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Abstract

In these notes we study the problem of dilating unital completely positive (CP)
semigroups (quantum dynamical semigroups) to weak Markov flows and then to
semigroups of endomorphisms (FEp—semigroups) using the language of Hilbert mod-
ules. This is a very effective, representation free approach to dilation. This way we
are able to identify the right algebra (maximal in some sense) for endomorphisms
to act. We are lead inevitably to the notion of tensor product systems of Hilbert
modules and units for them, generalizing Arveson’s notions for Hilbert spaces.
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In the course of our investigations we are not only able to give new natural
and transparent proofs of well-known facts for semigroups on B(H). The re-
sults extend immediately to much more general set-ups. For instance, Arveson
classifies Fy—s ri‘%é)ups on B(H) up to cocycle conjugacy by product systems of
Hilbert spacesjgﬁé’g]. We find that conservative CP-semigroups on arbitrary uni-
tal C*—algebras are classified up to cocycle conjugacy by product systems of Hilbert
modules. Looking at other generalizations, it turns out that the role played by
Ey—semigroups on B(H) in dilation theory for CP-semigroups on B(G) is now played
by Ep—semigroups on B%(E), the full algebra of adjointable operators on a Hilbert

a%c}gle E. We have CP-semigroup versions of many results proved by Paschke
F;ﬁﬁ] for CP maps.
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1 Introduction

The basic theorem in dilation theory for completely positive mappings or semigroups of
completely positive mappings on a unital C*-algebra B (CP- semsgcroue]gs guantum dy-
namical semigroups) is the Stinespring construction; see Example e Stinespring
construction is, however, based on the fact that B C B(G) is represented as an algebra of
operators on a Hilbert space GG, usually refered to as the initial space. This makes it, in
general, impossible to recover the ingredients of the Stinespring construction for a com-
position S o T' of completely positive mappings in terms of the Stinespring constructions
for the single mappings 7" and S.

On the contrary, making use of Hilbert modules it is very easy to express the GNS-
construction of S o T in terms of the GNS-constructions for the mappings 7" and S. The
result of the GNS-constructions for 7" and S are Hilbert B-B-modules £ and F' with
cyclic vectors £ and (, respectively, such that

T(b) = (£,b§) and  S(b) = (¢, bC);

GNS
see Example b._fél. The composition of 7" and S can be found with the help of the tensor
product £ ® F. We find

SoT(b) =(O¢KOCE)

so that the the GNS-module of S o T may be identified as thg B-B-submodule of E® F

. . . tinesprin .
which is generated by the cyclic vector ¢ ® (. In Example b [6 we point out that this
possibility is due to a functorial behaviour of two-sided Hilbert modules. A Hilbert
A-B-module may be considered as a functor sending representations of B to representa-
tions of A and the composition of two such functors is just the tensor product.

In usual dilation theorems for CP-semigroups 7' = (T t), inner products are written
down in form of correlation kernels and the representation space is realized by a Kol-
mogorov decomposition. In contrast to that, we are able to construct the representation
space, starting from the GNS-modules of each 7; by an inductive limit over insertion of
time points. These insertions are realized, roughly speaking, by continued splitting of
elements belonging to the GNS-module at time t into tensors belonging to GNS-modules
at smaller times.

relcon

These notes are organized as follows. Section ETdEvoted to introduce the basic
notations. We explain the essence of what we need later on for semigroups in simple
examples whithout being disturbed by lots of indices. Because we intend to show that
most in these notes works purely algebraically, \%Zeelgloer?d well-known notions in a version
for pre-Hilbert modules. This makes Section er long. As an advantage most of
these notes is almost self-contained. Only basic knowledge in C*—algebra theory (and
Cauchy—Schwarz 1nequahty for semi-Hilbert modules) is required.

In Section %_ define what we understand by a weak Markov flow and a dilation to
an ep—semigroup (i.e. to a semigroup of not necessarily unital endomorphisms) in terms
of operators on a (pre-)Hilbert module E. If T is a conservative completely positive
semigroup on a unital C*—algebra B, then a weak Markov flow is a family j of (usually
non-unital) homomorphisms j; from B into another (pre-)C*—algebra A C B*(E) fulfilling
Js(1)7e(D)js(1) = js(Ti—s(b)) (b € B,s <t). A dilation is an ej—semigroup ) on A4 fulfilling



hPa94 ,BhPa95,Bhad6

¥t 0 js = Jirs. These definitions parall a]lc%rl;gletely those given in ; , BhaJo]
in terms of Hilbert spa es78[n Section % will see that the definitions fit perfectly into
the algebralc set-u

Sections h_nd %‘ may be con51dered as the heart of these notes. In Section h_e con-
struct the representation module F; until time ¢. We obtain E; as an inductive limit over
all possibilities for splitting the interval [0, ¢] into smaller intervals [0, ¢;] whose lengths t;
sum up to 1, by inserting the algebra B in between the intervals; see the crucial Observa-

tion h.Z. We find the factorization
E, O FE = Es+t-

In other words, we are lead to the notion of tensor product systems of two-sided (pre-)
Hilbert modules. The cyclic vectors & of the GNS-constructions for the 7; survive the
inductive limit. The corresponding elements £ € E; form a unit, i.e.

fs 0) ft — gs—&-t‘
v89

Both notions parallel the notions for Hilbert spaces introduced by Arveson ATV 9.

E; contains Fy (t > s) in a natural way. This allows to construct a second inductive
limit . The embedding E; — FE; is, however, only right linear, not bilinear. Conse-
quently, on E there does not exist a unique left multiplication by elements of B. There
exists, however, a natural projection onto the range of the canonical embedding E; — FE.
In other words, the left multiplication on FE; gives rise to a representation j; of B on
E. The collection of all j; turns out to be a weak Markov flow. We remark that exis-
tence of projections onto (closed) submodules is a rare thing to happen in the context of
(pre-)Hilbert modules.

Also the factorization Ey ® E;, = E,,, carries over to the second inductive limit. We
find

EFEoFE =FE.

We may define the semigroup ¥y(a) = a ©id € B*(E © E;) = B(E) of endynogphisms of
Be(E). In this way we do not only recover the eg—semigroup constructed in%h_%] which
arises just by restricting 1 to the algebra A, generate }lloa\é éﬂl Ji(b). We also show how it

may be extended to an Ey—semigroup. The approach in av0] is based on the Stines tl{llges cin
construction, so that A is identified as a subalgebra of some B(H); see Example g [6

In this identification B*(E) lies somewhere in between A, and B(H). Only the approach

by Hilbert modules made it possible to identify the correct subalgebra B*(E) of B(H)

to which the eg—semigroup from } aJ06] extends as an Ey—semigroup. This also shows

that we may expect that in the classification of CP-semigroups on general C*-algebras
Ey—semigroups on B%(E) play the role which is played by Ey—semigroups on B(H) in the
classification of CP-semigroups on B(G), when G, H are Hilbert spaces.

We remark that the construction of the weak Markov flow is also possible in the non-
stationary case (i.e. we are concerned rather with families (Tns) ., of transition operators
fulfilling T}, o T,, = Ty, (t > r > s)). Of course, here we do not have a time shift

eéli%igroup 9. Such a construction was already done for more general indexing sets in

5] in terms of Stinespring constructio eq%g/ever, based on the hypothesis that some

kernel be positive definite. The methods inn%BEl'%] are also restricted to normal mappings
on von Neumann algebras.



algvers

In Section k)_\%vmlalyze the notion of weak Markov flow from the algebraical point of
view. We show that existen 2 C0;8C§F£%]£l conditional expectations which, usually, forms
a part of the definition (see %WLSQ]) follows automatically from our definition.
It turns out that an essential weak Markov flow (i.e. the GNS-representation of the
conditional expectation ¢ (e) = jo(1) e jo(1) is faithful) lies in betweep fwg universal flows
which are determined completely by the CP-semigroup 7'. Like in 82], the crucial
role is played by a correlation kernel T which is, however, B—valued (roughly speaking the
moments of the process j in the conditional expectation ). The second inductive limit
E may be considered 181r139th the Kolmogorov decomposition for the correlation kernel in

the sense of Murphy [Mur97] and as the GNS-module of ¢. Doi LtglﬁeB%}}%ssEﬂ%%ﬂn
%F .82, Bel’5, BP94].

construction, we recover the C—valued correlation kernels as used in

In Section 7 we reverse the proceeding and start with a pair consisting of a product
system and a unit. We associate with each such pair a CP-semigroup and show that
we can recover the pair from the CP-semigroup, if the unit is generating in a suitable
sense. (This seems to be close to what Arveson calls a type I product system.) We find
that CP-semigroups are classified by pairs of product systems and generating units. Like
Arveson’s classification O%EV_%%semigroups on B(H) by product systems of Hilbert spaces
up to cocycle conjugacy [ATv89], we find that conservative CP-semigroups are classified
by their product system of Hilbert modules up to cocycle conjugacy. The cocycles which
appear here are, in general, not unitary, but partially isometric. However, if we res.tri%Q
our classification to Ep—semigroups, then our cocycles are unitary, too. In Section
we show that in the case B = B((G) the two classifications coincide. Thus, we obtain a
generalization of Arveson’s classification to Ey—semigroups on arbitrary unital C*—algebras
B.
_ Contractive CP-semigroups 7" on B %& be turned into conservative CP-semigroups
T onB=B®Cl=B®C. In Section 8 we investigate how the dilation of the original
semigroup 7' sits inside the dilation on the module E constructed from 7. We show that
E is “precisely one vector too big” to be generated by 3(8) alone. Finally, we demonstrate
in the simplest possible non-trivial example what the construction really does. In this
way we also obtain an explicit non-trivial example for a product system.

In Section E%recover in a particularly Jansparent way the classical Markov process
on the center of B which was discovered in [Bha93]. This Section gives a first hint why,
in general, in our construction we may not expect to find unital Markov flows j.

Until Section Cl&i&i%&yed at an algebraic level where we did not complete pre-Hilbert
%odules. In Section TT we need for the first time completed versions of our results. Section

provides the necessary remarks. In this context we show our first continuity result. If
Tisac+ O—ser}r?lg%%;oup, then ¥ is a strictly continuous Ep—semigroup on B*(E).

In Section h_l_we investig ﬁrg‘} tions of CP-semigroups with bounded generators
(Christensen-Ev. s generators E(?E] 7]97 ) with the help of the calculus on the full Fock mod-
ule devel oesdl g [Ske99]. (There is also a dilation on a symmetric Fock module discovered
earlier irj%?gg] also wi agheohelp of a quantum stochastic calculus. A weak Markov flow
was also constructed in .)] We show that the time ordered Fock modules until time ¢,
which are contained in the full Fock modules until time ¢ as submodules, form a product
system and that their vacua form a unit. The time shift endc%morphism constructed from
this unit on the time ordered Fock module (see Section [7) is just the restriction from
the natural time shift endomorphism on the full Fock module. We construct a partially



isometric cocycle with respect to the time shift which shows that CP—semiggoyps with

. . L. coccondae L.
bounded generators are cocycle subconjugate (in the sense of Definition [7.7) to the trivial
semigroup. This shows that in our theory flows constructed on the time ordered Fock
module play the role of flows constructed on the symmetric Fock space with gﬁlagglitial
space in the theory of Ey—semigroups on B(H), the so-called CCR-flows; see FBh_aQQBa].
This is even more satisfactory as it is well-known that the symmetric Fock space and the
time ordered Fock space are canonically isomorphic.

In the l%ﬁt three Sections we study norm xlrl\%P_S eig,;o ps on von Neumann algebras.
In Section b we explain based on Appendix I[C and [SkeJ7] how our constructions extend
to strong closures of Hilbert modules, so-called von Neumann modules. In Theorem

.I we obtain gggg)ositive answer to the yet open questio (stvhether the eg—semigroup
constructed in Bhaéé] is strongly continuous. In Section %m;gven% study the special case
B = B(G). The most important result is probably Theorem [[3.TT which asserts that any
von Neumann B(G)-B(G)-module iy ceptered. Among the two-sided Hilbert modules
the centered modules introduced in e98] form a particularly well behaved subclass.
As (topological) modules they are gener%&l by the subspace of those elements which
commute with B. The results in Section T3 explain to some extent why so much can be
said in the case B(G), whereas the same methods fail for more general algebras B.

In Section Eiglc_gve generalize a result on the order structure of the set of no 1&1&1%18 CP-
semigroups on B(G) dominated by a fixed normal Ey—semigroup, obtained in %B'h_ag%a],
to the case of normal CP-semigroups on arbitrary von Neumann algebras dominated by
a ﬁxeé]hgggservative normal CP-semigroup (not necessarily an Ey—semigroup). The result
from } a98a] plays a crucial role in deciding, whether a given dilation is minimal, or not.
We hope that we will be able to generalize also these methods from B(G) to arbitrary

von Neumann algebras (or, more generally, multiplier algebras).

In Appendixgﬁ%ﬁ%gvide the necessary facts about inductive limits of pre-Hilbert
modules. We put some emphasis on the difference between one-sided and two-sided mod-
ules. This (ilé tinction is crucial as it makes the difference between the first inductive limit
in Section h%(%a is a limit of two-sided pre-Hilbert modules) and the second inductive

n

limit in Sectio which is only one-sided).

Appendix %Sls_slfhe basis for our notion of essential weak Markov flows. A weak Markov
flow is essential, if the closed ideal generated by jy(1) is essential in B%(E). In this case,
the closed ideal may be identifie Cg{lir%lelghe compact operators on E so that B*(E) is just
its multiplier algebra. Example [B:3 shows that we cannot drop the completions in this
definition.

- The exposition of basic facts about VOD@ eumann modules is postponed to Appendix
b_because we need them only in Sections 12 — I;[

2 Preliminaries and conventions

In this section we collect the preliminary notions and results which are essential for the
rest of these notes. Since we intend to keep the level of discussion up to a certain ex-
tent algebraical, we give the definitions in a form refering to pre-C*—-algebras rather to
C*-algebras. This causes that some well-known notions will come along in an unusual
shape. Therefore, we decided to be very explicit, making this section somewhat lengthy.



The changes to the well-known versions can be summarized in that homomorphisms
between C*—algebras always are contractive, whereas homomorphisms between pre—C*—al-
gebras need not be contractive. Consequently, whenever the word ‘contractive’ appears in
the context of homomorphisms, this is in order to assure that these homomorphisms may
be extended to the C*—completions of the pre-C*—algebras under consideration. A pay-off
of this strict distinction between algebraic constructions and their topologic extension is
that most of the constructions extend directly to more general x—algebras.

2.1 Conventions. Mappings between vector spaces, usually, are assumed to be linear.
The unit of an algebra A, usually, we denote by 1. Only when confusion can arise, we
will write 1 4. We follow the same convention with the identity mapping id on a space.
Mappings between unital x—algebras are called unital, if they respect the unit. Homomor-
phisms betwee %niécal x—algebras are not necessarily assumed to be unital; however, cf.
also Definition 2.13. " The constructions @, ®, ©®, etc. are understood algebraically, unless
stated otherwise, explicitly. Completions or closures are indicated by .

Let A denote a pre-C*—algebra, no matter whether unital or not. Then its unitization
is A =Aa®C1l equipped with the unique C*-norm of Ao C1. (We remark that, if
A is unital, then A s isomorphic to A& C.) If L: A — B is a mapping between pre—
C*—algebras, then its wunitization is defined as the extension of L to a unital mapping
L: A — B. Of course, ||L|| < 1+ ||L||. If both A and B already have a unit, then
] = max(L, ] E])-

2.2 Completely positive mappings. Let A and B denote pre-C*-algebras. A map-
ping T: A — B is completely positive, if

> biT(aja;)b; > 0
2

for all choices of finitely many a;, € A and b; € B. Usually, we will assume that completely
positive mappings are contractive, i.e. ||T| < 1.

2.3 Conditional expectations. A mapping ¢ from a pre-C*-algebra A onto a pre—

C*-subalgebra B C A is called a conditional expectation, if ¢ is a projection of norm 1.

%]’gé%is equivalent to say that ¢ is a bounded positive B—B-linear mapping; see Takesaki
9]. A conditional expectation ¢ is called faithful, if p(a*a) = 0 implies a = 0.

@2 4 Semigroups of completely positive mappings. Let B be a pre-C*-algebra and
T = R* or T = Ny an index set. A completely positive semigroup on BB, or CP-semigroup
for short, is a semigroup 7" = (Tt) T of completely positive contractions 7; on B. If B is
unital and all 7} are unital, then we say the CP-semigroup is conservative. By the trivial
CP-semigroup on B we mean T; = id. toni  doco

With few exceptions in this section, and in Sections %ﬁld h71,_we assume that B is a
unital C*—algebra and that CP-semigroups on B are conservative. If B is supposed to act
as an algebra of operators on a Hilbert space then we denote this Hilbert space by G.

2.5 Semigroups of endomorphisms. Let A denote a pre-C*-algebra. An eq—semi-
group on A is a semigroup 9 = (ﬁt) ser Of contractive endomorphisms of A. If A is unital
and 9 is unital, we say ¥ is an Fy—semigroup. Usually, neither A nor ¥ need to be unital.
We can, however, always pass to the Ey—semigroup ¥ = (19:5) ter ON A.



[bounded 2.6 Observation. In these notes, usually, A is a pre-C*—algebra which is generated by
a collection of C*—subalgebras. Therefore, A is spanned linearly by its quasiunitaries (i.e.
elements v fulfilling v*v 4+ v +v* = 0 = vv* +v* +v) and possibly 1, if A is unital, so that
all representations of A map into some set of bounded operators.

2.7 Hilbert modules. See %%%_W?keggﬁ%]. Let B denote a unital pre-C*—algebra. A pre-
Hilbert B—module is a right B-module F with a sesquilinear inner product (e,e): E X E —
B, fulfilling (x,z) > 0 (z € E) (positivity), (x,x) = 0 implies © = 0 (strict positivity), and
(x,yb) = (z, )b (z,y € E;b € B) (right linearity). If strict positivity is missing, then we
speak of a semi-inner product and a semi-Hilbert B—module.

On a semi-Hilbert B-module E we have (z,y) = (y, z)*, (xb,y) = b*(zx,y), and Cauchy-

Schwarz inequality
{z,y)(y, z) < |y, )|l {z, z). (2.1)[cs1]

From Cauchy-Schwarz inequality it follows that ||z| = \/||{z, x)|| defines a semi-norm on
E. This semi-norm is a norm, if and only if E is a pre-Hilbert B-module. If a pre-Hilbert
B-module F is complete in this norm, then we say FE is a Hilbert B—module.

Let E be a semi-Hilbert B-module and denote by Np = {z € E: (z,2) = 0} the
submodule consisting of length-zero elements. By the pre-Hilbert B—module and Hilbert
B-module associated with E, we mean E/Ng and E/Ng, respectively. Notice that the
completion of any pre-Hilbert B~module is a Hilbert B-module in a natural fashion.

It (Et) o1, 15 @ family of non-trivial pre-Hilbert B—modules (where L is some indexing

set), then also the direct sum E = @ E; is a pre-Hilbert B—module in an obvious way.
teL
Suppose that all E; are Hilbert modules. Then E is a Hilbert module, if and only if LL is

a finite set.

2.8 Example. Any pre-C*-algebra B is a pre-Hilbert B—module with inner product
(b,b') = b*t'. It is a Hilbert B-module, if and only if B is complete.

More generally, a right ideal I in B is a pre-Hilbert B-module (actually, a pre-Hilbert

I-module) in the same way. It can be shown that any pre-Hilbert B- ag)%ulsq(e(éaPQbe

;as?B, SEeB?].

embedded into a certain completion of the direct sum of such ideals; see

[space 2.9 Example. Let G and H be Hilbert spaces and let B C B(G) be a *-algebra of
bounded operators on GG. Then any subspace E C B(G, H), for which EB C E and
E*E C B becomes a pre-Hilbert B-module with inner product (x,y) = z*y. Obviously,
operator norm and Hilbert module norm coincide, so that E is a Hilbert B—module, if
and only if E is a norm closed subset of B(G, H).

2.10 Operators on Hilbert modules. Let £ and F' be pre-Hilbert B-modules. By
L'(E,F) (B"(E, F)) we denote the sets of (bounded) right module homomorphisms E — F'.
A mapping a: F — F is called adjointable, if there is an adjoint mapping a*: F' — E
fulfilling (x,ay) = (a*z,y) (x € F,y € E). By LYE,F) (B*(E,F)) we denote the
sets of (bounded) adjointable mappings £ — F. We have L%(E,F) C L"(E,F) and
BYE,F)C B"(E,F). If E is complete, then L*(E, F') = B*(E, F'). With one exception
in the proof Theorem hU_Z_gwe only speak of right linear mappings.

The sets L*(F) = L% E,FE) and B*(E) = B FE,FE) form a x—algebra and a pre—
C*-algebra, respectively. Moreover, Ba(E) = B%(E). In particular, if E is complete, then
B(E) is a C*—algebra.




An operator of the form |z)(y| (z,y € E) is called rank-one operator. The linear span
F(E) of all rank-one operators is called the pre-C*-algebra of finite rank operators, its
completion K(F) is called the C*—algebra of compact operators. Notice, however, that the
elements of K(FE) can be considered as operators on F, in general, only if E is complete.
Notice that these operators, in general, are not compact in the usual sense as operators
between Banach spaces.

A projection on a pre-Hilbert module is a mapping p fulfilling p> = p = p*. By de-
finition p is adjointable and, obviously, p is bounded. An isometry between pre-Hilbert
modules is a mapping & which preserves inner products, i.e. ({x,£y) = (x,y). A unitary is
a surjective isometry. Obviously, projections, isometries, and unitaries extend as projec-
tions, isometries, and unitaries, respectively, to the completions. Moreover, if an isometry
has dense range, then its extension to the completions is a unitary.

[isoob]2.11 Observation. A unitary u is adjointable where the adjoint is u* = u~!. An isome-
try £ need not be adjointable (but always right linear). If it is adjointable, then £*¢ = id
and £€* is a projection onto the range of £. Conversely, if there exists a projection onto
the range of &, then ¢ is adjointable.

2.12 Observation. If £ and F are semi-Hilbert B-modules, and if a: F — F is a
mapping which is adjointable in the above sense, then x+Ng — ax + N is a well-defined
element in L%(E/Ng, F/Np).

2.13 Representations on Hilbert modules. A representation of a pre-C*—algebra A
on a pre-Hilbert B-module E is a homomorphism j: A — L% FE) of x—algebras. In
particular, if F is an A-B-module, such that (z,ay) = (a*z,y) (i.e. a — (2 — ax) defines
a canonical homomorphism), then we say E is a pre-Hilbert A-B-module. If A has a unit
and we refer to A as unital, explicitly, then we assume that the unit of A acts as a unit
on E.

Clearly, a homomorphism j extends to a homomorphism A — B(E), if and only
if it is contractive. We say a pre-Hilbert A-B-module F is contractive, if the canonical
homomorphism is contractive. In particular, if A is a C*—algebra, then E is contractive,
automatically.

[GNS[2.14 Example. Let A and B be unital pre-C*-algebras and let T: A — B a completely
positive mapping. Then A ® B with inner product defined by setting

(a®b,d @) =b"T(a*a" )t/

is a semi-Hilbert A-B-module in a natural way. Setting £ = A ® B/Ngp and & =
1® 1+ Nygs € E, we have T'(a) = (£,af). Moreover, £ is cyclic in the sense that
E = span(A¢B). The pair (E,§) is called the GNS-representation of T. The pre-Hilbert
module E is called GNS-module. If T is bounded, then the construction extends to A and
B, so that E is contractive and we may consider also . Obviously, T is conservative (i.e.
T(1) =1), if and only if (£,&) = 1.

If A or B are non-unital and 7" is contractive, then we can do the construction for T

(or, more generally, for T/ ||T||, if T is bounded). However, the statement that also T
is completely positive, actua é§§ quivalent to construct the GNS-module with a cyclic
vector; see the discussion in [Ske

9



2.15 Tensor product of Hilbert modules. Let A, B, and C be pre-C*-algebras. Let
E be a pre-Hilbert A-B-module and let F' be a pre-Hilbert B-C—module. Then the tensor
product E ® F with inner product defined by setting

(z@y,2' @y) = (y, (x,2")y)

c3k9
is a semi-Hilbert A-C—module in a natural way; see 'ASQSE for an elementary proof of
positivity. The interior tensor product of Hilbert modules or shortly tensor product is the

pre-Hilbert A-C—module EOF = EQF /Nggr. By E©F we denote the ¢ %}Jblgté%}gg%f Eo
Lan9h, Ske9s|.)

F. (There is also an exterior tensor product of pre-Hilbert modules; see

~inespring [2.16 Example. Let G be a pre-Hilbert space and B C B(G) a x—algebra of operators on
G. In other words, GG is a pre-Hilbert B—C—module. Let E be a pre-Hilbert B—module.
Then H = E ® G is another pre-Hilbert space. Moreover, any element z in E gives rise
to a mapping L,: g — = ® g in B(G, H) such that (x,y) = L:L, and L,, = L,b. We
see that any pre-Hilbert module may be identified as a submodule of some B(G, H) as in
Example 2.%. For reasons, which we clarify immediately, we refer to this construction as
the Stinespring construction.

If F is a contractive pre-Hilbert A-B-module, then any elem C%Etc%aicr%ﬁéle gives rise
to an operator p(a): x © g — ax @ g in B(H); cf. Observation ;.2(). Clearly, p is a
contractive representation of A on H. If we ly this construction to the GNS-module
of a completely positive mapping in Example 2.4, then T'(a) = L{p(a)Le. In other words,
we obtain the usual Stinespring construction. (Observe that L is an isometry in B(G, H),
if and only if (£,£) = 1, i.e. if T is conservative.)

The same construction works, if we start with an arbitrary contractive representation
of a pre-C*—algebra B on a pre-Hilbert space GG. In other words, a contractive pre-Hilbert
A-B-module may be considered as a functor which sends contractive representations of B
to contractive representations of A. It is easy to check that the composition of two such
functors amounts to construct the tensor product of the underlying pre-Hilbert modules.
In this case we also have L,o, = L,L,.

As an interesting application we will draw some consequences for compositions of
completely positive mappings. T e, tfollovvimg observation is essenti }e% understanding
the first inductive limit in Section 4. This idea is already present in [Rie74].

[factor[2.17 Observation. Let T: A — B and S: B — C be contractive completely positive
mappings with GNS-modules £ and F' and with cyclic vectors £ and (, respectively. Let
G be the GNS-module of the composition S o T" with cyclic vector y. Then the mapping

X—8§OC

extends (uniquely) as a two-sided isometric homomorphism G — E ® F. In particular,
we have SoT(a) = (£ ® (,aé ® ().

Observe that £ ® F = span(A&B @ B(C) = span( A © B(C) = span(AEB @ ¢C). By
the above isometry we may identify G as the submodule span(A{®(C) of E® F. In other
words, inserting a unit 1 in y = £ ® ¢ in between £ and ¢ amounts to an isometry.

Suppose that B and C are algebras of operators on some pre-Hilbert spaces. We
want to emphasize that, unlike the GNS-construction, the knowledge of the Stinespring
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construction for the mapping 7" does not help in finding the Stinespring construction for
SoT. What we need is the Stinespring construction for 7" based on the representation of
B arising from the Stinespring construction for S. The GNS-construction, on the other
hand, is representation free. It is sufficient to do it once for each completely positive

mapping.

The importance of the following simple observation cannot be overestlmate%t assures
that the mappings 7,,, which mediate the second inductive limit in Section b, and, as a
consequence, also the canonical mappings k, appearing there have an adjoint.

tensorvec 2.18 Observation. Let E be a pre-Hilbert B—module and let F' be a contractive pre-
Hilbert B-C—module. Let x € E. Then

rOQdiy— 20y
defines a mapping F' — E ® F with || ®@id|| < ||z]|. The adjoint mapping is defined by
roid: 2 Oy r— (z,2')y

algmod
In the special case when F' = B (cf. Example bfﬁn,fwhence EOF = E, we write x*: 2’ —
(x,2)).
Moreover, if (z,z) = 1, then z®id is an isometry. More precisely, (z*©®id)(z©®id) = idp
and (z ® id)(z* ®id) is the projection (|z)(x|) ®id in B*(E ® F).
All these observations fol ow frorn E}ile_'%ct that the mapping *r ® id: F' — E ® F has
an adjoint and Observations and

[2tensor 2.19 Observation. Let E, F, F’,G be pre-Hilbert modules and let 3: F — F’ be an
isometric two-sided homomorphism of two-sided pre-Hilbert modules. Then also the map-
pingidofeid: EO FOG — E® F' © G is an isometric two-sided homomorphism of
two-sided pre-Hilbert modules.

ontractive [2.20 Observation. Let E be a pre-Hilbert B-module and let F' be a 88%%*}136 pre-
l}an95 SkeoT

Hilbert B-C-module. Let a € B"(E). Then |la ®idr| < |laf|; see ]. In
particular, the tensor product of two contractive pre-Hilbert modules is again contractive.

2.21 The strict topology. It is well-known that B*(E) is the multiplier algebra of
K(E). In other words, B(E) is the completion of K(E) with respect to the locally convex
Hausdorff topology defined by the two families of seminorms a — |jak|| and a — ||kall
(k € X(F)). Another topology on B%(FE) is given by the two families of seminorms
a+ ||az|| and a +— ||a*z|| (x € E). Also in this topology B*(E) is complete. In general,
the two topologies argggifferent. They coincide, however, on bounded subsets. We follow
the convention in [Lan95] and mean by the strict topology one of the above topologies
restricted to bounded subsets of B*(E). We say a bounded mapping 7": B*(E) — B(F)
is strict, if it sends bounded strictly convergent nets to bounded strictly convergent nets.
By boundedness it is sufficient to check convergence on total subsets of E.

So far, we have stated the preliminary definitions and facts which are needed in the
main part of ‘jgilguacrgctli‘cplee. Basics about inductive limits of Hilbert modules are postponed

to Appendix A e do not know a reference for this, so formal proofs are included.
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vN |doco
The basics about von N mann modules are needed only for Sections b - hﬂ._They are
postpone%‘i%&g%opendix . Proofs of some results on von Neumann modules, extending
those of [Ske97], are included. Like von Neumann algebras, w 'a ay be considered
as concrete realizations of abstract W*—algebras in the sense of [Sak71], von Neumann
m%g%s%?nay be considered as concrete realizations of abstract W*-modules in the sense

of [Sc

3 Weak Markov flows of CP-semigroups and dila-

tions to ey—semi-groups: Module version

Mmod

In this section we give the definition of weak Ma Ilﬁgpéfgﬂow angd adgg)tion to an eg—semigroup
for a CP-semigroup 7" similar to that given in [BP94] and [BhaJ6|, however, in terms fn 4
operators acting on a Hilbert module rather than on a Hilbert space. In Sections h_and

we construct a Hilbert modu aelEve(%Isl which a minimal and a mazimal weak Markov flow
may be realized. In Section 6 we show that among all weak Markov flows the minimal

and the maximal are distinguished by universal properties. In this Ay, e also recover
the uniqueness result for the minimal weak Markov flow obtained inv%B'l?Wﬁ

[modMd[3.1 Definition. Let T be RT (the non-negative reals) or Ny (the non-negative integers).
Let T = (Tt) ser D€ a conservative CP-semigroup on a unital C*-algebra B. A weak Markov
flow of T' on a pre-Hilbert B—module F is a pair (A, j), where A is a pre-C*—subalgebra
of B*(F) and j = (jt) is a family of homomorphisms j;: B — A, fulfilling the Markov
property

teT

351 (0)js(1) = js(Ti_s(b)) forall t,se€Tit>s:beB, (3.1)[Markov |

C e .. . lAcc78,Bel84,Bel85
and jo is injective. We use the abbreviation p; := j;(1). (See also [AccTS, Bel84, Bel85].)

A weak Markov flow (A, j) on E is cyclic, if there is a cyclic unit vector £ € E (i.e.
E = A¢ and (£,£) = 1), such that jo(b) = |£)b(¢].

By A, we denote the (x—)algebra generated by jr(B). A cyclic weak Markov flow is
essential, if £ is cyclic already for A, i.e. B = AE.

An essential weak Markov flow (A, j) is minimal, if A = A... It is maximal, if A =
BYE).

The cyclic vector & intertwines j, and idg in the sense that jo(b)¢ = &b, so that E =
Apo& = Ajo(B)E = AEB. Tt follows that ¢(a) = poapy defines a conditional expectation
¢: A — jo(B). The cyclicity condition just means that FE is the GNS-module of .
Essential means that this GNS-module is generated by A, alone.

It is not difficult to check that a minimal weak Markov flow is determin gti%gstcr)in
unitary equival (ijeégfor instance, doing the Stinespring construction (E aé)iejz._l'b_rv%g
are reduced toe%?%, Theorem 2.7]. (Notice that the formulation in %} does not
require existence of a cyclic vector. It is, however, replaced by the requirement that jq is,
in our language, the left-regular representation of B on itself. If we remove existence of
the cyclic vector, then an arbitray direct sum of minimal weak Ma\glél(r)é/ flows would also
be minimal.) We give a different proof of uniqueness in Section kj_.gA_d?ﬁtionaHy, we show
that also the maximal weak Markov flow is unique.

12



. . . . EvLe77,Kuem85, Sau86
Many authors require that j; sends the unit of B to the unit of A; see e.g. [

E (%
. . . . . rKov
Kim85, Sau86]. However, in our setting this contradicts the Markov property (k%.l ),
unless 7' is an Ejy—semigroup.

[E0]3.2 Example. Suppose T' co 15ists (?f unital endomorphisms (i.e. 7" is an Ey—semigroup).
Set £ = A =B (cf. ExampleTTﬁ“._Deﬁne Ji by setting j,(b)x = Ty(b)z. Then (A,j) is a
minimal and a maximal weak Markov flow of T on E with cyclic vector £ = 1.

Conversely, if j;(1) = 1 for all ¢ € T, then we easily conclude from the Markov property
and injectivity of jo that T' is an Ey—semigroup.

3.3 Definition. Let E be a pre-Hilbert B—module and let jo: B — B%(E) be a homo-
morphism. An ey—semigroup ¥ = (19t) ser 0N a pre-C*—subalgebra A of BY(E) is called
an eg—dilation of T on E, if (A, j) with j; = ¥, 0 jo is a weak Markov flow. It is said to be
an FEy—dilation, if ¥ is an Ey—semigroup.

A dilation is called minimal and maximal, if the weak Markov flow (A, j) is minimal
and maximal, respectively. In either case, there exists an element £ in F, such that

(&, 01 0 Jo(b)8) = Ti(b).

algvers
The results on uniqueness in Section %‘ﬁn—ply that both the minimal and the max-
imal dilation of T' are uniqu o too. In particular, the maximal dilation is always an
FEy—dilation, and by Example 3.2 the minimal dilation is only an eg—dilation, unless 7" is
an Fjy—semigroup.

4 The first inductive limit: Product systems

In this section we construct for each 7 € T a pre-Hilbert B-B-module E; which is more or

less the GNS-module of T’- enlarged by inserting ttg}:ec c:;Lllgebm B at each time o in between
0 and 7. Suppose T = 03 + 1. By Observation }‘Z._WThe GNS-modules €, &,,, and &,,,
at times 7, 0y, and o9, respectively, are related by the tensor product €, C €,, ® €,,. In
order to have equality we could try to replace the GNS-module at time 7 by &,, ® &,,.
In other words, we inserted B at time o;. However, for a different choice of o; and o5, in
general, we obtain different modules. Also splitting [0, 7] into three or more subintervals
will destroy the desired factorization. In order to be stable under any further splitting
we have to perform an inductive limit over all possible partitio lsngéc’%}llgeinterval 0, 7.
Concerning inductive limits we use the notations from Appendix A

There exist, essentially, two ways of looking at an interval partition. Firstly, with
emphasis on the end points of each subinterval. Secondly, with emphasis on the length of
each subinterval. The different pictures are useful for different purposes. In these notes
we will concentrate on the second point of view. Whereas, we need the first in order to
see that the interval partitions form a lattice.

Let 7 > 0 in T. We define I, to be the set of all finite ordered tuples {(tn, ..t) €
T™:neNTt=1t,>...>t > 0}. On I, we have a natural notion of inclusion, union,
and intersection of tuples. By inclusion we define a partial order on 1.

13



We define J, to be the set of all finite tuples t = (t,,...,t;) € T" (n € N,t; > 0)
having length
It| := Z t; =T
i=1

For two tuples § = (S,...,81) € J, and t = (t,,,...,t1) € J, we define the joint tuple
sw—te Jg+7— by

5Vt:((Sm,...,81)7<tn,...,tl)):<Sm,...,81,tn,...,t1).

We equip J, with a partial order by saying t > s = (s, ..., s1), if for each j (1 < j < m)
there are (unique) s; € Js, such that t =5, —« ... < 5.

We extend the definitions of I, and J; to 7 = 0, by setting Iy = Jo = {()}, where () is
the empty tuple. For t€ J;, weput t— () =t= ()« t.

n 1
orderprop 4.1 Proposition. The mapping o: (t,,...,t1) — <th‘, e th> is an order iso-
i=1 i=1
morphism J, — 1.
PROOF. Of course, o is bijective. Obviously, the image in I, of a tuple (|s,,|,...,|s1])
in J, is contained in the image of s, — ... — s1. Conversely, let (s,,,...,$1) be a tuple

in I, and (tn,...,t1) > (Sm,-..,S1). Define a function n: {0,...,m} — {0,...,n} by
requiring tu(j) = s; (j > 1) and n(0) = 0. Set t = 07 (t,,...,t1) and § = 07 (sy,...,51).
Furthermore, define 6; = 07 (tnj), ..., tag—1)41) ( > 1). Then t = s, — ... « 53 >
(|sm],---yls1]) =5 =

[1atob4.2 Observation. I, is a lattice with the union of two tuples being their unique least
upper bound and the intersection of two tuples being their unique greatest lower bound.
In particular, I, is direc‘iglgd Increasingly. Observe that (1) is the unique minimum of I,
(1 > 0). By Proposition 4.1 all these assertions are true also for J,.

The reason why we use the lattice J, instead of I, is the importance of the operation
. Notice that — is an operation not on J,, but rather an operation J, X J, — J,i,.
We can say two tuples s € J, and t € J; are just glued together to a tuple s —« t € J, ..
Before we can glue together the corresponding tuples o(s) € I, and o(t) € L, we first
must shift all points in o(s) by the time 7. (This behaviour is not surprising. Recall that
the t; in a tuple in J, stand for time differences. These do not change under time shift.
Whereas the t; in a tuple in I, stand for time points, which, of course, change under
time shift.) Hence, in the description by I, the time shift must be acted out explicitly,
whereas in the description by J, the time shift is intrinsic and works automatically. Our
decision to use J, instead of the more common I is the reason why, in the sequel, in many
formulae where one intuitively would expect a time shift, no explicit time shiEéc appeats.
It is, P&f"’%"era always encoded in our notation. (Cf., for instance, Equations (5.2), (8.1),

and (h‘l_%f)

Let T' = (Tt) .7 Pe a conservative CP-semigroup on a unital C*—algebra B. For each
t let €; denote the GNS-module of T} and & € &; the cyclic vector. (Observe that £y = B
and { = 1.) Let t = (t,,...,t1) € J,. We define

Etz eth...Qgtl and E() = 80.
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. . lfactor [2tensor
In particular, we have E;y = &;. By Observations 2.17 and 2.19

rr—8=6, 0. 08

defines an isometric two-sided homomorphism [y : &, — E\.
Now suppose that t = (t,,,...,t1) = 8§, ~ ...~ 51 > 5 = (S,...,s1) with |s5;| = s;.
By
Bts = Bop(sm) © - -+ © By (s1)

we define an isometric two-sided homomorphism (¢ : E; — Ey. Obvi éltsé}{g &tﬁtﬁ = [y for
all t > v > s. All this follows by repeated application of Observation 2.19. We obtain the
following result.

[1stil|4.3 Proposition. The family (Et) ey together with (ﬁts)5<t forms an inductive system
of pre-Hilbert B-B-modules. Hence, also the inductive limit £, = lirtnjnd E¢is a B-B—pre-
€,

Hilbert module and the canonical mappings i¢: Ey — E. are isometric two-sided homo-
morphisms.

This is the first step of the inductive limit where the involved isometries preserve left
multiplication. In other words, if we restrict to a fixed endpoint 7, then we are concerned
with a well-defined left multiplication, no matter how many time points in the interval
[0, 7] are involved.

Before we investigate the connections among the E., we observe that E, contains a
distinguished element.

[unit 4.4 Proposition. Let &7 = i(n&. Then i = & for all t € J,. Moreover, (£7,b(7) =
T.(b). In particular, (7,£7) = 1.

PROOF. Let s,t € J, and choose t, such that v > s and v > t. Then ;{; = i(wsls =
itft = itﬁttgt = Z.t£t~
MOI“GOVGI", <§T, b§T> = <i(7)fq—,bi(7)&-> = <i(7)fr7i(r)b£7-> = <§T, b§7—> = TT<b) [ |

4.5 Corollary. (£7)%i =& for all t € J,. Therefore, £ s = && for all s < t.

[1tensor 4.6 Remark. Clearly, Ey = & = B and £° = & = 1. In particular, E, = Ey ® E, =
€9 ® E, where id = €Y © id gives the identification.

89
In TATY 9] Arveson defined the notion of tensor product system of Hilbert spaces. We

generalize this, on the one hand, dropping measurability and separability conditions and,
on the other hand, considering pre-Hilbert B—B—modules instead of Hilbert spaces. The
difference to a version for Hilbert modules is only marginal, because the completions
always can be performed. (Recall that a pre-Hilbert B-B-module is contractive, auto-
matically, if B is a C*—algebra; see also Section [[0.) On the other hand, it may be of some
interest to know that certain operators leave invariant the algebraic domain, or even have
adjoints on this domain. So it is important to consider pre-Hilbert module versions.

'psdef 4.7 Definition. Let B bea C*-algebra. A family E® = (Er), o of pre-Hilbert B-B-mod-
ules is called a tensor product system of pre-Hilbert modules or shortly a product system, if
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Ey = B, and if there exists a family (ust) of two-sided unitaries ug: Es © Ey — Fgyy,

s,teT
fulfilling the associativity condition

ur(s+t)(id ®ust) = u(r—i—s)t(urs © |d)
for all r,s,t € T.

A family £© = (ft) ser Of vectors & € Ey with § = 1 is called a unit for the product
system, if ug (£s0&) = e A unit is called unital, if it consists of unit vectors (i.e. (§;, &) =
1). A unit is called generating, if E; is spanned by images of elements b,&;,, © ... ® b1&;, by
(t € Jy, b; € B) under successive applications of appropiate mappings id Qusy © id.

) ) ) o 1stil
4.8 Theorem. The family E© = (ET)TeT (with E, as in Proposition 2.2?5 forms a product

system. The family £© = (ST)TET (with £ as in Proposition o forms a generating unital

unit for this product system.

ProOOF. Let 0,7 € T and choose s € J, and t € J,. Then the proof that the E, form a
product system is almost done by observing that

Bv© 5= B (1.1 prossscond|

From this, intuitively, the mapping ., : is2s®iy¢ — ist(xsOy;) should define a surjective
isometry. Surjectivity is clear, because elements of the form i,_(x;®y;) are total in E, .
To see isometry we observe that i,xs = 150:7s and iy, = 435y for t>tand 5 > s.
Similarly, is_i(zs ® yi) = 15 (s © Byye). Therefore, for checking the equation

<i5$5 O iiyb iﬁ’l'lsf ®© Z.’c’yi’> = <i5vt(xs ®© yt)a Z.s’v’c’ (37,5/ O, yfd))

we may assume that ¢ = t and s’ = s. (This is also a key observation in showing that
E,0F,; = limind E,®FE;.) Now isometry is clear, because both i;®i: FsOF — E,OF;

(s,)€l0 %I~
and s ¢ By = Fs © By — E, ., are tggg;gic%%cé) isometries. The associativity condition
follows directly from associativity of (&I ) it
The fact that the £ form a unit follows by similar arguments from Proposition hT
Obviously, this unit is unital. It is also generating, because E; is generated by vectors of
the form y(b,&, © ... © b1&,bo) (b € B). m

[iident 4.9 Remark. In the sequel, we always make the identification

Es; © Er = Egyr. (42>

easscond

We, actually, have shown, using this identification and (Erl J, that i ® iy = is—¢. Thanks
to this .identiﬁcation we have a natural embgddipg of B“(EU) into B*(E,.,) by gending a
to a ® id. By Observation 2.20 this embedding is contractive. It need not be faithful.

In a certain sense, product systems of Hilbert modules with units for them are in one-
to-one correspondence with CP-semigroups. This correspondence is more specific than
the correspo ggédgce of product systems of Hilbert spaces with Ey—semigroups discovered
by Arveson [ATv&9], Whi&}:lo is only up to cocycle conjugacy. We investigate this more
systematically in Section 7 *The paradigm example of a product system of Hilbert spaces is
the family T'(L*([0, 7], H)) of symmetric Fock spaces which is Well—lj%)o&n to be isomorphic
to a corresponding family of time ord Jroet(%[1 Fock spaces. In Section ITT we will see that the
time ordered Fock module (Theorem [TT.4) plays the same distinguished role for product
systems of Hilbert modules.
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5 The second inductive limit: Dilations and flows
2nd

Now we are going to glue together the E, in a second inductive limit, mediated by
mappings 7., (7 > o). Since these mappings no longer preserve left multiplication,
we no longer have a unique left multiplication on the inductive limit £ = limind F..

T—00

It is, however, possible to define on E for each time 7 a different left multiplication,
which turns out to be more or less the left multiplication from F.. gltaissgz%%ily of left
multiplications will be the weak Markov flow. Also the identification by (1&15 ) has a counter
part obtained by sending, formally, ¢ to co. The embedding of B*(E,) into B*(E,,),
formally, becomes an embedding B%(F«y») into B*(Ee«x 1 »), i.e. an endomorphism of
Be(E). This endomorphism depends, however, on 7. The family formed by all these
endomorphisms will be the dilating Ey—semigroup. onsorvec

Let 7,0 € T with 7 > ¢. Using the notation from Observation deeﬁne the
isometry

Yoo =& °0d: B, — E._,0FE, =F..

Let 7> p > 0. Since (57) is a unit, we have
Yo =& 7 0Id =07 O = 7770
That leads to the following result.

5.1 Proposition. The family <ET)TET together with (770)g<7 forms an inductive system
of right pre-Hilbert B-modules. Hence, also the inductive limit £ = limind E; is a right

T—00

pre-Hilbert B-module. Moreover, the canonical mappings k,: E;, — E are isometries.

Also E contains a distinguished element.

5.2 Proposition. Let & = ko&°. Then k™ = & for all T € T. Moreover, (£,€) = 1.

PROOF. Precisely, as in Proposition #.4.” m

5.3 Corollary. By jo(b) = |£)b{(&| we define a faithful representation of B by operators in
BYE). Moreover, ¢: a — jo(1)ajo(1) defines a conditional expectation B*(E) — jo(B).

indtensorT 5.4 Theorem. For all 7 € T we have

E®E, =E, (5.1)[ indtensor |

tensorid
extending (h?ri i a natural way. Moreover, £ © &7 = €.

PROOF. The mapping u,: k,z, ® Y, — koyr (2, © y,) defines a s%ilesctsive isometry. We
see that this is an isometry precisely as in the proof of Theorem E_S_y_

To see surjectivity let us choose p € T and z, € E,. If p > 7 then consider x, as an
element of £, . © E, and apply the prescription to see that k,x, is in the range of u.. If
p < 7, then apply the prescription to 1 ©® vz, € Fy © E;. =

[E_0cor 5.5 Corollary. The family ¥ = (19T)TeTr of endomorphisms 9,: B*(E) — BY(E ® E;) =
BYE) defined by setting
U.(a) =a®idg,

forms an Ey—semigroup.
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ProOF. Of course, uy1, o (id Ouyr) = u, o (u, @ id). So, the semigroup property follows
directly from FO E,., = FE® (E, O E,)=(EOE,) ©FE,;. =
lindtensor |[tensorid

[kident [5.6 Rem ark. Making use of the identifications given by (5.1) and (4.2), the proof of
;ZJZ actual

Theore P4, actua ly, shows that, k, ® id = k,,,. Putting ¢ = 0 and making use of
Remark &1.6, we find

ky = (ko @id) (" @id) = @id.
5.7 Corollary. k, is an element of B*(E,, E). The adjoint mapping is
kr=¢0idi E=FEOFE, — E,.
Therefore, kXk, = idg. and k.k} is a projection onto the range of k.

[main5.8 Theorem. Define the fami N (jT)TET of representations, by setting j. = U, o jo
and let Ay, be as in Definition 13.1. Then (Aw,j) is a minimal weak Markov flow and
(B*(E), j) is a maximal weak Markov flow of the CP-semigroup T with cyclic vector €.

Y is a maximal Ey—dilation of the CP-semigroup T'. The restrictions U, | As form a
minimal eg—dilation.

PROOF. Postponing cyclicity of £, the remaining statements are clear, if we show the
Markov property j,(1)j-(0)jo(1) = jo(T7—5(b)) for ¢ < 7. By definition of j and the
semigroup property of ¢ it is enough to restrict to o = 0. We have

{6, 5-(0)€) = (€ © &7, (Jo(b) ©id)(E © L)) = (€7, 667) = T+(b)

jOdef it
by Corollary %.3 Sand Proposition E%_Hence, poj-(b)po = |€)T7(b)(&| = jo(T(D)).
Let us come to cyclicity. It is enough to show that for ea Ol} & 1112 t=(tn,...,t1) € J,,
by, ...,bg € B, and (s,,...,s1) = o(t) € I, (cf. Proposition &Ii i

Dy (bn) ... Vs, (b1)00(b)E = € O bul™ @ ... by My, (5.2)[cyelic]

iident = |kident .
because by Remarks B9 and 5.6, £ © b, @ ... ©b1&"by = ki(bp&, © ... © 01&4, o), and

FE is spanned by these vectors. First, observe that

0-(0)€ = (I§)b(¢] ©1d)(E©ET) = £ O bET. (5.3) bshift]

cyclic

Now we proceed by induction on n. Extending %c'éciifg the empty tuple (i.e. 7 = 0), the
statement is true for n=40. Let us assgg&gni%hat (.2) holds for n and choose t,,1 > 0 and

b1 € B. Then by (%%i and Remark %.6

Dty (bng1) (€ O b€ @ ... © b1E" )
= (V1,41 (bny1) ©idp ) (E O D™ © ... © b1€MDy)
= (Vt,,, (bng1)€) @ bp&™ © ... © b1 by
=€ O bp &M O b O O by m

In principle, our construction finishes here. It seems, however, interesting to see clearly
that j, is nothing but the left multiplication from E,.. The following obvious proposition
completely settles this problem.
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5.9 Proposition. We have k.bk: = U, (|£)b(£]) = j-(b). In particular, p, = k- k}.

5.10 Remark. Let (k¥), = kik, be the family associated with k¥ by Proposition A
One may check that

. Yoo foro <7
(k7)o = {
Vi, foro>rT.

Hence, the action of kI on an element k,x, € F coming from E, can be interpreted as
lifting this element to F, via £777, if ¢ is too small, and truncating it to E. via (£777)*,
if o is too big.

5.11 Observation. Since ¢ is cyclic for A, the ideal in A, (or in B*(E)) generated
by po consists precisely of the finite rank operators F(E). The question, whether F(E) is
already all of A, is equivalent to the question, whether p, goff (E) for all 7 € T. This
is true, for instance, in all cases when p, = py (cf. Example %_2) In general, we do not
know the answer.

5.12 Proposition. The endomorphisms ¥, are strict.

PRroOOF. This trivially follows from the observation that vectors of the form = ® z, (x €
E,x, € E,) form a total subset of E. m

5.13 Conclggg&p. The eg—semigroup ¥ | A is (up to completion) the ey—dilation con-
structed in FBh_a%] More precisely, if B is reg%(%%%rslt%(i‘lnfaithfully on a Hilbert space

G, then the Stinespring construction (Example 2. gives rise to a (pre-)Hilbert space
H = E® G and a faithful represe ﬁgé%ﬂ p of A, by operators on H. Lifting 9 to p(A.),
we obtain the eg—semigroup from [BhaJo).

New in our construction is the extension to an Fy—semigroup of strict endomorphisms
of BY(E). Of course, B*(E) also has a faithful image in B(H). However, it seems not
possible to find this subalgebra easily without reference to the module description. The
module description also allows us to show that, if 7" is a normal and strongly continuous
CP-semigroup on a von Neumann algebra B C B(() (i.e. T'is continuous, jp the strong
ks Bs)logy of B), then 1 is normal and strongly continuous, too; see Section b In Section

we will see th%the case when B = B(G) (and T normal). then p(B*(E)) is all of
B(H) (Corollary ). In this way, we recover a result from [BhaJ8a].

6 Weak Markov flows of CP-semigroups: Algebraic
version

In this section we give the definition of weak Markov flow of a CP-semigroup in an alge-
braic fashion and answer as to how far minimal and maximal dilations are unique. The
definition only refers to the family j of homomorphisms, but no longer to the representa-
tion module. Other structures like a_famil; Condltlonal expectations ¢, = p, e p, can
be reconstructed; see Propositions %Zp_g listﬁ%utfle only section in these notes,
where jo is not necessarilly faithful; cf. Deﬁmtlon

If we want to encode properties of a weak Markov flow, which are of an essentially
spatial nature, then we have to require that the GNS-representation of the conditional
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expectation (g is suitably faithful. This leads to the notion of an essential weak Markov
flow. Among all such flows we are able to single out two universal obj cts, which are
realized by the minimal and the maximal weak Markov flow in Theorem

6.1 Definition. Let T' = (T3) .o De a conservative CP-semigroup on a unital C*~algebra
B. A weak Markov flow of T is a pair (A, j), where a A is a pre-C*-algebra 1d g = (jt)tGT
is a family of homomorphisms j;: B — A, fulfilling the Markov property (

Let I be asubset of T . By .A; we denote the algebra generated by {jt(b) telbe B}.
In particular, we set Ay = A, Ap = A0, and Ao = Ap o) = U Ay

teT

A morphism from a weak Markov flow (A, j) of T to a weak Markov flow (C, k) of T'
is a contractive s*—algebra homomorphism «: A — C fulfilling

aoj =k forall teT.

« is an isomorphism, if it is also an isomorphism between pre-C*-algebras (i.e. « is iso-
metric onto). The class consisting of weak Markov flows and morphisms among them
forms a category.

hPa9 Mark
In the original definition in %B'F%Zﬁ the family of projections js(1) in (&frl B replaced
by a more general family of projections ps, so that the Markov property reads psj:(b)ps =

Js(Ti—s(b)) (s < t). However, one easily checks that p; > j5(1). (Puttingt = sand b =1,
we obtain pyjs(1)ps = js(1). Multiplying this by (1 — p,) € A from the left and from the
rg;gs}%gmv‘\lfe obtain js(1) = psjs(1) and js(1) = js(1)ps, respectively.) Therefore, j fulfills

Actually, in FB'PQZ?[? the family p; is required to be increasing. Proposition %Llf%l%ws
that the j,(1) fulfill this requirement, autor%gcally. After that, we always set p; := j;(1).
This is natural also in view of Proposition The existence of conditional expectations
¢y onto Ay, guaranteed therein usygl%LfégIE S[Qagt og the definitition of Markov process
used by other authors; see e.g. [Acc 78, AT Lzsz KimS85H, Saus6).

6.2 Proposition. The j, (1) form an increasing family of projections, i.e. js(1) < j; (1)
for s <t.

ProoFr. For arbitrary prOJectlons p,q with pgp = p we have gp = p = pg so that p < q.
(Indeed, consider the |(1—q)p|> = p(1 — ¢)*p = p(1 — ¢)p = 0 in A This implies
(1 —¢q)p=p—gqp=0.) Using this, our assertion follows directly from (%3 ). m

Proposition 16.2 shows that the p; form an approximate unit for the C*—completion of
Aso. This shows, in particular, that A, is non-unital, unless p; = 1 for some t € T. In a
faithful non-degenerate representation of A, the p, converge to 1 strongly.

[faithful]6.3 Definition. A weak Markov flow j is called faithful, if j, is injective.

Of course, the main goal in constructing a weak Markov flow is to recover T; in terms
of j;. This is done by poj:(b)po = Jo(T;(b)) and, naturally, leads to the requirement that
Jo should be injective. Nevertheless, as the following remark shows, there are interesting
examples of weak Markov flows where jj is not injective.
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[shiftM]6.4 Remark. If j is a weak Markov flow, then also the time shifted family ;™ with
Ji = Jesr for some fixed 7 € T is a weak Markov flow. The j, are, in general, far from
being injective. This shows existence of a non-faithful weak Markov flow. Of course, a
trivial example is j; = 0 for all ¢.

Now we are going to uct a univeral mapping J very similar to the correla-
tion kernels introduced in 82]. We will see that T and jy determine (As,J) com-
pletely. Moreover, (Aoo‘, j) always admits a faithful representation on asiuitable pre-
Hilbert jo(B)-module E7 (closely related to E as constructed in Theorem b.8) as a mini-
mal flow in the sense of Definition B_l._This flow always extends to B*(E?) as a maximal
flow on E’. Both flows are determined by j, up to unitary equivalence and enjoy universal
properties.

6.5 Lemma. Denote by B = |J (T x B)" the set of all finite tuples ((t1,b1), . - ., (tn, by))
n€Np
(n € N) of pairs in T x B. Let V be a vector space and T: B — V' a mapping, fulfilling

T((t1,01),...,(s,a),(t,D),(s,0),..., (tn, bn))
=T((t1,b1), ..., (s,aTi—s(b)c), ..., (tn, bn)), (6.1)[T1]

whenever s < t;a,b,c € B, and

—

T((t,b1), - (b 1), (b b)) = T((t1,00), - (e 1)y (En b)), (6.2)[T2]

whenever ty_1 <ty (1 <k), ortpy <t (k<n), ork=1, ork=n.
Then T is determined uniquely by the values T((0,b)) (b € B). Moreover, the range
of T is contained in spanT((0,B)).

PROQF. In a tuple ((tl, bi),. .., (tn, bn)) € B go to the position with maximal time ¢,,.
%(%‘l) we may reduce the length of this tuple by 2, possibly, after having inserted by
(6:2) a 1 at a suitable time in the neighbourhood of (t,,,b,,). This procedure may be
continued until the length is 1. If this is achieved, then we insert (0,1) on both sides and,
making again use of 5?1), we arrive at a tuple of the form ((0, b)) n

6.6 Corollary. Let (A,j) be a weak Markov flow of a conservative CP-semigroup T
Then the mapping T;, defined by setting

Ti((t,b1), -, (Eny b)) = pojes (b1) - - - i, (bn)Po,
T1 T2
is the unique mapping T;: B — jo(B), fullfilling (%‘1), (%‘2), and
T5((0,0)) = jo(b). (6.3)13]
[0CE|6.7 Corollary. The mapping po: a — poapo defines a conditional expectation As, — Ay.

[tCE|6.8 Proposition. For all 7 € T the mapping ¢, : a — prap, defines a conditional expec-
tation Ao — A,.
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shiftM

Proor. Consider the (i)&e shifted weak Markov flow j7 as in Remark %TS‘mce Jo = Jrs
it follows by Corollary 6.7 that p, e p, defines a conditional expectation Ay — j-(B).

Now consider a tuple in B and split it into subtuples which consist either totally of
elements at times < 7, or totally at times > 7. At the ends of these tuples we may insert
pr, so that the elements at times > 7 are framed by p,. By the first part of the proof
the product over such a subtuple (including the surrounding p,’s) is an element of j,(B).
The remaining assertions follow by the fact that p, is a unit for A;. m

T1 T2
6.9 Theorem. There exists a unique mapping T: B — B, fullfilling (h), (%‘2), and
T((0,b)) =b for allb € B. We call T the correlation kernel of T

PROOF. Suppose that j is a faithful weak Markov flow. Then the mapping j, ' oJ; has the
daeglred properties. Existence of a faithful weak Markov flow has been settled in Theorem
|

6.10 Corollary. Let j be a weak Markov flow. Then T; = joo T.

ur97 ain .
6.11 Remark. In the sense of [Mur97] the module E from Theorem %.8 may be consid-

ered as the Kolmogorov decomposition of the positive definite B—valued kernel €: B xB —
B, defined by setting

E(((tn,bn),...,(tl,bl)), ((sm,cm),...,(sl,cl))>
=T((t1,67), -, (tns 05, (S Cm)s - - -, (81, 1))

More generally, if &é j) is a weak Markov flow, then the GNS-module E? associated with
J (see Definition 6.1Z below) is the Kolmogorov decomposition for the positive definite
kernel Jo© €. ‘ ' ' ‘ 189

This interpretation throws a bridge to the reconstruction theorem in %382], where
tisau 1111%1 —valued kernel, and the original construction of the minimal weak Markov

. a9 . i, L :

flow in %B?M, which starts by writing down a positive definit %{éa;gel on éﬁgg (where
G denotes a Hilbert space on which B is represented). Cf. also [Acc78] and [BelS5].

GNSj[6.12 Definition. Let (A, j) be a weak Markov flow. Then by (E’,¢&’) we denote the
GNS-representation of ¢g: Ay, — Ag. We call E? the GNS-module associated with (A, j).
Denote by o/ : Ay, — B*(E’) the canonical homomorphism. Obviously, a?: (A, j) —
(a7 (As), @’ 07) is a morphism of weak Markov flows. We call (a/(A), a? 075) the minimal
weak Markov flow associated with (A, j) and we call (B*(E7), o’ o j) the maximal weak
Markov flow associated with (A, j).

Observe that the minimal and the maximal weak Mark VOQ.ISHV associated with a faith-
ful flow (A, j) are essential flows in the sense of Definition 31, 1t is natural to ask under
which conditions the representation of A., on E7 is faithful or, more generally, extends to
a faithful (isometric) representation of A on E?. In other words, we ask under which con-
ditions a weak Markov flow is isomorphic to an essential flow on a pre-Hilbert B—module.
The following definition and proposition settle this problem. We leave a detailed analysis
of similar questions for cyclic flows to future work. We mention, however, that satisfactory
answers exist.
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[essdef |6.13 Definition. A weak Markov flow (A, ) is called essential, if the ideal Iy in A,
generated by po is an ideal also in A, and if Iy is essential in the C*—completion of A (i.e.
for all @ € A we have that aly = {0} implies a = 0).

P . %%@’ftgh . :
Let us drop for a moment the condition in Definition . at jo be faithful.

flow on E7 in the sense of Definition 7.1 {Jp not necessarily faithful), if and only if it
is essential in the sense of Definition [6.15. In this case also @(a) = poapy defines a
conditional expectation ¢: A — Ay.

6.14 Proposition. A weak Markov ﬂo%)%f j) is isomorphic to an essential weak Markov

PrOOF. We have span(A.Aoopo) = span(.A(.Aoopg)po) C span(AIopo) = span(Iopo) =
Asopo. Therefore, A, pg is a left ideal in A so that ¢, indeed, takes values in Ay. By con-
struction ¢ is bounded, hence, extends to A. (Observe that A is the range of a C*-algebra
homomorphism and, t}}aesrsenfgrrg, complete.) Now our statement follows immediately by an
application of Lemma B.T to the extension of . m

If j is essential, then we identify A as a pre-C*-subalgebra of B*(E’). In this case,
we write (As,j) and (B*(EY),j) for the minimal and the maximal weak Markov flow
associated with (A, j), respectively. An essential weak Markov flow (A, j) lies in between
the minimal and the maximal essential weak Markov flow associated with it, in the sense
that A, C A C B*(E7).

Observe t%%%l‘%j is just A,.po with cyclic vector py. If we weaken te%% c%/oclicity condition
in Definition B.T to F C A,po, then in order to have Proposition 6.14 it is sufficient to
require that Iy is an essential ideal in A (without requiring that Iy is an ideal in A).

Proposition 6. oes not mean that ¢ is faithful. In fact, as ¢o(j:(1) — jo(1)) = 0,
we see that g is faithful, if and only if j;(1) = jo(1) for all te T If 5 is also faithful,
then we are precisely in the situation as descrg)ses(jleip Example b‘Z

The C*-algebraic condition in Definition % [3 seems to be out of place in our pre—
C*—algebraic framework for the algebra A. In fact, we need it only in order to know
that the GNS-representation %ggiﬁt is isometric. This is necessary, if we want that %e
Ey-semigroup ¢ in Theorem b.8 extends to the completion of B*(E); see Section [I0.
Example B.3 shows that the C*—algebraic version is, indeed, indispensable.

Notice that there exist interesting non-essential weak Markov flows. For inst ceyden-
sor products of weak Markov flows with Fy—semigroups are rarely essential; seea%'ﬁ?%a]
for details. ultiolier '

By Observation B.2 I, may be identified with the compact operators K(E7). The
multiplier algebra of K(FE7) is B*(E7). In other words, B*(E7) is the biggest C*-algebra,
containing K(E7) as an essential ideal. This justifies to say ‘maximal essential weak
Markov flow’.

6.15 Observation. Obviously, the minimal weak Markov flow (A, j) from Theorem

.8 1s essential, minimal, an Of ithful. For reasons which will become clear soon, and in
accordance with Definition BT, we refer to (A, j) as the minimal weak Markov flow.
Similarly, we refer to (B*(E), j) as the maximal weak Markov flow.

6.16 Definition. For a (unital) C*—algebra B we introduce the homomorphism category
h(B). The objects of h(B) are pairs (A, j) consisting of a C*—algebra A and a surjective
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homomorphism j: B — A. A morphism i: (A,j) — (C,k) in h(B) is a homomorphism
A — C, also denoted by %, such that 7 o j = k. Clearly, such a morphism exists, if and
only if ker(j) C ker(k). If there exists a morphism, then it is unique.

In the sequel, by (E, ) we alv&i w then GNS-module of the minimal weak Markov
flow as constructed in Sections @ and b. Also j, the notions related to A;, and ¢, refer
to the minimal weak Markov flow. (C, k) stands for an essential weak Markov flow. C;
and related notions are defined si ilar to Aj. (The flow k£ is not to be confused with the
canonical mappings £, in Sectionrgﬂf

[Mlem]6.17 Lemma. Let (C,k) be an essential weak Markov flow of T. Furthermore, denote by
(&F,1%) the GNS-construction of ko: B — Co = ko(B). Then E¥ = E® &% and ¢&F =

£ ® 1%, Moreover, in this identification we have

ki(b) = ji(b) ©id. (6.4)[Hon]

PRrROOF. Clearly, £F = ko(B), when considered as a Hilbert Bk (B)-module via bko(V') :=
ko(bb') and 1% = ko(1). It follows that E ® EF is just E equipped with the new Cy—valued
inner product (x, ')y = ko((z,2’)) divided by the kernel N of this inner product. £ ® 1*
is just & + N.

Let = ji, (by) - - jt, (01)€ and 2" = gy (0),) ... jy, (D)) (ti, 1 € T;0;,0; € B) be ele-

19 7 19 7
ments in E. Then

(w,2") = T((t1,01), - (t, 00), (£, b)) - (17, B1))

For y = ki, (bn) .. ke, (b1)E" and o = Ky (V),,) ... Ky (D)€" in E* we find

<y’y/> = Tk((tlabik)a ] (tmb:;) ( m7b;n) ) (t/bb/l))'

Therefore, by sending x®1* to y we define a unitary mapping u: E®E&F — E*. Essentially
the same gomputations show that the isomorphism B*(E @ €*) — B*(E*),a ~ uau™"
respects (% m

6.18 Proposition. Let (C = B*(E*), k) and (C' = B*(E"), k') be two mazimal weak
Markov flows. Then there exists a morphism «: (C,k) — (C', k'), if and only if there
exists a morphism i: (Co, ko) — (Cl, k(). If i exists, then « is unique. In particular,
(C, k) and (C', k') are isomorphic weak Markov flows, if and only if (Co, ko) and (Cj, kj)
are isomorphic objects in b(B).

Proor. If ¢ does not exist, then there does not exist a morphism a. So let us assume
that 4 exists. In this case we denote by (£*¥'  1%¥") the GNS-construction of i. One easily
checks that £ © EF = € and 1* © 1% = 1¥. Thus, E¥ = E* ® £*¥. By Observation
it follows that o a — a®id defines a contractive homomorphism B¢(E¥) — Be(EX).
Clearly, we have k;(b) = k:(b) ® id, so that « is a morphism of weak Markov flows.
If 7 is an isomorphism, then we may construct £¥* as the GNS-module of i~'. We find
o &Rk = Bk @ EFF @ EFF = E*. This enables us to reverse the whole construction, so

that « is an isomorphism. The remaining statements are obvious. m
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6.19 Corollary. Let (C,k) be an arbitrary weak Markov flow. Then the minimal and
mazimal weak Markov flows associated with (C,k) are determined up to isomorphism by
the isomorphism class of (Cy, ko) in h(B).

6.20 Corollary. Let (Cy, ko) be an object in H(B). Then there exist a unique minimal
and a unique maximal weak Markov flow extending k.

PME{(())OF. Construct again the GNS-module £* of ko and set E¥ = E©EF. Then, obviously,
(6.4) defines a maximal weak Markov flow (B*(E*), k) with a minimal weak Markov flow
sitting inside. By the preceding corollary these weak Markov flows are unique. m

The following theorem is proved by appropiate applications of the preceding results.

universal |6.21 Theorem. The mazimal weak Markov flow (B*(E), j) is the unique universal object

in the category of mazimal weak Markov flows. In other words, if (C, k) is another maximal
weak Markov flow, then there exists a unique morphism a: (B*(E),j) — (C, k).

The minimal weak Markov flow (Aw,j) is the unique universal object in the category
of all essential weak Markov flows. In other words, if (C,k) is an essential weak Markov
flow, then there exists a unique morphism «: (A, j) — (C, k). Moreover, if (C, k) is
minimal, then o is onto.

E_Oco
In this way we obtain a different proof of Corollary %.5. (¥, is thein (%re%lrs%srm which
sends j to j7.) Of course, also this proof is based on the factorization (%E ) so that there

is nothing new in it.

Let (C, k) be an essential weak Markov flow. We could ask, whether the Ey—semigroup
Y on BY(E) gives rise to an Ey-semigroup on B*(E*) (or at least to an ey—semigroup
on Co). A necessary and sufficient condition is that the kernels of 7} should contain the
kernel of ky. (In this case, T; gives rise to a completely positive mapping T} on ko(B).
Denote by F the GNS-module of TF. Tt is not difficult to see that E¥©EF carries a faithful
representation of the time shifted weak Markov flow k!, and that the mapping a — a ®id
sends the weak Markov flow k on E* to the weak Markov flow k; on E* ® £F. From this it
follows that the time shift on C,, is contractive.) However, the following example shows
that this condition need not be fufilled, even in the case, when B is commutative, and
when 7' is uniformly continuous.

6.22 Example. Let B = C?. By setting T; (%) = 2£2 (}) + e'2522 (1)) we define
a conservative CP-semigroup 7. We define a homomorphism k: C> — C, by setting

k;(i;) = z;. Then k:(g) =0, but kOTt(g) =1—e"#0 (for t #0).

For these reasons we dispense with an algem}%(iic formulation of eg—dilation and content
ourselves with the module version in Section 8.

7 Units and cocycles
In Section A we started from a conservative CP-semigroup 7" on a unital C*—algebra B.

We constructed a product system E® of pre-Hilbert B-B-modules F, and a unit fgnf r
this product system. This unit turned out to be unital and generating. In Section b we
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constructed an inductive limit F of the modules E, with the help of the unit. On £ it
was possible to realize a weak Markov flow (B*(E), j) and an FEy—dilation 9 of T

In this section we reverse the proceeding and start with a product system and a unital
unit. We construct an associated conservative CP-semigroup and inv sotlilgate in how far
the CP-semigroups are classified by such pairs. The results of Section 8 1ndicate how the
constructions may be generalized to non-unital units bounded by 1, which correspond to
general contractive CP-semigroups.

7.1 Definition. Let B be a unital C*-algebra. Let (E®,£®) be a pair consisting of a
product system E® of pre-Hilbert B-B-modules E, and a (unital) unit ¢ = (é})TeT.
It is readily verified that T = (TT)TGT with T.(b) = (&,b&,) defines a (conservative)
CP-semigroup on B. We call T' the CP-semigroup associated with (E®, ).

Suppose the unit £ is unital. Then the family (%U)J -, as defined in Section

provides an inductive limit over E.. We denote this inductive limit by £¢ = limé_ind E. in

2nd

order to indicate that it depends on the choice of the unit £2. We say E¢ is the inductive
limit associated with £©.

Again we find the factorization E¢ ® E, = E* so that 9¥,(a) = a ® id defines an
Ey—semigroup on B%(E?%), the Ey—semigroup associated with £©. As jo = |€)b(£] acts
faithfully on &, we find that (B*(E?%),j) with j, = 9, o jo defines a weak Markov flow
of T, the weak Markov flow associated with £“, and that 9 is an Ey—dilation of T, the
Ey—dilation associated with £©.

7.2 Proposition. Let T be the CP-semigroup associated with (E®,£®). Furthermore, let
(E®)®, &5, and E° denote the product sggim, %}ﬁ unit, and the inductive limit, respec-
and 15.

tively, constructed from T as in Sections Then for each T € T the mapping
Ur: bl @ . @ biEfby — bu&h, O ... O b€ bo

(tn,...,t1) € J.,b; € B) extends uniquely to a two-sided isometry u,: E° — E.. In other
words, the product system (E°)® is isomorphic to a product subsystem of E®. Of course,
UT(SS) - 57'-

The mapping

us kf(a7) — krur(a7)

(r € T,z, € EY) extends uniquely to an isometry u: E° — E. In other words, E° is
1somorphic to a submodule of E.

The product systems (E°)® and E® are isomorphic, if and only if €2 is generating for
E®. In this case also the weak Markov flows and the Ey—dilations constructed on E° and
on E are the same (up to unitary isomorphism).

Proor. Clear. =m

We see that, given a certain (conservative) CP-semigroup 7', then there is essentially
one pair (E® £%) with a generating unit with which T is associated.

7.3 Theorem. CP-semigroups are classified by pairs (E®,£°) consisting of a product
system E® and a generating unital unit £, up to isomorphism of the pairs.
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89
This is the classification of CP-semigroups by product systems and units. In ATV 9]

Arveson classifies (normal, strongly continuous) Ep—semigroups on B(G) by product sys-
tems of Hilbert spaces up to cocycle conjugacy. In the sequel, we look in how far CP-
semigroups are classified by their product sytems alone, and what cocycle conjugacy could
mean in our context.

7.4 Definition. Let B be a unital C*—algebra, let E be a pre-Hilbert B—module, and let
¥ be an Ey-semigroup on B*(FE). A family u = (uT)TeT of operators u, € B*(E) is called
a left (right) cocycle for ¥, if for all 0,7 € T

Urio = U0, (1) (u7+g = ﬁT(uU)u7>.

A cocycle u is called contractive, positive, unitary, isometric, partially isometric, if u, is
contractive, positive, unitary, isometric, partially isometric, respectively, for each 7 € T.
A cocycle is called local, if u, is in the relative commutant J.(B*(E))" of J,(B*(E)) in
Be(E) for each 7 € T. (In this case u is a left and a right cocycle.)

Let 9 be the Ey—semigroup associated with a pair %%é@, €9). A cocycle u for ¢ is called
adapted, if p,u,p, = u, for each 7 € T (cf. Proposition 5.9). In other words, u. is the image
of the unique operator u, = kXu k. on E, under the embedding k,ek*: B*(E,) — B*(E).

T€T b ;k')TE'JT
Moreover, if u is a unitary left cocycle for ¥, then 9¥,(a) = u,;9,(a)u’ defines another
Ey-—semigroup on Be(E). We provide the following lemma on local cocycles for later use

Of course, u = (uT) is a left cocycle, if and only if u* = (u is a right cocycle.

in Section [I4, where we establish an order isomorphism for partial orders defined on a
certain set of local cocycles and and a certain set of CP-semigroups on a von Neumann
algebra.

[loccoc]7.5 Lemma. Let O be the Ey-semigroup associated with a pair (E®,£). Let w be a
family of operators w, on E* and define w, = k*to,k, € B*(E,). Then w is a local
cocycle for v, if and only if the following conditions are satisfied.

1. All w, are B-B-linear.
2. w, =id Ow, in BY(E*® E,) = B*(E*).
3. Wy ® Wy = Wy for allo,7 €T.

Of course, the w, are unique and vo is adapted.
Conversely, if w is a family of operators w, € B*(E;) fulfilling 1 and 3, then 2 defines
a local cocycle vo for .

PROOF. Recall that k; = £ © idg, and kI = £* © idg,. Therefore, it is sufficient to
consider the set-up where E is a pre-Hilbert B—module with a unit vector &, where F' is
a pre-Hilbert B—B-module, and where tv is an operator on £ ® F' which commutes with
all elements of B*(E) ®id C BY(E © F).

Of course, for any B-B-linear mapping w € B*(F') the mapping id ®w is well-defined
and commutes with a ® id for each a € B*(F).
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Conversely, let o € B*(E ® F) be in the relative commutant of B*(E) ® id. Set
w= (£ oid)(€ @id) € B*(F). By j(b) = |£)b{¢| we define a representation of B on E.
Then j(b) ®id is an element of B*(F) @ id and, therefore, commutes with . We find

bw = (& ®id)(j(b) ®id)w (€ ®id) = (€* @ id)w(j(b) ® id) (€ ®id) = wb,

i.e. w is B-B-linear. In particular, id @w is a well-defined element of B*(E ® F'). For
arbitrary x € E and y € F' we find

w(z ©y) = w(|z){E ©id)(§ O y) = (Jz){E ©idw(E O y)
=z Quwy = (dow)(z O y),

where |z)(¢] ®id is an element of B*(E) ® id and, therefore, commutes with w. In other
words, tv = id Qw.

Therefore, there is a one-to-one correspondence between operators tv in the commutant
of B*(E) @ id and B-B-linear operators in B*(F'). Applying this to F' = E, we see that
a family (mT) of mappings in the commutant of B*(E) ® idg, is a cocycle, if and only if
the corresponding family (wT) fulfills 3. m

Let us return to the problem of finding the right notion of cocycle conjugacy. Notice
that the members u, of an adapted right cocycle u are necessarily of the form u, = |k ) (¢|
where (; are the unique elements kfu.§ € E;. Indeed, by the cocycle property we have
u. = Jo(u)ug = usuy. By adaptedness we have uy = ugpy and u, = p,;u,. Hence,
Ur = ka;k—uTuO|§> <£| = |kTCT><§|

ladacoc]7.6 Proposition. Let 9 be the Ey—semigroup associated with a pair (E®,£9). Then by
setting (; = kIu.& we establish a one-to-one correspondence between adapted right cocycles
u for 9 and units ¢° = ().

PRrROOF. Let u be an adapted right cocycle. Then

Ca+‘r = k;+7—ua+‘rf = k;+7197' (ua)qu = k;+7—<ua€ © k;k—u‘r€> = k;uog © k;‘iqu = Ca O] CT?

i.e. (¢ is a unit.
Conversely, let (© be a unit and set u, = |k,;(;){(¢|. Then

U7 (ue)urg = (U, ©id)(§ © G;) = kigir(Co © Gr) = UpyrE.

Moreover, u,;, is 0 on the orthogonal complement (1 — [£)(¢])E of . In other words,
Uy = U-(Us)u, so that the u is an adapted right cocycle for ¥. m

adacoc
coccondef (7.7 Definition. If in the situation of Proposition }'776_'0'He cocycle is contractive, we say
the CP-semigroup S associated with (® is cocycle subconjugate to the CP-semigroup T
associated with £°.
If both £% and (® are generating and unital, then we say S is cocycle conjugate to T.

[coco]7.8 Theorem. Cocycle conjugacy is an equivalence relation among conservative CP-
semigroups on B, and CP-semigroups are classified by their product systems up to cocycle
conjugacy.
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Proor. Of course, classifying CP-semigroups by their product systems is an equivalence
relation. If S is cocycle conjugate to T', then S and T" have the same product gfcstem E°,
but possibly different unital generating units £€® and (®. Hence, Proposition ells us
that two CP-semigroups with the same product system, indeed, are cocycle conjugate. m

Notice that our cocycles appearing in the definition of cocycle conjugacy, in general, are
partial isometries. The cocycle conjugacy used by Arveson is through unitary cocylces. We
see, however, in the following theorem that in the case of Ey—semigroups our cocycles are
unitaries, automatically. In other words, it is the additional structure of Fy—semigroups
(compareg Wlth a conserﬁive CP- semlgroup) which leads to unitary cocycles (cf. also
Example . In Section T3 we will see that in the case of normal Ey—semigroups on B(G)
our product systems of Hilbert modules are in one-to-one correspondence with Arveson’s
product systems of Hilbert spaces so that the classification of Arveson and ours coincide.
More precisely, we will see that Arveson’s product system sits inside our product system

d (éonversely, determines the structure of our product system completely; see Corollary

?fgpr’o

7 .9 Theorem. Let ¥ and 9" be Ey—semigroups on B which are cocycle conjugate (as CP-
semigroups). Then the unique right cocycle w with respect to ¥ providing this equivalence
18 a unitary cocycle.
Conversely, if u is a unitary right cocycle with respect to ¥, then the Ey—semigroup
(uiﬁTuT) is cocycle conjugate to ¥ (as CP-semigroup).

PROOF. Re g&%cfggm Example E(T)Z that p, = 1. So any cocycle is adapted. And by
Proposition [7.6 a right cocycle u providing cocycle conjugacy of two Ey—semigroups is
unique.

We encourage the reader to check that for a given Ey—semigroup ¥ on B the Hilbert
B-modules £, = B equipped with the left multiplication b.b' = 9,(b)V/, indeed, form a
product system. Of course, the elements & = 1 form a generating unital unit for this
product system. The inductive limit provided by this unit is again £ = : I}gith cyclic
vector £ = 1. If we construct the maximal dilation as described in Section b we recover
nothing but the original Ey—semigroup acting on B*(E) = B*(B) = B. All these assertions
follow from the fact that B as a right module has a module basis which consists of one
element 1, and any right linear mapping on B is determined by its value at 1.

Let ¥ be another Ey—semigroup on B with the same product system F, and unit &..
Of course, & # 1 in the above identification, unless ¥, = .. The mapping [£/)(&,| is
nothing but multiplication with & € E. = B from the left. (({,,e): E; = B — B is just
the identity mapping.) It is an isometry as . has length /(£., &) = 1. It is surjective,
because F. is generated as a right module by &/. (Otherwise E,. was not isomorphic to
the corresponding member in the product system for ©’.) In other words, & € B is a
unitary. Observing that k, is nothing but the identification mapping £, = B — B = F,
we find that also the lifting

kel &) (& lkT = k&) (hrde | = [R-E1) (€] =
of |€2)(&;| from BY(E;) = B to B*(F) = B is a unitary.
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Conversely, let u be a unitary right cocycle with respect to ¥, and set ¥, = w0, u,.
Interpret u, as an element of B = B*(E,). Then for b € B,V € E, = B we find

b.(wb) = 0, (b)u b = w0 (b)Y,

In other words, the mapping which sends ¥’ € E’ (where E'® is the product system of ')
to ub’ € E; is a two-sided isomorphism E. — E;. So ¢ and ¥ have the same product
system. m

7.10 Remark. The innocuous looking identifications in the preceding proof, actually,
require some comments to avoid confusion. In fact, all modules appearing there are
isomorphic as right Hilbert B-modules to B. This isomorphism even includes the cyclic
vector 1 contained in B. Indeed, also E, with the cyclic vector £, is isomorphic to B with
the cyclic vector 1. In other words, even the mapping &, — & extends uniquely as an
isomorphism of right Hilbert modules. It is the left multiplication which distinguishes the
different modules.

The decisive assumption of cocycle conjugacy is that there exists a unitary on FE,
(i.e. a unitary in B) which intertwines ¥, and 7. (This is the meaning of isomorphism
of product systems.) However, even in the case of automorphisms this assumption is
not true in general. Let E = B be the Hilbert B-B-module B with the natural left
multiplication by elements of B, and let E, = B be the Hilbert B-B-module B where B
acts via an automorphism «. If there exists an intertwining unitary for these two-sided
Hilbert modules, this means that « is inner. Of course, in general not all automorphisms
of a C*—algebra are inner. In fact, classifying all E, up to two-sided unitary isomorphism
is nothing but classifying the automorphis 509£ H{S’ up to (inner) unitary equivalence. We
can reformulate the contents of Theorem 7.9 as follows. Two Ey—semigroups on B are
cocycle conjugate, if and only if there exists a family (aT) of inner automorphisms of B
such that ¥/ = a, 0 ¥,.

We should emphasize that our classification starts from the assumption that there
are two CP-semigroups. They belong to the same class, if they have the same roduct
system (i.e. they are cocycle conjugate). In contrast with Arveson’s result in [ATv90)]
that (under certain measurability and separability assumptions) each Arveson product
system can be obtained from an Ey—semigroup, in our case the analogue statement for
conservative CP-semigroups is not true already in the case B = C. Indeed, a unital unit
in a product system of Hilbert spaces is generating, if and only if this product system
consists of one-dimensional Hilbert spaces. ist

If a product system of pre-Hilbert modules arises from our construction in Section 4,
then it has a unital generating unit. In this context, and also in order to find a satisfactory
definition of type and index of a product system of pre-Hilbert modules, we consider it as
an interesting problem, to determine all units of a given product system. In particular, we
ask whether for each o%@?re are product systems without any unit. At least for B = C
Powers has shown in ;OW87] that there exists a type III Ey—semigroup on B(G) which
means precisel otcgat the associated product system of Hilbert spaces has no units.

In Section TT we will see that (after suitable completion) any conservative CP-semi-
%%m with bounded generator is cocycle subconjugate to the trivial semigroup. In Section

we will see that (also after suitable completion) any normal CP-semigroup S on a von
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Neumann algebra which is dominated by a conservative normal CP-semigroup 7" is cocycle
subconjugate to T through a local cocycle.

8 The non-conservative case

1st 2nd
In this section we study the procedures from Sections h_and m the case, when B still is
unital, however, T" may be non-conservative. We still assume that all T; are contractive
and, of course, that Tj = id. 1296

There are two essentially different ways to proceed. The first way as done in FB'h_aQEG]
uses only the possibly non-conservative CP-semigroup 7. Although the first inductive
limit still is possible, the second inductive limit breaks down, and the inner product must
be defined «a )TIOTY. ;Eche second way to proceed uses the unitization T on B as indicated
in Paragraph )2 4.

Here we fnaml gllow the second approach. In other words, we do the constructions
of Sections h_and or the conservative CP-semigroup T. As a result we obtain a pre-
Hilbert B- B—module E _a cyclic vector 5 , a weak Markov flow j acting on E and an
Ey-semigroup 7 on B*(E). The restriction of ¥ to the submodule E which is generated
by 5 and 791r o jo(B) is cum grano salis a dilation of T. We will see that the (linear)
codimension of E in E is 1.

Recall that B = B @ C1, and that (B is unital)
B&C— B, (byu)r— (b—pl) @ pl

i lggb'somorphism of C*—algebras, where B @ C is the usual C*—algebraic direct sum. In
%’PQZI the unitization has been introduced in the picture B @ C. In the sequel, we will
switch between the pictures Band B C according to our needs.

We start by reducing the GNS-construction (8t,£t) for T; to the GNS-construction
(&, &) for T;. Since B is an ideal in B we may consider &; also as a pre-Hilbert B-B-mod-
ule. Since T is not necessarily conservative, & is not necessarily a unit vector. However,
(€,&) <1 as Tt is contractive. Denote by ft the positive square root of 1 — (&,&) in B.
Denote by 8t ftB the r glt 1geal in B generated by £t considered as a right pre-Hilbert
B module (see Example FZ‘%H_By deﬁmng the left multiplication bft =0forbeB and
1& &, we turn St into a pre-Hilbert B-B-module. We set 8,5 =&® Et and £t & EB&
One easily checks that (St, &) is the GNS-construction for Tt

[xirules|8.1 Observation. Among many other simple relations connecting &, &, and & with
the central projections 1, and 1 — 1 like e.g. 1& = &, ( 1)& = {t, or ft(l -1) =

(1-— 1)&(1 — 1), the relation
1 = (1-1)&1 = 161161 = §1 — 1§,
ortho
is particularly crucial for the proof of Theorem %.ZI.

' , ' ~ _ [rightob .

Notice that (like for any pre-Hilbert B-module; cf. Observation b ) the mapping
wy: x+— x(1 — 1) defines a projection on &;. We denote ; = & (1 —1) and b = (b, 1) in
the picture B C. The following pro ;?f%%iloe% is verified easily by looking at the definition
of & and by the rules in Observation 81
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8.2 Proposition. ; may be identified with the element 1—1 in the right ideal /ét in B.
We have o N

& (1—1) = Qup’ = (1 — 1)Quup.
In particular, w; is a projection onto CS);. The orthogonal complement of €0y may be
considered as a pre-Hilbert B-B—module.

. . st pnd S -
Doing the constructions of Sections @ and b for T', we refer to Fy, E, = hrtn jnd Ey, and
€l,

E = limind E,. Also other ingredients of these constructions are indicated by the dweedle.
Letters :Nithout dweedle refer to analogue quantities coming from 7;. For instance, we
already remarked that the first inductive limit may be performed also for non-conservative
CP-semigroups. We obtain a family of pre-Hilbert B—B-modules E, as inductive limits
of pre-Hilbert B-B-modules Fy (t € J;). These modules form a product system and the
vectors {7 € E7 still form a generating unit. This unit is, however, not necessarily unital.

By Sending Zt(bngtn ®...0 blftlbo) to ’lt(bnftn ® ... blftlbo) (t = (tﬁ,’ Ce ,t1) c
Jr;bny ..., bp € B) we establish a B-B-linear isometric embedding E,. — E,. In this
identification we conclude from

1antn @ N @glg;lgo == bnftn @ e @ b1£t1b0

that 1E’T = E.. We remark that here and in the remainder of this section it does not
matter, whether we consider the tensor products as tensor products over B or over B.
By definition of the tensor product the inner products coincide, so that the resulting pre-
Hilbert modules are isometrically isomorphic. As long as the inner product takes values
in B we are free to consider them as B—modules or as B—modules.

8.3 Proposition. Let 7 € T and set 07 = (1—1) € E. Then iy(Q, ®...00,) ="
Jor all t € J;. Moreover, the Q7 form a unit for E..
Set T =(1—-1)¢" € E;. Thenigé =& forall T € T.

Set Q=E(1—1) € E. Then k. =Q for all 7 € T.
irul
PRrROOF. From Observation %%ﬁnd
O =1-1)=i(&, ©...06) 01 -1)=i(Q, ©...00,)

from which all assertions of the first part follow. The second and third part are proved in
an analogue manner. m

Clearly, we have E (I — 1) = CQ. Denote by E = E1 the orthogonal complement of
this submodule and denote by § = {1 the component of § in £. Denote by w: z — z1
the projection in B*(E) onto E. We may consider E as a pre-Hilbert B-module.

[ortho 8.4 Theorem. The operators in jr(B) leave invariant E, i.e. J+(b) and w commute for
all 7 € T and b € B. For the restrictions j.(b) = j,;(b) | E the following holds.

1. E is generated by jr(B) and &.
) Markov .. .
2. The j, fulfill the Markov property (}B.Ii and, of course, jo 18 faithful.
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3. The restriction of{g to B(E) defines an Ey—semigroup 9 on B(E), which fulfills
V7 0 jy = joar. Clearly, ¥ leaves invariant A, = span jr(B).

8.5 Remark. Extending our definitions to the non-conservative (contractive) case in an
obvious way, we say (As,7) is the (unique) minimal weak Markov flow of 7. Also the
definition of essential generalizes, sqthat (B*(E), j) is the (unique) maximal weak Markov
flow of T'. Extending the result in%B'lTag%] where an ep—dilation on A, was constructed,
we say that ¢ is an Fy—dilation of T'.

ortho ~ ~ o~ o~ ~ ~
PROOF OF THEOREM WObserve that j.(1)E = k. 1E, = £OFE,. By E C E we denote
the linear span of all these spaces. Clearly, Eis a pre-Hilbert B-module. Moreover, all
j-(b) leave invariant E. We will show that £ = E, which implies that also E is left
1nvar1ant by . (D).

E is spanned by the subspaces f ® ET, so that F is spanned by the subspaces f ® E 1.
The space E1 is spanned by elements of the form Ty = zt( né}n ®...0 blftlbo) For each
1 < k < n we may assume that either bk =b, € Bor bk pk(l 1) If bk = uk(l 1) for
some k, then we may assume that by = j1,(1— 1) for all ¢ > k. (Otherwise, the expression
is 0.) We have to distinguish two cases. Firstly, all Ek are in B. Then z, is in E, so
that E O x, € E. Secondly, there is a unique smallest number 1 < k < n, such that
by = pe(1 —1) for all £ > k. Then it is easy to see that

Lr = 7;(‘73,0'2701)(90'3 O & © xm)v ie. §0x, =07 O,

. xirules .
where 01 + 09 + 03 = 7 and z,, € E,,. By Observation % [, we obtain

EOE?Oa, =E@ (6721 - 167) O a,, = €O (721 — 1672) O 1,
= (jor (1) = Jostor (1))E @ 0,

so that also in this case E Oz, € Ez Therefore, £ C E.

1. It remains to show that & ® x, for x, € FE. can be expressed by applying a
suitable collection of operators j;(b) to & and bulldlng linear combinations. But this
follows inductively by the observation that j;(b )(5 O xg) = EOb_s® s for t > s.

2. This assertion follows by applying w to the Markov property of j.

3. Clear. m

8.6 Remark. Considering B as a C*—subalgebra of B(G) for some Hilbert space G and
doing the Stj ealsd%ring construction for £ as described in Example 2_1'6_\7%6_0%’5&111 the
results from av6]. It is quite easy to see that the inner products of elements in E,
(that is for fixed 7) coincide when tensorized with elements in the initial space G, with
the inner products given in FB'h_aQ%] We owe the reader to compute the inner products
of elements in k E. C E and k E, C Efort+# 0. Let x; € E; and y, € F, and assume
without loss of generality that o < 7. We find

€01, E0Y) = (01, EQE T OY) = (1,6 7 Oyy) = (2,67 D y,).

(In the last step we aagcée use of 1z, = z, and 157—0 = ¢%.) This shows in full
correspondence with ad0] that an element in E, has to be lifted to E, by “inserting
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a 1 at time 77, before we can compare it with an element in E,. This lifting is done by
tensorizing &,_,. As this operation is no longer an isometr b IilzPIee Igecond inductive limit
breaks down in the non-conservative case. Cf. also Remark

[nonex 8.7 Example. Now we study in detail the most simple non-trivial example. We start
with the non-conservative CP-semigroup 7;: z — e 'z on C. Here the product system
E. = C consists of one-dimensional Hilbert spaces and the unit consists of the vectors
 =ez€FE,. B

For the unitization we find it more convenient to consider C? rather than C. The
mappings T;: C? — C? are given by T} (%) =0 (&) + (a—0) (eat). The first component
corresponds to the original copy of C, whereas the second component corresponds to
C(1-1).

We continue by writing down E and ET, showing afterwards that these spaces are the
right ones. (To be precise we are dealing rather with their completions. But, by Section

this difference is not too important.) We define the Hilbert C?*-module E and its inner
product by

E=ID*RY)@&CQ and ((f). ()= (%)
The inner product already determines completely the right multiplication by elements of
C? to be the obvious one.
Let us define e, € L*(R™) by setting e-(t) = X[r.o0) (t)e~z. Observe that (e, e;) = e 7.
We define the Hilbert C2-submodule E, of E by E, = L2(0,7) & Ce, & CQ. (Observe
that, indeed, (L2(0,7),e,) = {0}.) We turn E, into a Hilbert C>~C2-module by defining

the left multiplication
o (9 g 0

We define the homomorphism j,: C2 — B4(E ) by, first, projecting down to the submodule
ET, and then, applying the left multiplication of C? on E c E. Clearly, the ]T form a
weak Markov flow of T'.

Let us define the shift 8, on L?(RT) by setting 8,f(t) = f(t — 7), if t > 7, and
8, f(t) = 0, otherwise. (Observe that also here (L?(0,7),8,L*(RT)) = {0}.) One easily
checks that the mappings

(,{)@@) — <ug+e;§ﬂsff> and (;‘)@(g) — (Wﬁa;ﬁ&f) (8.1)[C2fac]

v v v

define isomorphisms E®E, - Eand E,0E, — Eo’+77 respectively. Remarkably enough,
no completion is necessary here.
It remains to show that E (and, similarly, also E ) is generated by f (60) and jT(CQ)

But this is simple, as we have ]0( )5 = Q and ( ))5 = (Xoge) for o< T.

Therefore, we obtain all functions which consist p1ecew1se of arcs of the form e~2. Clearly,
these functions form a dense subspace of L*(R*"). Until now we, tacitly, have assumed to
speak about Hilbert modules. It is, however, clear that the arcwise exponentials form an
algebraically invariant subset.

In this example we see in an extreme case that the product system of a non-conser-
vative CP-semigroup 7" may be blown up considerably, when changing to its unitization
T. Notice that the original one-dimensional product system of T is present in the middle
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0 0 0\ . .. C2fac 0\ |2 9
component (3) ©) (g) = <a05> in the factorization by (8.1). (Recall that (g) H =|B]"e "
depends on 7.) Responsible for the blow up is the part 51 of Et which lies in B. If T" was
already conservative, then this part is 0.

9 A classical process of operators on £

class

Our construction of a weak Markov flow is essentially non-commutative. The reason for
this is that by definition j (1) is a projection (at least in non-trivial examples) which
“levels out” whatever happened before “in the future of 7. As a consequence, j.(b) and
Jo(b) have no chance to commute in general. Indeed, for o < 7 we find

Gr(0)je(D)z @ g O e =E QU7 O(EOE IV, 2 O Lr_g) o, (9.1a)[nct |
whereas
Jo(0)jr(D)x O s O =EOEDO(EODE 7,00 Tr_p) Ty (9.1b)

cl mnc2

Since b and €777 do not commute, unless 7' is the trivial semigroup, Equations (B.Ta,%._fb)
describe different elements of F.

If we res %iggsourselves to the center of B, then the weak Markov flow j can be modified
as shown in [Bha93] to a commutative flow & called the central flow. If the initial algebra B
is commutative to begin with, then the flow k can be interpreted as the classical Markov
proces %ba@éned by the Daniell-Kolmogorov construction. Central flows play a crucial
role in . In this section we recover k as a process of operators on E. This example,
almost a triviality now, illustrates once again the power of the module approach. (The
central flow k appears only in this section and should not be confused with the canonical
mappings k,: E, — F.)

The approach%@oased on the following simple observation, which we already made
use of in Section 8.

9.1 Observation. Let F be a pre-Hilbert B—module and b in the center Cs(B) of B, i.e.
b commutes with all elements of B. Then by setting wyz = 2b (z € E), we define an
element of B*(E).

Now let T be a conservgtsiiye 2‘t;’lasemigroup on B. Let E be the pre-Hilbert B—module
as constructed in Sections A and b.” We define ky(b) = wy, (b € Cp(B)) and k, = ¥, o k.

9.2 Proposition. kg is an isomorphism onto the center of B*(E).

loccoc . .
ProOOF. (Cf. also Lemma [7.5.) Clearly, ko maps into the center. So let ¢ be in the center
of B4(E). Then

(€, c6)b = (€, &) (&, o(b)€) = (€, £)(€, co(b)§) = (€, Jo(b)cg) = b{E, c&)
for all b € B, i.e. (£,c€) € Cp(B). Now let z € E. Then
T = Cw(f?&) = IE<§7C€> = k0(<§765>)xa

ie. c=ko({& c€)) so that ko, indeed, is onto. m

35



9.3 Theorem. The process k = (kT)Te']T is commutative (i.e. [kr(Cg(B)), kr(Cg(B))] =
{0}) and (&, k- (D)E) = (&, 4, (b)§) = T;(b) for all T € T,b € Cg(B). In particular, if
Tr(Cp(B)) C Cp(B), then k is a classical Markov process.

PRrROOF. Clearly, ky(Cp(B)) commutes with k. (Cg(B)) C B*(E). The remaining state-
ments follow by time shift. m

The explicit action of k, is

k. (b)x ®xr = 2b® ;. (9.2)[xcon|

Let us have a closer look at the difference between j and k. Both j,(b) and k,(b) let act
the algebra element b at time 7. This can be seen explicitly by the observation that the
actions of j,(b) and k,(b) restricted to the submodule £ ® FE, coincide. In other words,
both j,(b) and k,(b) can be thought of as the left multiplication of E., first, lifted to
£ ® E, C F and, then, extended to the whole of E. It is this extension which makes
the difference. j.(b) is extended just by 0 to the orthogonal complement of £ ® E; in E.
Correspondingly, j-(1) projects down the future ¢ > 7 to the presence ¢t = 7. Whereas
k. (D) inserts b at time 7 without changing the future part « of x ® x,. Therefore, all k.
are unital homomorphis 8.

A look at Equation r(%TZ)&reminds us of the ampliation id ®l, of the operator of left
multiplication l,: x, — bz, on E, by b to the tensoC o%ogéltcitveE ® E;. We emphasize,
however, that in contrast to a ® id (see Observation &mpping id ®a on a tensor
product of pre-Hilbert modules, in general, only exists 12>fc a s B-B-linear. (This is the
case, for instance, for wy, if b € Cg(B). Cf. also Lemma bﬁThe proble%&f how to find

dilations to unital homomorphisms is also in the background of Section [IT.

10 The C*—case

Until now we considered product systems of pre-Hilbert modules. All definitions were
understood algebraically. This was possible, essentially, because we were able to write
down the mappings 7,, and their adjoints explicitly on the algebraic domain. Unlike
on Hilbert spaces, where existence of adjoints of bounded operators (or, equivalently,
projections onto closed subspaces) is always guaranteed, the approach by Hilbert modules,
forced us to find the adjoint in a different way. Retrospectively, this way turned out to be
more effective. In principle, by Stinespring construction it is also possible to interpret the
whole construction in terms of plre—Hilb%gI:1 Spaces. However, it seems impossible to see
the contents of the crucial Observation b.TB_dTectly. In particular, in the Hilbert space
approach there is no natural way to distinguish the algebra B*(E), where the Fy—dilation
¥ lives, as a subalgebra of B(E © G).

In the following section we are going to consider quantum stochastic calculus. Since
in calculus we are concerned with limits of operators, the spaces on which the operators
act should be complete. Here we need completions for the first time essentially.

Let us repeat the facts which assure that we may complete all pre-Hilbert modules.
Thanks to the fact that we are dealing with CP-semigroups on a C*-algebra B, all pre-
Hilbert B—-B-modules are contractive. We may complete them to Hilbert B—B-modules.
All j;, are representations of B, therefore, they are contractions. Therefore, by Observation
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[bounded . N
2.6, A acts boymdedly on F, i.e. we may complete also 'E. 'Cl“ol‘kll1 rg’c ciorm of ?he pre-
C*—algebra A, is just the operator norm. By Observation b.ZU, the time shift J; is
contractive. In other words, we may complete A to a C*-subalgebra of BY(E). The
Ey—semigroup ¢ extends to B*(E) and leaves invariant A.

Modifiying the ditﬁongtlilgillsmto Hilbert modules in an obvious manner and taking igg

account Proposition [ATTI0, we obtain “completed” versions of the results in Sections & —
7. We collect the most important.

Cxthm [10.1 Theorem. Let T be a conservative CP-semigroup on a unital C*—algebra B.
1. The family E© = (ET)TeT forms a product system of Hilbert modules, i.e. E,®OE, =
1

2. The family £° = (fT)TGT forms a unital generating unit for this product system and
(€7, 067) = T (b).
3. The inductive limit E over E, fulfills EO E. =FE and £®E =E&.

4. By setting ¥, (a) = a®id we define an Eq—semigroup ¥ = (197—)7'6']1' of strict endomor-
phisms of B(E). Setting jo(b) = |£)b(¢] € BYE), we find that ¥ is the mazimal
dilation of T'. In other words, by setting j, = ¥, | B, we find the maximal weak

Markov flow (j, B*(F)) of T.

5. We have ¥; © jo = jyir S0 that ¥ leaves invariant A. In other words, ¥ | As is

the minimal dilation of T and (j, Ax) is the minimal weak Markov flow of T.

10.2 Theorem. Let T be a completely positive, conservative Co—semigroup on B (i.e.
T = R and for each b € B the mapping t — T,(b) is continuous). Then 9 is strictly
continuous (i.e. T +— V. (a)zx is continuous for all a € B*(E) and x € E).

PROOF. First, observe that the mapping s : z +— x ® £" is a contraction £/ — E. The
family = © €7 depends continuously on 7. (Oalt}‘}gr(siense subset E this follows from the
fact that the correlation kernel T in Section E %epends jointly continuously on all time
arguments. By contractivity of s” this extends to the whole of E.) Now we easily see that
for each a € B4(E) and for each z € E

ar — VU (a)r =ar —ar © & +axr ©& — V. (a)r = (ax) — (ax) © & + I, (a)(x © & — x)
— (id—&7)(ax) + 9 (a)(&] — id)(x)

is small for 7 sufficiently small. Replacing a by ¥;(a) we obtain continuity at all times

t. m

10.3 Remark. Since ¥, o jo(1) = j;(1) is an increasing family of projections, 9 is in
general not a Cy—semigroup.

[Belrem[10.4 Remark. Of course, s’ is not an element of B"(E), therefore, certainly neither
adjointable, nor isomet?%ig%:rsﬂer%sn T is trivial). In particular, passing to the Stinespring

construction (Example 2.16), s- will never be implemented by an operator in B(H). It
follows that th J'Iggor better, the images of j, in B(H)) do not form a stationary process
in the sense of [Bel85]. In the Hilbert space picture obtained by Stinespring construction,

in general, there is no time shift like s’, acting directly on the Hilbert space.
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11 The time ordered Fock module and dilations on

the full Fock module

In this section we discuss to some extent, in how far it is possible to find unital dilations
to Ey—semigroups, in the sense_that the homomorphisms j; are unital. This problem has
been settled completely in [Sau86]. The solution does, however, not preserve continuity
properties. Most r 0%1}‘5]@7, the problem of dilation to a strongly continuous Ey—semigroup
has been solved in?@m in the case, when 7" has a bounded generator, with the help of a
quantum S%SCQ@SUC calculus. This calculus is constructed on a symmetric F l%r%gdule as
defined in _9§£ and generalizes the calculus on the symmetric Fock space%gz{] in the
notations of | 'PWQQ] The goal of this section is to construct explicitly the product system
1f{e79“9 ur construction makes use of the calculus on the full Fock module developed in
%E 99 Thi? ucgslc% !us is a direct generalization of the calculus on the full Fock space
developed in
Throughout this section we speak of product systems of Hilbert modules as explained
in Section T0. Tensor products and direct sums are assumed to be completed in the norm
topology. T' is a conservative CP-semigroup on B with a bounded generator.

Let H be a Hilbert space. The best-known example of a product systems of Hilbert
spaces is the family I'® = (FT)TGR+ of symmetric Fock spaces I'; = T'(L*([0, 7], H)). Of
course, the vacuum vectors €2, € I', form a unital unit for this product system, and
I' = T'(L*(R", H)) may be thought of as the inductive limit of T, provided by the unit

T/ reRt"

Notice that, following our approach and contrary to the usual conventions, in the
factorization I' = I' ® I'; we have to write the future on the left. Since this order is forced
by the module approach, it seems appropiate to rethink the usual conventions. Thanks to
the particularly simple C—C—module structure of Hilbert spaces we have two additional
properties. Firstly, unlike on E, on I' we also have a left action of the C*—algebra C which
is faithful and unital. Secondly, in a tensor product of such C-C—modules the order of
the factors may be exchanged. Hencforth, in this particularly simple case it is possible to
extend an operator a on I'; to I' ® ', via ampliation id ®a. Whereas our extension j.(z)
of the left multipliction by an algebra element z € C corresponds to |Q2)(Q ® zid. Of
course, this dilation of the conservative CP-semigroup 7;: z +— z is not minimal, because
out of €2, the j; cannot create more than C().

It is well-known that the symmetric Fock space I' may be identified with a subspace
of the full Fock space F(L?(RT, H)), the time ordered Fock space F°(L*(R*, H)). The
n—particle sector of FO(L?(R™, H)) consists of those functions F': (RT)" — H®" g\é}ﬁhce% are
0, unless the argument (t,,...,%;) is ord? eggéilecreasingly. See, for instance, [[Sc or
a proof based on exponential vectors, or [Bha98b| for a proof based on number vectors.
We will see that also the time orde %(gglgock modules until time T form a product system.
Unlike the symmetric Fock module [Ske98] whose construction is base#%)E the requirement
that the one-particle sector is a centered Hilbert module (see Section I3}, the time ordered
Fock module may be constructed for modules of functions with values in an arbitrary two-
sided Hilbert module as one-particle sector.

Pim97,Spe98
11.1 Definition leQ%, Spe98]. Let B be a unital C*—algebra and let F' be a Hilbert
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B-B-module. The full Fock module is defined as F(F) = @ F°". By the vacuum & we

n€eNyp
mean the element 1 € B = F®0°,

For x € F', we define the creator (*(x) and the annihilator {(x) in B*(F(F')), by setting

C(2)e, ®...00=202,0...01 *(x)b = xb
Uz)r, ©...0%; = (T,2,)Tp1 O ...0 1 l(x)b=0.

im97
11.2 Remark. Clearly, £*(z) and ¢(x) are a pair of adjoint operators. Pimsner HEPEW]
shows that, like the Cuntz algebras, the C*—algebra generated by all £*(z) is cum grano
salis determined by the relations ¢(x)¢*(y) = (x,y) where the algebra element acts on
F(F) via left multiplication.

Let I be a measurable subset of RT (or any other polish measure space). By L*(I, F)
(or L?) we mean the completion of th the exterior tensor product L*(I) ® F with inner
product (f @ z,9 ® y) = (x,y fI g(t)dt and the obvious module operations. We
think of elements of L*(I, F) as functlons on I with values in F. Of course, L*(I, F')®"
L2(I", FO"). We use the notations Lf, ) = L*([s,t),F) (0 < s <t < o00), LY = L,
Li = Lf ) and L? = Lf, . Furthermore, we set F; = F(L*(I, F)) and use the same
notations as for L?. F and JF|; are isomorphic by the time shift s;: ¥ — J}; in an obvious
way.

The family (fﬂ]) ser+ does not form a product system. We have, however, factoriza-
tions like & = J, © (5 S) L ©) 3") Deﬁning the time shift endomorphism §; on
B (F(L*(R, F))) by setting 8;(a ) = s;as; " @ id in the above identification, it is not

difficult to check that the family & = (St) rer+ forms an Eo—semigroup.

11.3 Definition. Let A, € L?((RT)") (n € N) denote the indicator function of the
(unbounded) n-simplex {(t,,...,t1) € (RT)": ¢, > ... > t;} and set Ag = 1. Letting
act A, as a multiplication operator on (L?)®" (I C R"), we define a projection.

The time ordered Fock module ¥ C ¥ is defined, by setting F° = ( @ A,)F. We use

neNy
similar notations as for F7.

[tofm[11.4 Theorem. The family (F°)© = (’J"?])teR+ of time ordered Fock modules forms a

product system of Hilbert modules. The family £© = (&)te]R+ with & = & forms a unital
unit for this product system. The inductive limit for this unit is F°. In particular, we have
F =30 3"?], and the associated Ey—semigroup is just 8 | B(F°). Moreover, 8§ | B*(F°)
1s a dilation of the trivial CP-semigroup on B.

PROOF. Once established the first assertion, the remaining ones are obvious. So let us

show that the 3'"% form a product system.

First, observe that the time shift s; sends 3"2] onto 3'"0t "
onto F° commutes with all s;. Let f be an element of the m—particle sector of 3’2] and let g
be an element of the n—particle sector of 3'"?] Let us define the function [f©g] € (L?)®(m+m)

by setting

. In particular, the projection

[f ®g]<8m7 . .,Sl,tn, cee atl) = (Stf)(sma . 'asl) ®g<tm s atl)' (111)
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By the first observation s;f is an element of (L%, .)®". However, we may identify

[t,t+s5]
(L7 119)®™ as a subspace of (L7, j)®™. In this identification s,f is a function which
vanishes, unless s; > ¢. Therefore, the function [f ® g] is in F? .y so that f©g— [f©g]
extends to a two-sided isometric mapping USE :Sg:;f ©) ??] — 30 L+ It is clear that the uy

fulfill the associativity condition of Definition t remains to show that ug, is surjective.

(L§+t])@" is spanned by functions of the form f = X[, t,%n © ... © X[s1,t,)%1- Since
we are interested in A,(L?)®" only, and since A, is continuous, (splitting an interval
into two, if necessary) we may restrict to the case where for each i = 1,...,n — 1 either

Siy1 > ti or s;11 = S;,tiv1 = t;. Furthermore, (by the same argument) we may assume,
that s; > t, or that there exists m (1 < m < n) such that ¢,, < t¢ and s,,41 > t, or
that ¢, < ¢. In the first case we have f € JFp ;44 so that A, f = [s;'ALf © €] is in the
range of ug. Similarly, in the third case f € Fy so that A, f = [£ © A, f] is in the range
of ug. In the second case we set go = X[s,ta]Tn © -+ © Xismsr tmsr]Tmt1 € F+s and
91 = Xismtm]Tm © - O X[s1,61)71 € Fyy. Again, we see that A, f = (8, ' Ap_mg2 © Apgi] is
in the range of uy. m

Let T' = (Tt) e+ D€ OIS vative CP-semigroup on B with bounded generator

L: B — B. We know from that (if necessary, after passing to the CP-semigroup
T** on the bidual B**) the generator has the form L£(b) = £°(b) — w + 1[h, b]
where £ is a completely positive mapping (usually, neither unital nor contractive) and h
being a self-adjoint element of B. Doing the GNS-construction for £°, we find a Hilbert
module F and an element ¢ € F' such that £(p) = (¢, bC) — HeHES 4 i[p p).

We summarize the necessary results from [Ske99]. Denoting df; (¢) = ¢*(X[t,t+ayC), the
quantum stochastic differential equation

duy = u {dl;(Q) — db(Q) + (ih = 5(¢.Q)) dt},  wog=1 (11.2) gl

has a unique unitary solution in the continuous B*(F)-valued functions on R*. This
solution is adapted in the sense that for each ¢t € RT there is a (unique) operator u! €
B(Fy) such that u; = uf ©id in the identification I = Fy © (¢ ® LF0F) and u; is a

left cocycle with respect to the time shift, i.e. w4 s = 1;:8;(us). Consequently, 9= (1/9\1&)%%r
with Uy(a) = w8y(a)u; is an Ey-semigroup on B(F). Moreover, ¥ is a dilation of T in the
sense that (&, 9,(b)¢) = T;(b) for all b € B, where we identify B (faithfully) as a subalgebra
of B*(F) by left multiplication on F.

11.5 Lemma. We have uf¢ € 9?] for allt € RT.

PRrROOF. By adaptedness we have ujw‘; g Fy- So let us show that it is time ordered. First,
notice that u; fulfills the adjoint of (I1.2), i.e.

du; = {dt,(¢) — dt;(¢) — (th + 3(¢, Q) dt }ug uf = 1.

Recall that the solution of this differential equation is given by u* = lim (u,)* where
n—oo

the processes (u,,)* are constructed inductively by setting (ug); = 1 and (up41); = 1+

fg {de,(¢) — de(¢) — (ih + 3(¢.¢)) dt}(u Jidgi€ No), and the integral is approximated
%EeQB :

in norm by Riemann-Stieltjes sums; see Clearly, (uo);é = & € F°. Now let us
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assume that (u,);¢ € . Then (zh + (¢, ) (un);&dt € F°, d(C) (uy);€ =0 € F°, and
dli(€) (un)ré € F° As (upy1)i€ is approx1mated by sums over such elements, we find
(un+l):£ € 9?? u

11.6 Theorem. The u;é form a unital unit for F9 -
(vt)teRJr of mappings vy = |u;&)(&| forms an adapted right cocycle with respect to 8§ |
BUTFY) which takes values in the partial isometries. In other words, the CP-semigroup T
15 cocycle subconjugate to the trivial semigroup on B. Moreover, the tensor product system
of T is isomorphic to the subsystem offf'"?] which is generated by the unit u;§.

Consequently, the family v =

PRrROOF. By Section 7t is sufficient only to show the first assertion. We find
uz O up = 8y (uy)ufé = U:+t£~ [

iSk0Qp1l
11.7 Remark. The form of the unit u;£ can be given explicitly; see ll}SU(; .

12 The von Neumann case

This section is the analogue of Section % for a normal C —Senil igroup 1" on a von Neumann
algebra B acting on a Hilbert space GG. By Proposition e strong co etlons &, of
the GNS- modules St are von Neumann B-B-modules. By Corollary %:gfa_?orthe tensor
products 8 *®° &, are von Neumann B-B-modules. By Proposition e inductive
limits B, C B(G, H,) with H, = E; ® G are von Neumann B-B-modules.

Of course, the inductive limit E° C B(G, H) with H = F ® G is a von Neumann
—Juodule. Therefore, the algebra B“ E") is a von Neumann subalgebra of B(H); see
%Eeﬁ‘ y Corollary b_G_E"S ®* B, is a von Neumann B%(E")-B-module. In other
words, the mapping v, pflbg O id is a normal endomorphism of B“(ES). This answers
the question raised in P'Blﬁg%], whether the eg—semigroup v [ A, consists of normal
mappings, in the affirmative sense.

C*xthm
After these preparations, it is clear that Theorem [T0.T remains true, replacing C*—al-

gebras by von Neumann algebras, Hilbert modules by von Neumann modules, and adding
the word “normal” t 2 gtr}%smappings between von Neumann algebras. We also find the
analogue of Theorem

[scont[12.1 Theorem. Let T = (E)teR+ be a weakly continuous normal CP-semigroup on a
von Neumann algebra B on a Hilbert space G. Then 19 is a *—strongly continuous normal
Ey-semigroup (i.e. V.(a)x ® g is continuous for all a € B*(E"), x € E°, and g € G).

t
Proor. Very much like the proof of Theroem t 0111.12;5 but starting from the observation
that the family 2 ® £ ® g of vectors in H = E° ® G depends continuously on 7. m

13 Centered modules: The case B = B(G)

Ske98
13.1 Definition [Ske98]. A pre-Hilbert (Hilbert, von Neumann) B-B-module F is
called a centered pre-Hilbert (Hilbert, von Neumann) B-module, if it is generated by its

los]
~
()

)
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center Cz(E) = {z € E: zb = bx (b € B)} as a pre-Hilbert (Hilbert, von Neumann)
B-module.

13.2 Remark. The requirement that a pre-Hilbert module is Etérclgered is, in general, a
rather serious restriction. Nevertheless, we will see in Theorem [I3.1T1 that von Neumann
B(G)-B(G)-modules are centered, automatically. Since the best understood examples
are normal CP-semigroups and normal Ey—semigroups on B( %){’d Pehe is 4 Vast‘ area for

prod
applications of centere Eﬂgglules As examples, in Corollaries | 3.10, ‘L?E é4 and [T3.15 we
recover some results of [Bha98a| as consequences of Theorems Sand .

[centex [13.3 Example. Let § be a pre-Hilbert space. Then B® ) is a pre-Hilbert B-B-module
with inner product (b ® h,b' ® h') = b*b'(h,h’') and the obvious B-B-module structure.
Moreover, B® $) is generated by its subset 1 ® $ which, clearly, is contained in the center.

Assume that B is a pre-C*—algebra of operators acting non-degenerately on a pre-

lilbert space . Then (B®$)) ©G = G®$) so that by Stinespring construction (Example
b_fﬁ)_l%_@@% may be considered as a subset of B*(G,G ® ) viab® h: g — bg ® h. In
particular, the elements 1 ® h € 1 ® $) are identified with mappings g — g ® h.

If G is a Hilbert space and B = B( )Gt n the strong closure of B(G)®$ in B(G,G®9H)
is all of B(G,G®9) (cf. Proposition el S\u In particular, B(G,G®$) is a centered
von Neumann B(G)-module (cf. Proposmon low) It is easy to see that the center
coincides with 1 ® $.

13.4 Remark. We mention that in the preceding example we changed the orde géfgtgh%kew 9
factors in the tensor products B& $H and G® $H corﬁgalljggl with the conventions in ;‘312698,

Ske97]. We did this in order to avoid in Corollary anti-product systems.
[ipcent [13.5 Proposition. In a pre-Hilbert B-B-module E we have (Cp(E), Cs(E)) C Cp(B).
PROOF. Direct verification. m
13.6 Corollary. Let E and F' be centered pre-Hilbert B—modules. Then the mapping
rOyr—yox, (reCg(F),yecCs(F))
extends to a (unique) two-sided unitary E® F — F ® E.

13.7 Remark. If F is centered, then Corollary ﬁ%% allows for a symmetrization on E®".
That is the basis f kg]gg construction of the symmetric Fock module over a centered one-
particle sector; see [Ske98|. One can show that, like for Hilbert spaces, also the symmetric
Fock module is isomorphic to the time ordered Fock module. For non-centered one-particle
sectors, the symmetric Fock module cannot be constructed without additional effort. This
suggests that the time ordered Fock module is a proper generalization of the symmetric
Fock space.

Ske97p2
13.8 Proposition SEeﬁ?]. A centered von Neumann module is a two-sided von Neu-
mann module (i.e. the algebra is represented normally by multiplication from the left).

13.9 Proposition. Let E be a von Neumann B(G)-module. Then E = B(G, H) (where
H=FEG®G). Moreover, p: B*(E) — B(H) is a normal isomorphism.
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PROOF. By definition p is noynal, And it is casy to see that B*(B(G, H)) is isomorphic
to B(H); see the appendix in [Ske98]. So let us show that £ = B(G, H).

B(G, H) is generated by rank-one operators as a von Neumann module. Since B(G)
contains all rank-one operators and elements of the form x ® g form a total subset of H =
E © G, we can approximate (even in norm) arbitrary rank-one operators in B(G, H). m

[BHAi1[13.10 Corollary. The mazimal Ey—dilation ¥ of a normal conservativ G Besemigroup
on B(G) is isomorphic to a normal Ey—dilation on B(H) in the sense of [[Bha98a).

Now we are going to show that any von Neumann B(G)-B(G)-module E (= B(G, H)
by Proposition %s centered. As F is a von Neumann B(G)-B(G)-module, we have
a normal (unital) representation p of B(G) on H such that the left multiplication is
bx = p(b)x. In the language of Arveson the center is the space of intertwiners between
the representations id on G and p on H (i.e. mappings x: G — H such that zb = p(b)z
for all b € B(G)). By Proposition h’%f?t‘he inner product of elements in the center takes
values in the center of %V_S%n the case B = B(G) the center of B is trivial so that,
as observed by Arveson [Arv89], there is a C-valued scalar product (e, e). on Cgc)(E)
fulfilling (z,y) = (z,y).1. Obviously, Cz)(£) with this scalar product is a Hilbert space,
which we denote by $.

[BGcen [13.11 Theorem. Let E be a von Neumann B(G)-B(G)-module. Then E is isomorphic
to B(G,G®$9) as von Neumann B(G)-B(G)-module. In particular, E is a centered von
Neumann B(G)-module.

PROOF. The representation p of B(G) on H is normal. Therefore, there exists a Hilbert
space $) such that p is B 't%ily equivalent to the representation id ®1 on G ® $. Mak-
ing use of Proposition T3.9 and identifying G ® $ with H we find £ = B(G,G ® 9).
By a straightforward generalization of Proposition %%y homomorphism between von
Neumann modules is strongly continuous so that icﬁcegllltggxing B(G,H) and B(G,G ® 9),
indeed, respects the strong topology. By Example 13. e center of F/is 1 ® $ so that
9, indeed, is the Hilbert space obtained from the center. m

Henceforth, we will speak of centered von Neumann B(G)-modules and von Neumann
B(G)—B(G)-modules interchangeably.

[centiso[13.12 Proposition. Let E; = B(G,G ® ;) and Ey = B(G,G ® $H2) be two arbitrary
centered von Neumann B(G)-modules. Then (identifying $; with 1 ® ;) a — a | $H;
establishes a canonical isomorphism from the B(G)-B(G)-linear mappings in B*(Ey, Es)
to B($H1,92). In particular, a B(G)-B(G)-linear mapping £y — E5 is a unitary, an
isometry, a projection (for $ = $s2), etc., if and only if the corresponding mapping in

B($H1,92) is.

PrOOF. This follows from the fact that bilinear mappings respect the center (i.e. the
range of a [ $; is, indeed, contained in $2). =

13.13 Proposition. Let B(G,H) be an arbitrary von Neumann B(G)-module and let
B(G,G ® 9) be an arbitrary centered von Neumann B(G)-module. Then

B(G,H) & B(G,G & ) = B(G, H )
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viax @y +— (r®id)oy.
Let B(G,G ® 91) and B(G,G ® H2) be two arbitrary centered von Neumann B(G)-
modules. Then the isomorphism

B(G,G@9H1) O B(G,G R H)=B(G,G2H @ H)

18 two-sided. In particular, the restriction of this isomorphism to the centers is the tensor
product of Hilbert spaces.

PROOF. Simple verification. m

13.14 Corollary. Let E® be a product system of centered von Neumann B(G)-modules.
Denote by 9, the center of E.. Then H® = (S’JT)TeT 15 a product systems of Hilbert spaces.

Moreover, two product systems E© and E'® of centered von Neumann B(G)-modules
are isomorphic, if and only if the corresponding product systems H% and $'® of Hilbert
spaces are isom Créglczg'cs,o where the isomorphisms E. — E. and $, — $. are identified
via Proposition [13.

indHsprod [13.15 Corollary. Let £© be a unital unit for E® and denote by E the inductive limit
associated with this unit. Let H = E ® G. Then HR® 9, = H.

PROOF. We have F ©° E, = E,hence, HR9H, =FOE, 0G=EO0G=H. n

If E9ist e praduct system of a normal Ey-semigroup ¢ on B(G), then H® as given
in Corollary [I3.14 is the associated Arveson product system of Hilbert spaces. More
precisely, if G is infinite-dimensional and separable, and if ¥ is strongly continuous and
indexed by R*, then the associated Arveson system is

{(T, a) € (0,00) x B(G): a € CB(G)(ET)}

as & toplogical subspace of (0, 00) x B(G); see n;%g 9]. Recall from the proof of Theorem
mat all E; can be identified with B(G). Henceforth, Cg)(E;) can, indeeed, be
considered as a subset of B(G). Clearly, if G is separable and G = G ® $,, then also 9,
must be separable. Consequently, as operator norm and Hilbert space norm on C'z(g)(£-)
coincide, ATVGSOI%;SC (Product system is isomorphic to (0,00) x G as a topological space.
In Theorem [7.8 we have classified conservative CP-semig yps up to cocycle conju-
gacy or, what is the same, by product systems. In Theorem 7.9 we have shown that in
El%erggse of Ey—semigroups the cocyle providing the equivalence is unitary. In Corollary
HB.RM_we have seen that in the case of CP-semigroups on B(G) classification by product
systems of Hilbert modules is the same as classification by product systems of Hilbert
spaces. Altogether, we have shown that normal Fy—semigroups on B(G) are classified
by product syste 1S 8%f Hilbert spaces up to unitary cocycle conjugacy. This generalizes
Arveson’s result [ATv89] to the case where G is not necessarily separable and where ¢ is
not necessarily strongly continuous.
rv.JrC)et us repeat, however, that we do not have a one-to-one correspondence as in
}'hI'_VQO}. Besides the question in how far this result depends on the assumption that o
is strongly continuous, droping the separibilty condition on G has changed the situation
completely. Assuming G infinite-dimensional and separable means that there is essentially
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one C*—algebra B((G) under consideration. Allowing arbitrary dimension for G raises the
question, whether each product system of Hilbert spaces arises from an Fy—semigroup,
once for each dimension. We remarked already that in the case of G = C the answer is
negative, and it is very well possible that the answer generally depends on the dimension
of G.

14 Domination and cocycles

Let T: A — B be a (bounded) completely positive mapping with GNS-construction
(E,€). Let w be an operator in A’, the relative commutant of (the image of) A in B*(E),
with 0 < w < 1. Then S(a) = (§,wa) = (VwE, ay/wE) defines a (bounded) completely
positive mapping. Moreover, S is dominated by T, i.e. also T'— S is completely positive.
Clearly, domination defines a partial order on the set of (bounded) completely positive
mappings A — B. The mapping O: w +— S is one-to-one (as Sy, = Sy, implies 0 =
b* (&, (w1 —wq)a*d' &)V = (akb, (w; —wsq)a’&V') for all a,a’ € A and b, b € B) and, obviously,
order preserving. 169

In the case when B = B(G), Arveson [Arv69] has shown, based on the usual Stinespring
construction, that O, actually, is surjective, hence, an order isomorphism. Paschke has
generalized this to arbitrary von Neumann algebras B C B(G). The proof of the following
(slightly weaker) lemma shows that we need self-duality. Therefore, it is not clear, whether
the result can be generalized to arbitrary C*—algebras.

Pas73
14.1 Lemma [Pas73]. Let A be a C*—algebra, let B be a von Neumann algebra on
a Hilbert space G, and let T > S be a completely positive mapping A — B. Let (E,£)

denote the GNS-construction for T. Then there exists an operator in w € A" C B“(Es)
such that S(a) = (£, waf).

PROOF. Let (F,() denote the GNS-construction for S. As T — S is completely posi-
tive, the mapping v: f extends to an A- B hnear contraction ¥ — F and further
(similar to Proposition o a contraction E. — F . By Remark b’Q v has an ad-
joint v* € BG(FS,ES). Since adjoints of bilinear mappings and compositions among
them are bilinear, again, it follows that w = v*v commutes with all a € A. Of course,

(€, wag) = (& vrvag) = (¢, a() = S(a). =

Of course, we can equip also the set of CP-semigroups on a unital gzgglgebra B with
a partial order, by saying that 7" > S, if T, > S; for all t € T. In }%9983} the order
structure of the set of normal strongly continuous CP-semigroups on B(G) which are
dominated by a fixed normal Eosemigrouljmgg%igh T = R") is studied. In the remainder
of this section we generalize the results in ‘BTE&Sa] to arbitrary von Neumann algebras
B C B(G), to normal CP-semigroups (not necessarily strongly continuous) dominated by
a fixed conservative normal CP-semigroup, and arbitrary T.

To begin with, let 7" be an arbitrary normal CP-semigroup on a von Neumann algebra
B C B(G) and let S be a normal CP-semigroup dominated by 7. Denote by &;, &, -
and F,, F, F. (t,7 € T,t € J,) the strong closures of the modules related to the first
inductive hrmt in Section h_for the CP-semigr ups T and S, respectively. (F; should not
be confused with the Fock modules in Section [TT.] Denote by (; € F;, ( € F, (" € F;, the
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anlogues for S of the elements &, &, £ for T. Denote by BL, il and 2,47 the embeddings
related to the constructions for T and for S, respectively.

For each t € T denote by v, € B*(E éfj's'i)elirzlhe B-B-linear contraction extending & — (;
as constructed in the proof of Lemma %L._I._F‘or t € J, define the B-B-linear contraction

Vi = Vg, ©...0 Uy, € ’Ba(&, :}'t)
Obviously,

00 © v = Vo (14.1)[vEemsor

for s € J, and t € J,. Moreover, v3L = v, for all 5 < te J,. Applying i¢ to both sides,
we find 7 v 3L :smisl{%' Therefore, by Proposition é\_“.—‘;(égctended to strong completions
via Proposition bf%,_for each 7 € T there exists a uvic(éggolé’—lg—hnear contraction v” €
B*(E:, Fr) fulfilling vTil = ifv for all t € L. By (ﬁﬂ._l'ﬁve find v7 ® v™ = 077, By
Remark b’.2 these operators have adjoints. By B-B-linearity one easily checks that also
the adjoint equation (v7)* ® (v7)* = (v777)* is valid. Therefore, by setting w™ = (v7)*v"
(1 € T), we define B-B-linear positive contraction on E,. This family of contractions

fulfills
w’ O w” =w't. (14.2)

[wcor]14.2 Corollary. Also the family (var)__. fulfills ((43): The family €5 = (¢3). . with
EL = Vw™E is a unit for the product system E®. Moreover, the CP-semigroup (€5, &%)
associated with £ is S.

In the sequel, we assume that T is conservative. (Of course, S is not conservative,
unless S =T %n:lfhen we may construct the strong closure F of the second inductive limit
from Section 117_ 1d a normal Ey-semigroup ¢ on B*(E).

By Lemma %e family o = (t‘oT)TET of operators v, = ideOw™ € BYFE) =
BY(E ©° E;) is a positive contractive local cocycle with respect to ¥.

On the set of positive local cocycles we define a partial order by saying v > v, if
.. > v, pointwise.

[CPdoco[14.3 Theorem. Let T' be a conservative normal CP-semigroup on a von Neumann al-
gebra B and let ¥ be the maximal dilation of T. Then the mapping vo — S defined, by

setting
St = <\/E£7 .\/“Tt£> (: <€7 .mt€>)7

establishes an order isomorphism from the partially ordered set of positive contractive local
cocycles vo with respect to 19 to the partially ordered set of all normal CP-semigroups S
dominated by T

Proor. Of course, the mapping tv — S maps into the normal CP- emjigroups dominated
by 7', and we have just shown that it is surjective. By Lemmafecizio.cl the restriction of
w” to BB = i(T)(BﬁrEF)O ds determined uniquely by S;. By (ETZ’)_this determines w”
completely. By Lemma I7. e correspondence w” and v, is one-to-one. Therefore, the
mapping is also injective.

Certainly, the mapping respects the order, i.e. v > ' = S > §’. Conversely, if
S > S, then (cf. the discussion before Corollary Hﬁ%} there exists a family u” € B*(F;, F.)
of B-B-linear contractions such that '™ = (v'7)*"" = (v7)*(u")*u"v" < (v7)*07 = w’.
This implies to’ < tv. m
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14.4 Remark. Notice that also the embedding of w™ via W% = (|€){¢]) ® w™ defines a
cocycle. This cocycle is positive and adapted. Therefore, S is cocycle subconjugate to T
Here we have, f&lgsgst, that mw? is in the relative commutant of j.(B), so that t® is local
in the sense of [BhaJ8a]. Also in this sense we have a one-to-one correspondence.

Appendix

A Inductive limits

inductive

|i1]A.1 Definition. Let L be a partially ordered set which is directed increasingly. An
inductive system over L is a family (Et) .o, Of vector spaces E; with a family (ﬁts) s, Of
linear mappings f;s: Es — FE; fulfilling a

ﬁtrﬁrs = ﬁts

€L

for all t > r > s and By = idp,.
The inductive limit E = lir? ]iLnd E; of the family (E’t) is defined as £ = E® /N, where
€

E® = @ E; and N denotes the subspace of E® consisting of all those x = (xt) for which
tel
there exists s € L (with s > ¢ for all ¢ with x; # 0) such that > Bgx; = 0 € E,. (Clearly,
tel
if s fulfills this condition, then so does each s’ > s.)

[canon]A.2 Proposition. The family (it)teL of canonical mappings iy: By — E fulfills 10,5 = i
for allt > s. Clearly, E = | i E;.

tel

PROOF. Let us identify x; € E; with its image in £ under the canonical embedding. We
have to check, whether B;,xs — x, € N(C E?) for all 2, € E,. But this is clear, because

Btt(ﬁtsa:s) - ﬁts(xs) = 0. |

A.3 Proposition. Let F' be another vector space and suppose f: E — F is a linear
mapping. Then the familiy ( ft) w1, Of linear mappings, defined by setting

fe= T, (A.1) fdef ]

fulfills
[itBes = fs forall t>s. (A.2) famcond |
£ d
Conversely, if (ft)te]L 18 a family of linear mappings ftfdl;j — F fulfilling ( W ?n en
there exists a unique linear mapping f: E — F fulfilling (A-T).

Proor. Of course, f = 0, if and only if f; = 0 for all t € IL, because E is spanned by all
14 F;. In other words, the correspondence is one-to-one. canon
Consider a linear mapping f: EF — F' and set f; = fi;. Then by Proposition [A.2 we
have ftﬂts - fitﬁts - fls - fs-
For tgte > converse direction let ( ft) be a family of linear mappings f;: F; — F which

satisfies . Define f® =@ f;: E¥ — F and let x = (%) € N so that for some s € L
tel
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we have ) Bgxy = 0. Then f(x) = >, o1 fiwe = D icp fsBae = fs D ier Batre = 0, s0
tell fde
that f% defines a mapping f on the quotient E fulfilling (A°T). m

A.4 Remark. The induct'lygililggit E together with the family (zt) is determined by the
second part of Proposition [A-3up to vector space isomorphism. This is refered to as the
universal property of E.

If the vector spaces E; carry additional structures, and if the mediating mappings (s
respect these structures, then simple applications of the universal property show that,
usually, also the inductive limit carries the same structures.

A.5 Example. If all E; are right (left) modules and all ;5 are right (left) module homo-
morphisms, then £ inherits a right (left) module structure in such a way that all i; also
become right (left) module homomorphisms. A similar statement is true for two-sided
modules.

Moreover, if F' is another module (right, left, or two-sided) Parllndm( &‘t) is a family of
homomorphisms of modules (right, left, or two-sided) fulfilling d?CZg),_t'hen also f is ho-

momorphism.

Sometimes it is necessary to work slightly more in order to see that F carries the same
structure. Denote by 7: £ — E the canonical mapping.

A.6 Proposition. Let all E; be pre-Hilbert modules and let all B;s be isometries. Then

(z,2') = Z<ﬁst$t, Bser ) (A.3)

£,

(x =i((xy)), ' = i((z})) € E, and s such that x; = x; = 0 whenever t > s) defines an
iner product on E. Obviously, also the i; are isometries.

Moreover, if (ft)teL with fiBs = fs (t > s) is a family of isometries from E; into a
pre-Hilbert module F', then so is f.

PrOOF. We have to show that (&93) does not depend on the choice of s. So let s; and
so be different possible choices. Then choose s such that s > s; and s > sy and apply
the isometries (g, and (s, to the elements of E;, and Ej,, respectively, which appear in
(AZ3).

Since any element of F may be written in t e form i;x; for suitable t € L and z; € Ej,
we see that that the inner product defined by (A3) is, indeed, strictly positive.

The remaining statements are obvious. m

A.7 Remark. Of course, the inductive limit over two-sided pre-Hilbert modules F; with
two-sided [, is also a two-sided pre-Hilbert module and the canonical mappings 4; respect
left multiplication.

[nonirem|A.8 Remark. If the mappings 3, are non-isometric, then Equation (%3) does not make
sense. However, if IL is a lattice, then we may define an inner product of two elements

irxy and iyl by (Bsixt, BseT)) SR is the unique maximum of ¢ and ¢. This idea is
the basis for the constructio 0 [Bha | where also non-conservative CP-semigroups are
considered. Cf. also Remark 86
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Sometimes, however, in topological contexts it will be necessary to enlarge the alge-
braic inductive limit in order to preserve the structure. For instance, the inductive limit
of Hilbert godules will only be rarely complete. In this case, we refer to the limit in
Definition b\‘.l as the algebraic inductive limit.

A.9 Definition. By the inductive limit of an inductive system of Hilbert modules we
understand the norm completion of the algebraic inductive limit.

By the inductive limit of an inductive system of von Neumann mocﬁ%ﬁlﬁs we understand
the strong completion of the algebraic inductive limit; see Appendix IC.

topindlim|A.10 Proposition. 1. Let A be a pre-C*—algebra and let B be a unital C*—algebra.
Then the inductive limit of contractive Hilbert A-B-modules is a contractive Hilbert
A-B-module.
2. Let A be a von Neumann algebra and let B be a von Neumann algebra acting
on a Hilbert space G. Then the inductive limit of von Neumann A-B-modules is a von
Neumann A-B-module.

PROOF. Any element in the algebraic inductive limit may be written as i,x; for suitable

t € L and t; € E;. Therefore, the action of a € A is bounded by ||a|| on a dense subset

of the inductive limit of Hilbert modules. Moreover, if all E; are von Neuma n modules,
. . . . v

then the functionals (i;z; ® g, ®ix; @ g) on A all are normal. (Cf. Appendlxnb% n

B Conditional expectations generated by projections
and essential ideals

[essnorm[B.1 Lemma. Let A be a C*~algebra with a unital C*—subalgebra B, for which ¢: a —

1galg defines a conditional expectation. Denote by I the closed ideal in A generated by
15.

If I is an essential ideal, then the algebra A acts faithfully on the GNS-Hilbert module
E for the conditional expectation ¢. In particular, ||a|| = ||a|| 5 for all a € A, where ||o|
denotes the operator norm in B*(E).

PROOF. One easily, checks that the GNS-Hilbert module is precisely E = Al and that
the cyclic vector is & = 1. We are done, if show that A acts faithfully on E, because
faithful homomorphisms from one C*-algebra into another are isometric, automatically.
So let a be a non-zero element in A. We know that there exists an element i € I, such
that ai # 0. Since I = span.AlgA, we may find (by polarization, if necessary) a’ € A,
such that aa’lga’™ # 0. Therefore, aa’lg # 0, where a’15 is an element of . m

wltiplier [B.2 Observation. The preceding proof also shows that we may identify I with the
compact operators K(E) on E.

[counter [B.3 Example. We show that an algebraic version of ‘essential’ is not sufficient. Consider
the x—algebra P = C(x) of polynomials in one self-adjoint indeterminate. By p — p(z) we
define a homomorphism from P into the C*—algebra of continuous functions on the subset
[0,1] U {2} of R. Denote by A the image of P under this homomorphism. Furthermore,
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choose the ideal I in A consisting of all functions which vanish at 2. Clearly, I is essential
in A. But, the completion of A contains just all continuous functions. These are no longer
separated by I.

C Von Neumann modules

vNm

In this appendix we recall the definition of von Neumann modules and their basic prop-
erties. Like von Neumann algebras, which are strongly closed subalgebr k(e)g G), we
think of von Neumann g(cjl%}g as strongly closed submodules of B(G, H) [Ske97]. Other
authors (e.g. SchweitzerrPSEﬁ%% follow an abstract approach paralleling Sakai’s character-
ization of W*-algebras. Consequently, they define W*-modules as Hilbert modules with
a pre-dual. Both approaches are more or less equivalent. The most important pr a%gté'es
of von Neumann modules or W*-modules already can be found in the first paper [Pas73|
on Hilbert modules by Paschke.

For two reasons we decided to follow the concrete operator approach. Firstly, the ac-
cess to topological questions seems to be more direct. For instance, using the embedding
B(G,H) C B(G® H), it is almost a triviality to see that a von Neumann module can be
embedded as a strongly closed subset into a von Neumann algebra. In the W*-approach
one needs to work slightly harder to see this. Secondly, starting from the usual Stinespring
construction, the existing results on both CP-semigroups and Fy—semigroups are formu-
lated exclusively, using the language of operators on or between Hilbert spaces. Therefore,
in order to keep contact with earlier work, von Neumann mo ugg§ e the more reasonable
choice. Our general reference for von Neumann modules is %Eegé . This is just, because
we do not know another reference where the operator approach is used systematically.

We start by repeati E%nslaa‘ﬁf%l—known facts on normal mappings which can be found
in any text book like '%IMKW]. We also recommend the almost self-contained
appendix in Meyer’s book [Mey93|. First of all, recall that a von Neumann algebra is
order complete, i.e. any bounded increasing net of positive elements in a von Neumann
algebra converges in the strong topology to its unique least upper bound. A positive linear

mapping T between von Neumann algebras is called normal, if it is order continuous. In
other words, 7" is normal, if and only if limsup 7'(a)) = T'(limsup ay) for each bounded
A A

increasing net (a,\). Of particular interest is the set of normal states on a von Neumann
algebra. An increasing net (a,\) converges to a in the strong topology, if and only if p(ay)
converges to ¢(a) for any normal state ¢. The linear span of the normal states is a Banach
space, the pre-dual. As normality is a matter of bounded subsets, a positive mapping T is
normal, if 0T (a,) converges to ¢ oT (a) for all bounded increasing nets (a,) and all ¢ in
a subset of normal states which is total in the pre-dual. If a von Neumann algebra acts on
a Hilbert space GG, then the functionals of the form (f, e f) form a total subset of the pre-
dual, whenever f r Gsoyer a dense subset of G. Moreover, using the technique of cyclic
decomposition (seea%%;eg%, one can show that also the set of functionals (z ® g, ex ® g)
is total in the pre-dual of B(E ® @), whenever x ranges over a dense subset of £ and g
ranges over a dense subset of G.

C.1 Definition. Let B C B(G) be a von Neumann algebra on a Hilbert space G. A
Hilbert B-module E is called a von Neumann B-module, if the set Lg constructed via
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Stinespring construction (Example E.E%trongly closed subset of B(G, H). In this
case we assume that H = E ® G is a part of the definition of E, and do no longer
distinguish between x € E and L, € B(G, H).

Let A be another von Neumann algebra. A Hilbert A-B-module E is called a von
Neumann A—B—mod#%iinfei;c is.a yon Neumann B—module, and if the representation p: A —

B(H) (see Example 2.16) 1S normal.

[sd]C.2 Remark. A von Neumann module is self-dual. More precisely, for any element
® € B"(F, B) there exists an element € E such that ®(y) = z*y (y € E). Therefore,
BY(E) = B"(E). The algebra B*(E) is a von Neumann algebra. A Hilbert module over a
von Neumann algebra is self-dual, if and only if it is a von Neumann module. A bounded
B-sesquilinear form (e,e): £ x F' — B on a pair of von Neumann B-modules defines a
unique operator a € B*(F, E) = (z,y). For Hilbert modules,

Jpfulfilling L1 ay) = (a*z,y)
in general, this is not so. See Pas?g SEeB?]

[smcont |C.3 Proposition. Let A be a C*—algebra and let B be von Neumann algebra acting on a
Hilbert space G. Let E be a Hilbert A-B-module. Then the operations x — xb, x — (y, ),
and x — ax are strongly continuous. Therefore, E= is a Hilbert A-B-module and a von
Neumann B-module.

RQOE. This trivially follows from the embedding £ C B(G,H) C B(G ® H); see
e97]. m

[normali|C.4 Proposition. If E is the GNS-module of a mormal completely positive mapping

T: A — B between von Neumann algebras, then E~ is a von Neumann A-B-module.

Proor. We have to show that the representation p for the GNS-module of T is normal.
So let (aA) be a bounded increasing net in A. This net converges strongly to some a € A.
Then for each b € A also the net (b*a,\b) is bounded and increasing, and it converges
strongly to b*ab, because multiplication in A is separately strongly continuous. Since T’
is normal, we have liin T(b*a\b) = T(b*ab). Let g € G be a unit vector and define the

normal state (g, eg) on B. Then for f = (b® 1+ Nyep) ©® g € E® G we have
lim{f, p(ax) f) = lim(g, T(b"arb)g) = (g, T(b"ab)g)) = (f, pla) f)
where f ranges over all vectors of the form x © ¢g. m

[normal2|C.5 Lemma. Let E be a von Neumann A-B-module. Let 7 be a normal representation
of B on G. Then the representation p of A on H=FE ® G is normal.

Proor. This is a small modification of the preceding proof. Let (aA) be a bounded

increasing net in A. Then
(o, a0} = (z,02) (C.1) metesny]

for all x € E/. This can be seen by choosing m = id to be the defining representation of B
ne onv

and then checking (IC7T] with normal states (g, eg) (g € G). Our assertion follows by the

same check, however, turning to arbitrary normal 7. m
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[normal3|C.6 Corollary. Let E be a von Neumann A-B-module and let F be a von Neumann
B-C-module where C acts on a Hilbert space G. Then the strong closure E®°F of E® F
in B(G,E®F ®G) is a von Neumann A-C-module.

PROOF. We have to show fhat the representation p of Aon E® F®G is normal. But this
follows from Lemma :1.5 and the fact that the representation of B on F © G is normal. m
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