that the prod-
uct (xm, yn) 7→ xmyn := vm,n(xm ⊗ yn) is associative.

If H5 is a subproduct systems, then the Fock space over H5 is F(H5) :=
⊕

n∈N0
Hn. For

each x ∈ H1, we define the creator a∗(x) ∈ B(F(H5)) by a∗(x)Xn := xXn for all n, Xn ∈ Hn; see,

for instance, [DRS11].

Since v1,n is a coisometry, it is surjective. More precisely, it maps the Hilbert space H1 ⊗̄ Hn

onto the Hilbert space Hn+1. If we take only the algebraic tensor product H1 ⊗Hn, then (as soon

as as Hn+1 is not finite-dimensional) it is no longer surjective, but only with dense range. So,

thinking of F(H5) as an interacting Fock space (writing also H0 = ΩC with Ω = 1 ∈ C = H0),

we are in the situation sketched in the end of Section 5, where (∗∗∗) is replaced by the weaker

(5.4). As explained there, we know how to pass to the proper interacting Fock space F(H5) :=⊕
n∈N0

Hn determined by the family of dense pre-Hilbert subspaces

Hn := span a∗(H1)n
Ω ⊂ Hn.
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Roughly, we started with a subproduct system (that is, by definition) of Hilbert spaces and

obtained the topological version of interacting Fock space as discussed in the end of Section

5. The reduction, there, to a proper interacting Fock space (with only bounded creators) can

be interpreted, in the context of subproduct systems, as the passage to the algebraic subprod-
uct system of (dense) pre-Hilbert (sub)spaces and their algebraic tensor products generated
by H1. That it actually is the one generated by H1, follows clearly from writing the structure

with (coisometric) product maps. The nth pre-Hilbert space is just what is spanned by n–fold

products of elements from H1; it is clear by construction that the iterated products vm,n leaves

these algebraic domains invariant. If we insisted to work with the (isometric) coproduct maps

wm,n, then it would not at all be clear if we could find dense pre-Hilbert subspaces so that the

restriction of wm,n would map into their algebraic tensor product. (It is a priori not even clear

for w1,1. But, while for the products vm,n the problem is solved inductively, here, for the co-

products wm,n no inductive solution is possible, because with each new level N + 1, the possible

solution for n,m ≤ N will be affected.) For this the following observation, which tells that by

the co/isometric property we actually do obtain an algebraic subproduct system
(
Hn

)
n∈N0

with

respect to the (co)restricted coproduct maps wm,n, is remarkable:

7.1 Observation. Suppose we have (pre-)Hilbert spaces H ⊃ H′ and G ⊃ G′, and suppose we

have a (necessarily adjointable) coisometry w : H → G that (co)restricts to a surjective map

w′ : H′ → G′. Then the adjoint w∗ of w (co)restricts, too, to a map G′ → H′, necessarily the

adjoint of w′. (Indeed, by replacing H with the range of the projection w∗w (so that, in particular,

surely w∗ maps G into that space no matter how small or big the subspace G′ is), we may assume

that w is actually unitary. Then, like for every invertible map, the restriction of the inverse map

w∗ to the image G′ of a restriction of the map w to H′, sends G′ into (hence, onto) H′. If we add

again what we cut away to make w unitary, we see that w∗ maps G′ onto H′∩(w∗wH). Of course,

ww∗ (co)restricts to idG′; the only question was if the first map w∗ of the product ww∗ does lead

or does not lead out of H′.) Consequently, the (coisometric!) product maps of the algebraic

subproduct system
(
Hn

)
n∈N0

have (isometric) adjoints for the algebraic (co)domains. Therefore,

while in the general case considered in the end of Section 5 the restrictions of the creators to

dense interacting Fock space need not be adjointable, in our case here the (co)restrictions of the

a∗(x) remain adjointable. (Indeed, a∗(x), on the algebraic domain, is adjointable if and only if

each a∗(x) � Hn (considered as map into Hn+1) is adjointable, and a∗(x) � Hn = w1,n(x ⊗ idHn)

has an adjoint, namely, (x ⊗ idHn)
∗v1,n.) Therefore, the (proper) interacting Fock space of a

subproduct system H5 is adjointable.

We now wish to understand the structure of interacting Fock spaces derived from subprod-

uct systems. More precisely, we wish to understand them as κ–interacting Fock spaces, and

distinguish those κ that lead to interacting Fock spaces coming from subproduct systems. The
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following (partially well-known) result shows that not only the basing is embeddably, but that

there is actually a very canonical embedding into F(H1).

Here and in the sequel, we denote by vn1,...,nk : Hn1 ⊗̄ . . . ⊗̄Hnk → Hn1+...+nk the iterated product

of k factors (which, by associativity, does not depend on how we iterate), and we denote the

special case of n factors from H1 as v(n) := v1,...,1.

7.2 Theorem. 1. Suppose H is a Hilbert space and πn are projections in B(H⊗̄n) (with π0 =

idC). Then the maps vm,n : (πmXm) ⊗ (πnYn) 7→ πm+n(Xm ⊗ Yn) turn the family
(
πnH⊗̄n)

n∈N0

into a subproduct system if and only if the projections πn satisfy

idH ⊗πn ≥ πn+1 ≤ πn ⊗ idH (7.1)

for all n ∈ N.

2. Suppose H5 is a subproduct system, and put πn := v∗(n)v(n) ∈ B(H ⊗̄ n
1 ). Then the πn fulfill

(7.1) and

Xn 7−→ v∗(n)Xn

is an isomorphism of subproduct systems from H5 to
(
πnH⊗̄n

1
)

n∈N0
.

Proof. 1. Associativity is manifest, once the vm,n are well-defined. It is clear that vm,n is well-

defined if and only if the kernel of πm ⊗ πn is contained in the kernel of πm+n, that is, if and only

if

πm ⊗ πn ≥ πm+n. (7.2)

What remains is to show that the necessary conditions in (7.1) (they form a subset of the condi-

tions in (7.2)) are also sufficient. Note that (7.1) may also be written as (idH ⊗πn)πn+1 = πn+1 =

πn+1(πn ⊗ idH). We find

πm+n = (idH ⊗πm−1+n)πm+n = (idH⊗̄2 ⊗πm−2+n)(idH ⊗πm−1+n)πm+n

= (idH⊗̄2 ⊗πm−2+n)πm+n = . . . = (idH⊗̄m ⊗πn)πm+n,

that is, idH⊗̄m ⊗πn ≥ πm+n, and, similarly, πm+n = πm+n(πm ⊗ idH⊗̄n), that is, πm ⊗ idH⊗̄n ≥ πm+n. Both

together give (7.2).

2. Clearly, v∗(n), being an isometry, defines a unitary onto v∗(n)Hn = πnH⊗̄n
1 . By the family v∗(n)

of unitaries, the product maps vm,n lift to the family
(
πnH⊗̄n

1
)

n∈N0
as

(πmXm) ⊗ (πnYn) 7−→ v(m)(πmXm) ⊗ v(n)(πnYn) = v(m)Xm ⊗ v(n)Yn

7−→ vm,n(v(m)Xm ⊗ v(n)Yn) = v(m+n)(Xm ⊗ Yn)

7−→ v∗(m+n)v(m+n)(Xm ⊗ Yn) = π(m+n)(Xm ⊗ Yn)
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(first sending the elements πmXm and πnYn of the family
(
πnH⊗̄n

1
)

n∈N0
to the family H5 where,

then, vm,n is applied to send, in the end, the result v(m+n)(Xm ⊗ Yn) back to
(
πnH⊗̄n

1
)

n∈N0
). This is

not only precisely the action we wish to define in Part 1. It also establishes the latter, being an

image of the subproduct system structure of H5, as a properly defined operation of a subproduct

system, therefore, necessarily satisfying (7.1). By construction, the family of unitaries v∗(n) is an

isomorphism of subproduct systems.

7.3 Remark. Using the conditions in (7.2), this is just a suitably reformulated version of [SS09,

Lemma 6.1], referring to the family
(
πnH⊗̄n)

n∈N0
as a standard subproduct system. That the

weaker conditions in (7.1) already suffice, is new. These conditions are modeled after and

motivated by an analogue set of combinatorial conditions in the combinatorics of words systems

and their associated subproduct systems, discussed in Gerhold and Skeide [GS14]

Recall that by Observation 7.1, v∗(n) maps Hn really into the algebraic tensor power H⊗n
1 .

Therefore, πn (co)restricts to a projection in Ba(H⊗n
1 ), which we continue denoting πn. Their

direct sum π is a Fock projection in Ba(F(H1)). If we define ξ :=
⊕

n∈N0
v∗(n), the we embed the

interacting Fock space I := F(H5) onto

ξI = πF(H1) ⊂ πF(H1) ⊂ F(H1).

By definition ξI is a subspace of the completion F(H1) and the complement (ξI)⊥ is relative to

that Hilbert space. But thanks to being the range of the projection π ∈ Ba(H⊗n
1 ), the subspace

ξI is complemented also in F(H1). (The complement in this space is just the intersection of

the topological complement (ξI)⊥ with F(H1).) Then, π is literally everything we can know

about that embedded interacting Fock space: π = L = λ = κ. (Indeed, clearly, λn = πn,

so Ln = λ∗nλn = πn. Clearly, inserting πn as candidate for κn into the recursion for λn, we

recover λn = πn = κn. But for being the (uniquely determined) squeezing κ, the resulting Fock

projection π, with which we wish to identify κ, has to be a squeezing. But, also this is true,

because clearly πn+1 is surjective, and since πn+1 ≤ idH ⊗πn, we get that πn+1 is 0 on H ⊗ H⊥n .

We see, how nicely the algebraic invariance properties discussed in Observation 7.1 in the case

of interacting Fock spaces from subproduct systems work together with the more topological

definitions of π–interacting Fock space.)

The squeezing π is a projection. We ask what other properties a squeezing has to satisfy to

be the one that comes from a subproduct system as described. This question requires also to

understand which Fock projections are squeezings. Actually, we first need a sufficiently flexible

notion of projection. We say, a map π from a pre-Hilbert space H into its completion H is a

weak projection if 〈x, πy〉 = 〈πx, πy〉 for all x, y ∈ H. (A weak projection extends uniquely to a

projection in B(H), and every restriction of a projection in B(H) to H is a weak projection.)
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For simplicity, in the following theorem we assume π1 = idH identifying this way, H1 with

H (otherwise being only a subspace of H). One can show that we always may replace H with

H1 := π1H.

7.4 Theorem. Let I = (H, π) be a π–interacting Fock space where the squeezing π : (H ⊗ I) ⊕

ΩC→ I ⊂ I is a weak projection with π1 = idH. Then

πn+1 ≤ idH ⊗πn. (7.3)

Conversely, if H is a pre-Hilbert space and π ∈ B(F(H)) a Fock projection such that the com-

ponents πn fulfill (7.3) and π1 = idH, then I := πF(H) is a π–interacting Fock space.

Moreover, in either case among summands πnH⊗n there exist coisometries πmH⊗m⊗πnH⊗n →

πm+nH⊗m+n satisfying πmXm⊗πnYn → πm+n(Xm⊗Yn) (so that the πnH⊗n form a subproduct system

and I is its associated interacting Fock space) if and only the πn also fulfill

πn+1 ≤ πn ⊗ idH . (7.4)

Proof. As discussed two paragraphs before the theorem, if π is a squeezing, then the condition

(7.3) is fulfilled. On the other hand, if a π is Fock projection in B(F(H)), then by definition π

sends F(H) surjectively onto I, and if π fulfills (7.3), then πn+1 is 0 on H ⊗ (πnH⊗n)⊥, so π is a

squeezing. We argued already that the last statement is true.

It is noteworthy that the two inequalities together imply the algebric invariance discussed in

Observation 7.1.

7.5 Example. There are π–interacting Fock spaces that do not come from a subproduct system.

Let H be a pre-Hilbert space with an orthonormal Hamel basis
(
en

)
n∈N and put pn = ene∗n. Then

πn = pn ⊗ . . . ⊗ p1 define a squeezing π that does not satisfy (7.4).

7.6 Observation. By (7.3) and Theorem 6.6, a π–interacting Fock space is a POI-interacting

Fock space with bounded creator map a∗.
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