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Abstract

In these notes we study the problem of dilating unital completely positive (CP)
semigroups (quantum dynamical semigroups) to weak Markov flows and then to
semigroups of endomorphisms (E0–semigroups) using the language of Hilbert mod-
ules. This is a very effective, representation free approach to dilation. This way we
are able to identify the right algebra (maximal in some sense) for endomorphisms
to act. We are lead inevitably to the notion of tensor product systems of Hilbert
modules and units for them, generalizing Arveson’s notions for Hilbert spaces.
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In the course of our investigations we are not only able to give new natural
and transparent proofs of well-known facts for semigroups on B(H). The re-
sults extend immediately to much more general set-ups. For instance, Arveson
classifies E0–semigroups on B(H) up to cocycle conjugacy by product systems of
Hilbert spaces

Arv89
[Arv89]. We find that conservative CP-semigroups on arbitrary uni-

tal C∗–algebras are classified up to cocycle conjugacy by product systems of Hilbert
modules. Looking at other generalizations, it turns out that the role played by
E0–semigroups on B(H) in dilation theory for CP-semigroups on B(G) is now played
by E0–semigroups on Ba(E), the full algebra of adjointable operators on a Hilbert
module E. We have CP-semigroup versions of many results proved by Paschke
Pas73
[Pas73] for CP maps.
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1 Introduction
intro

The basic theorem in dilation theory for completely positive mappings or semigroups of
completely positive mappings on a unital C∗–algebra B (CP-semigroups, quantum dy-
namical semigroups) is the Stinespring construction; see Example

Stinespring
2.16. The Stinespring

construction is, however, based on the fact that B ⊂ B(G) is represented as an algebra of
operators on a Hilbert space G, usually refered to as the initial space. This makes it, in
general, impossible to recover the ingredients of the Stinespring construction for a com-
position S ◦ T of completely positive mappings in terms of the Stinespring constructions
for the single mappings T and S.

On the contrary, making use of Hilbert modules it is very easy to express the GNS-
construction of S ◦ T in terms of the GNS-constructions for the mappings T and S. The
result of the GNS-constructions for T and S are Hilbert B–B–modules E and F with
cyclic vectors ξ and ζ, respectively, such that

T (b) = 〈ξ, bξ〉 and S(b) = 〈ζ, bζ〉;

see Example
GNS
2.14. The composition of T and S can be found with the help of the tensor

product E ¯ F . We find
S ◦ T (b) = 〈ξ ¯ ζ, bξ ¯ ζ〉

so that the the GNS-module of S ◦ T may be identified as the B–B–submodule of E ¯ F
which is generated by the cyclic vector ξ ¯ ζ. In Example

Stinespring
2.16 we point out that this

possibility is due to a functorial behaviour of two-sided Hilbert modules. A Hilbert
A–B–module may be considered as a functor sending representations of B to representa-
tions of A and the composition of two such functors is just the tensor product.

In usual dilation theorems for CP-semigroups T =
(
Tt

)
, inner products are written

down in form of correlation kernels and the representation space is realized by a Kol-
mogorov decomposition. In contrast to that, we are able to construct the representation
space, starting from the GNS-modules of each Tt by an inductive limit over insertion of
time points. These insertions are realized, roughly speaking, by continued splitting of
elements belonging to the GNS-module at time t into tensors belonging to GNS-modules
at smaller times.

These notes are organized as follows. Section
prelcon
2 is devoted to introduce the basic

notations. We explain the essence of what we need later on for semigroups in simple
examples whithout being disturbed by lots of indices. Because we intend to show that
most in these notes works purely algebraically, we need well-known notions in a version
for pre-Hilbert modules. This makes Section

prelcon
2 rather long. As an advantage most of

these notes is almost self-contained. Only basic knowledge in C∗–algebra theory (and
Cauchy-Schwarz inequality for semi-Hilbert modules) is required.

In Section
Mmod
3 we define what we understand by a weak Markov flow and a dilation to

an e0–semigroup (i.e. to a semigroup of not necessarily unital endomorphisms) in terms
of operators on a (pre-)Hilbert module E. If T is a conservative completely positive
semigroup on a unital C∗–algebra B, then a weak Markov flow is a family j of (usually
non-unital) homomorphisms jt from B into another (pre-)C∗–algebra A ⊂ Ba(E) fulfilling
js(1)jt(b)js(1) = js(Tt−s(b)) (b ∈ B, s ≤ t). A dilation is an e0–semigroup ϑ on A fulfilling
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ϑt ◦ js = jt+s. These definitions parallel completely those given in
BhPa94,BhPa95,Bha96p
[BP94, BP95, Bha96]

in terms of Hilbert spaces. In Section
algvers
6 we will see that the definitions fit perfectly into

the algebraic set-up of
Acc78
[Acc78].

Sections
1st
4 and

2nd
5 may be considered as the heart of these notes. In Section

1st
4 we con-

struct the representation module Et until time t. We obtain Et as an inductive limit over
all possibilities for splitting the interval [0, t] into smaller intervals [0, ti] whose lengths ti
sum up to t, by inserting the algebra B in between the intervals; see the crucial Observa-
tion

latob
4.2. We find the factorization

Es ¯ Et = Es+t.

In other words, we are lead to the notion of tensor product systems of two-sided (pre-)
Hilbert modules. The cyclic vectors ξt of the GNS-constructions for the Tt survive the
inductive limit. The corresponding elements ξt ∈ Et form a unit, i.e.

ξs ¯ ξt = ξs+t.

Both notions parallel the notions for Hilbert spaces introduced by Arveson
Arv89
[Arv89].

Et contains Es (t ≥ s) in a natural way. This allows to construct a second inductive
limit E. The embedding Es → Et is, however, only right linear, not bilinear. Conse-
quently, on E there does not exist a unique left multiplication by elements of B. There
exists, however, a natural projection onto the range of the canonical embedding Et → E.
In other words, the left multiplication on Et gives rise to a representation jt of B on
E. The collection of all jt turns out to be a weak Markov flow. We remark that exis-
tence of projections onto (closed) submodules is a rare thing to happen in the context of
(pre-)Hilbert modules.

Also the factorization Es ¯ Et = Es+t carries over to the second inductive limit. We
find

E ¯ Et = E.

We may define the semigroup ϑt(a) = a¯ id ∈ Ba(E¯Et) = Ba(E) of endomorphisms of
Ba(E). In this way we do not only recover the e0–semigroup constructed in

Bha96p
[Bha96] which

arises just by restricting ϑ to the algebra A∞ generated by all jt(b). We also show how it
may be extended to an E0–semigroup. The approach in

Bha96p
[Bha96] is based on the Stinespring

construction, so that A∞ is identified as a subalgebra of some B(H); see Example
Stinespring
2.16.

In this identification Ba(E) lies somewhere in between A∞ and B(H). Only the approach
by Hilbert modules made it possible to identify the correct subalgebra Ba(E) of B(H)
to which the e0–semigroup from

Bha96p
[Bha96] extends as an E0–semigroup. This also shows

that we may expect that in the classification of CP-semigroups on general C∗–algebras
E0–semigroups on Ba(E) play the role which is played by E0–semigroups on B(H) in the
classification of CP-semigroups on B(G), when G,H are Hilbert spaces.

We remark that the construction of the weak Markov flow is also possible in the non-
stationary case (i.e. we are concerned rather with families

(
Tt,s

)
t≥s

of transition operators

fulfilling Tt,r ◦ Tr,s = Tt,s (t ≥ r ≥ s)). Of course, here we do not have a time shift
semigroup ϑ. Such a construction was already done for more general indexing sets in
Bel85
[Bel85] in terms of Stinespring construction, however, based on the hypothesis that some
kernel be positive definite. The methods in

Bel85
[Bel85] are also restricted to normal mappings

on von Neumann algebras.
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In Section
algvers
6 we analyze the notion of weak Markov flow from the algebraical point of

view. We show that existence of certain conditional expectations which, usually, forms
a part of the definition (see

Acc78,AFL82
[Acc78, AFL82]) follows automatically from our definition.

It turns out that an essential weak Markov flow (i.e. the GNS-representation of the
conditional expectation ϕ(•) = j0(1)• j0(1) is faithful) lies in between two universal flows
which are determined completely by the CP-semigroup T . Like in

AFL82
[AFL82], the crucial

role is played by a correlation kernel T which is, however, B–valued (roughly speaking the
moments of the process j in the conditional expectation ϕ). The second inductive limit
E may be considered as both the Kolmogorov decomposition for the correlation kernel in
the sense of Murphy

Mur97
[Mur97] and as the GNS-module of ϕ. Doing the the Stinespring

construction, we recover the C–valued correlation kernels as used in
AFL82,Bel85,BhPa94
[AFL82, Bel85, BP94].

In Section
uco
7 we reverse the proceeding and start with a pair consisting of a product

system and a unit. We associate with each such pair a CP-semigroup and show that
we can recover the pair from the CP-semigroup, if the unit is generating in a suitable
sense. (This seems to be close to what Arveson calls a type I product system.) We find
that CP-semigroups are classified by pairs of product systems and generating units. Like
Arveson’s classification of E0–semigroups on B(H) by product systems of Hilbert spaces
up to cocycle conjugacy

Arv89
[Arv89], we find that conservative CP-semigroups are classified

by their product system of Hilbert modules up to cocycle conjugacy. The cocycles which
appear here are, in general, not unitary, but partially isometric. However, if we restrict
our classification to E0–semigroups, then our cocycles are unitary, too. In Section

B(G)
13

we show that in the case B = B(G) the two classifications coincide. Thus, we obtain a
generalization of Arveson’s classification to E0–semigroups on arbitrary unital C∗–algebras
B.

Contractive CP-semigroups T on B may be turned into conservative CP-semigroups
T̃ on B̃ = B ⊕ C1 ∼= B ⊕ C. In Section

non1
8 we investigate how the dilation of the original

semigroup T sits inside the dilation on the module Ẽ constructed from T̃ . We show that
Ẽ is “precisely one vector too big” to be generated by j̃(B) alone. Finally, we demonstrate
in the simplest possible non-trivial example what the construction really does. In this
way we also obtain an explicit non-trivial example for a product system.

In Section
class
9 we recover in a particularly transparent way the classical Markov process

on the center of B which was discovered in
Bha93
[Bha93]. This Section gives a first hint why,

in general, in our construction we may not expect to find unital Markov flows j.

Until Section
class
9 we stayed at an algebraic level where we did not complete pre-Hilbert

modules. In Section
Fock
11 we need for the first time completed versions of our results. Section

C*
10 provides the necessary remarks. In this context we show our first continuity result. If
T is a c + 0–semigroup, then ϑ is a strictly continuous E0–semigroup on Ba(E).

In Section
Fock
11 we investigate dilations of CP-semigroups with bounded generators

(Christensen-Evans generators
ChrEv79
[CE79]) with the help of the calculus on the full Fock mod-

ule developed in
Ske99p0
[Ske99]. (There is also a dilation on a symmetric Fock module discovered

earlier in
GoSi99
[GS99] also with the help of a quantum stochastic calculus. A weak Markov flow

was also constructed in
PaSip0
[PS].) We show that the time ordered Fock modules until time t,

which are contained in the full Fock modules until time t as submodules, form a product
system and that their vacua form a unit. The time shift endomorphism constructed from
this unit on the time ordered Fock module (see Section

uco
7) is just the restriction from

the natural time shift endomorphism on the full Fock module. We construct a partially
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isometric cocycle with respect to the time shift which shows that CP-semigroups with
bounded generators are cocycle subconjugate (in the sense of Definition

coccondef
7.7) to the trivial

semigroup. This shows that in our theory flows constructed on the time ordered Fock
module play the role of flows constructed on the symmetric Fock space with an initial
space in the theory of E0–semigroups on B(H), the so-called CCR-flows ; see

Bha98p
[Bha98a].

This is even more satisfactory as it is well-known that the symmetric Fock space and the
time ordered Fock space are canonically isomorphic.

In the last three Sections we study normal CP-semigroups on von Neumann algebras.
In Section

vN
12 we explain based on Appendix

vNm
C and

Ske97p2
[Ske97] how our constructions extend

to strong closures of Hilbert modules, so-called von Neumann modules. In Theorem
scont
12.1 we obtain the positive answer to the yet open question, whether the e0–semigroup
constructed in

Bha96p
[Bha96] is strongly continuous. In Section

B(G)
13 we study the special case

B = B(G). The most important result is probably Theorem
BGcen
13.11 which asserts that any

von Neumann B(G)–B(G)–module is centered. Among the two-sided Hilbert modules
the centered modules introduced in

Ske98
[Ske98] form a particularly well behaved subclass.

As (topological) modules they are generated by the subspace of those elements which
commute with B. The results in Section

B(G)
13 explain to some extent why so much can be

said in the case B(G), whereas the same methods fail for more general algebras B.

In Section
doco
14 we generalize a result on the order structure of the set of normal CP-

semigroups on B(G) dominated by a fixed normal E0–semigroup, obtained in
Bha98p
[Bha98a],

to the case of normal CP-semigroups on arbitrary von Neumann algebras dominated by
a fixed conservative normal CP-semigroup (not necessarily an E0–semigroup). The result
from

Bha98p
[Bha98a] plays a crucial role in deciding, whether a given dilation is minimal, or not.

We hope that we will be able to generalize also these methods from B(G) to arbitrary
von Neumann algebras (or, more generally, multiplier algebras).

In Appendix
inductive
A we provide the necessary facts about inductive limits of pre-Hilbert

modules. We put some emphasis on the difference between one-sided and two-sided mod-
ules. This distinction is crucial as it makes the difference between the first inductive limit
in Section

1st
4 (which is a limit of two-sided pre-Hilbert modules) and the second inductive

limit in Section
2nd
5 (which is only one-sided).

Appendix
essid
B is the basis for our notion of essential weak Markov flows. A weak Markov

flow is essential, if the closed ideal generated by j0(1) is essential in Ba(E). In this case,
the closed ideal may be identified with the compact operators on E so that Ba(E) is just
its multiplier algebra. Example

counter
B.3 shows that we cannot drop the completions in this

definition.

The exposition of basic facts about von Neumann modules is postponed to Appendix
vNm
C, because we need them only in Sections

vN
12 –

doco
14.

2 Preliminaries and conventions
prelcon

In this section we collect the preliminary notions and results which are essential for the
rest of these notes. Since we intend to keep the level of discussion up to a certain ex-
tent algebraical, we give the definitions in a form refering to pre–C∗–algebras rather to
C∗–algebras. This causes that some well-known notions will come along in an unusual
shape. Therefore, we decided to be very explicit, making this section somewhat lengthy.
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The changes to the well-known versions can be summarized in that homomorphisms
between C∗–algebras always are contractive, whereas homomorphisms between pre–C∗–al-
gebras need not be contractive. Consequently, whenever the word ‘contractive’ appears in
the context of homomorphisms, this is in order to assure that these homomorphisms may
be extended to the C∗–completions of the pre–C∗–algebras under consideration. A pay-off
of this strict distinction between algebraic constructions and their topologic extension is
that most of the constructions extend directly to more general ∗–algebras.

2.1 Conventions. Mappings between vector spaces, usually, are assumed to be linear.
The unit of an algebra A, usually, we denote by 1. Only when confusion can arise, we
will write 1A. We follow the same convention with the identity mapping id on a space.
Mappings between unital ∗–algebras are called unital, if they respect the unit. Homomor-
phisms between unital ∗–algebras are not necessarily assumed to be unital; however, cf.
also Definition

modrep
2.13. The constructions ⊕, ⊗, ¯, etc. are understood algebraically, unless

stated otherwise, explicitly. Completions or closures are indicated by .
Let A denote a pre–C∗–algebra, no matter whether unital or not. Then its unitization

is Ã = A ⊕ C1̃ equipped with the unique C∗–norm of A ⊕ C1̃. (We remark that, if

A is unital, then Ã is isomorphic to A ⊕ C.) If L : A → B is a mapping between pre–
C∗–algebras, then its unitization is defined as the extension of L to a unital mapping
L̃ : Ã → B̃. Of course, ‖L̃‖ ≤ 1 + ‖L‖. If both A and B already have a unit, then
‖L̃‖ = max

(
1, ‖L‖).

2.2 Completely positive mappings. Let A and B denote pre–C∗–algebras. A map-
ping T : A → B is completely positive, if

∑
i,j

b∗i T (a∗i aj)bj ≥ 0

for all choices of finitely many ai ∈ A and bi ∈ B. Usually, we will assume that completely
positive mappings are contractive, i.e. ‖T‖ ≤ 1.

2.3 Conditional expectations. A mapping ϕ from a pre–C∗–algebra A onto a pre–
C∗–subalgebra B ⊂ A is called a conditional expectation, if ϕ̃ is a projection of norm 1.
This is equivalent to say that ϕ̃ is a bounded positive B̃–B̃–linear mapping; see Takesaki
Tak79
[Tak79]. A conditional expectation ϕ is called faithful, if ϕ(a∗a) = 0 implies a = 0.

2.4 Semigroups of completely positive mappings. Let B be a pre–C∗–algebra andunitization
T = R+ or T = N0 an index set. A completely positive semigroup on B, or CP-semigroup
for short, is a semigroup T =

(
Tt

)
t∈T of completely positive contractions Tt on B. If B is

unital and all Tt are unital, then we say the CP-semigroup is conservative. By the trivial
CP-semigroup on B we mean Tt = id.

With few exceptions in this section, and in Sections
non1
8 and

doco
14, we assume that B is a

unital C∗–algebra and that CP-semigroups on B are conservative. If B is supposed to act
as an algebra of operators on a Hilbert space then we denote this Hilbert space by G.

2.5 Semigroups of endomorphisms. Let A denote a pre–C∗–algebra. An e0–semi-
group on A is a semigroup ϑ =

(
ϑt

)
t∈T of contractive endomorphisms of A. If A is unital

and ϑ is unital, we say ϑ is an E0–semigroup. Usually, neither A nor ϑ need to be unital.
We can, however, always pass to the E0–semigroup ϑ̃ =

(
ϑ̃t

)
t∈T on Ã.

7



bounded 2.6 Observation. In these notes, usually, A is a pre–C∗–algebra which is generated by
a collection of C∗–subalgebras. Therefore, A is spanned linearly by its quasiunitaries (i.e.
elements v fulfilling v∗v + v + v∗ = 0 = vv∗+ v∗+ v) and possibly 1, if A is unital, so that
all representations of A map into some set of bounded operators.

2.7 Hilbert modules. See
Pas73,Ske97p2
[Pas73, Ske97]. Let B denote a unital pre–C∗–algebra. A pre-

Hilbert B–module is a right B–module E with a sesquilinear inner product 〈•, •〉 : E×E →
B, fulfilling 〈x, x〉 ≥ 0 (x ∈ E) (positivity), 〈x, x〉 = 0 implies x = 0 (strict positivity), and
〈x, yb〉 = 〈x, y〉b (x, y ∈ E; b ∈ B) (right linearity). If strict positivity is missing, then we
speak of a semi-inner product and a semi-Hilbert B–module.

On a semi-Hilbert B–module E we have 〈x, y〉 = 〈y, x〉∗, 〈xb, y〉 = b∗〈x, y〉, and Cauchy-
Schwarz inequality

〈x, y〉〈y, x〉 ≤ ‖〈y, y〉‖ 〈x, x〉. (2.1) CSI

From Cauchy-Schwarz inequality it follows that ‖x‖ =
√
‖〈x, x〉‖ defines a semi-norm on

E. This semi-norm is a norm, if and only if E is a pre-Hilbert B–module. If a pre-Hilbert
B–module E is complete in this norm, then we say E is a Hilbert B–module.

Let E be a semi-Hilbert B–module and denote by NE =
{
x ∈ E : 〈x, x〉 = 0

}
the

submodule consisting of length-zero elements. By the pre-Hilbert B–module and Hilbert
B–module associated with E, we mean E/NE and E/NE, respectively. Notice that the
completion of any pre-Hilbert B–module is a Hilbert B–module in a natural fashion.

If
(
Et

)
t∈L is a family of non-trivial pre-Hilbert B–modules (where L is some indexing

set), then also the direct sum E =
⊕
t∈L

Et is a pre-Hilbert B–module in an obvious way.

Suppose that all Et are Hilbert modules. Then E is a Hilbert module, if and only if L is
a finite set.

algmod 2.8 Example. Any pre–C∗–algebra B is a pre-Hilbert B–module with inner product
〈b, b′〉 = b∗b′. It is a Hilbert B–module, if and only if B is complete.

More generally, a right ideal I in B is a pre-Hilbert B–module (actually, a pre-Hilbert
I–module) in the same way. It can be shown that any pre-Hilbert B–module can be
embedded into a certain completion of the direct sum of such ideals; see

Pas73,Ske97p2
[Pas73, Ske97].

space 2.9 Example. Let G and H be Hilbert spaces and let B ⊂ B(G) be a ∗–algebra of
bounded operators on G. Then any subspace E ⊂ B(G,H), for which EB ⊂ E and
E∗E ⊂ B becomes a pre-Hilbert B–module with inner product 〈x, y〉 = x∗y. Obviously,
operator norm and Hilbert module norm coincide, so that E is a Hilbert B–module, if
and only if E is a norm closed subset of B(G,H).

2.10 Operators on Hilbert modules. Let E and F be pre-Hilbert B–modules. By
Lr(E, F ) (Br(E, F )) we denote the sets of (bounded) right module homomorphisms E → F .
A mapping a : E → F is called adjointable, if there is an adjoint mapping a∗ : F → E
fulfilling 〈x, ay〉 = 〈a∗x, y〉 (x ∈ F, y ∈ E). By La(E, F ) (Ba(E, F )) we denote the
sets of (bounded) adjointable mappings E → F . We have La(E, F ) ⊂ Lr(E, F ) and
Ba(E,F ) ⊂ Br(E, F ). If E is complete, then La(E, F ) = Ba(E, F ). With one exception
in the proof Theorem

contsg
10.2, we only speak of right linear mappings.

The sets La(E) = La(E,E) and Ba(E) = Ba(E, E) form a ∗–algebra and a pre–
C∗–algebra, respectively. Moreover, Ba(E) = Ba(E). In particular, if E is complete, then
Ba(E) is a C∗–algebra.
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An operator of the form |x〉〈y| (x, y ∈ E) is called rank-one operator. The linear span
F(E) of all rank-one operators is called the pre–C∗–algebra of finite rank operators, its
completion K(E) is called the C∗–algebra of compact operators. Notice, however, that the
elements of K(E) can be considered as operators on E, in general, only if E is complete.
Notice that these operators, in general, are not compact in the usual sense as operators
between Banach spaces.

A projection on a pre-Hilbert module is a mapping p fulfilling p2 = p = p∗. By de-
finition p is adjointable and, obviously, p is bounded. An isometry between pre-Hilbert
modules is a mapping ξ which preserves inner products, i.e. 〈ξx, ξy〉 = 〈x, y〉. A unitary is
a surjective isometry. Obviously, projections, isometries, and unitaries extend as projec-
tions, isometries, and unitaries, respectively, to the completions. Moreover, if an isometry
has dense range, then its extension to the completions is a unitary.

isoob 2.11 Observation. A unitary u is adjointable where the adjoint is u∗ = u−1. An isome-
try ξ need not be adjointable (but always right linear). If it is adjointable, then ξ∗ξ = id
and ξξ∗ is a projection onto the range of ξ. Conversely, if there exists a projection onto
the range of ξ, then ξ is adjointable.

semi 2.12 Observation. If E and F are semi-Hilbert B–modules, and if a : E → F is a
mapping which is adjointable in the above sense, then x+NE 7→ ax+NF is a well-defined
element in La(E/NE, F/NF ).

2.13 Representations on Hilbert modules. A representation of a pre–C∗–algebra Amodrep
on a pre-Hilbert B–module E is a homomorphism j : A → La(E) of ∗–algebras. In
particular, if E is an A–B–module, such that 〈x, ay〉 = 〈a∗x, y〉 (i.e. a 7→ (x 7→ ax) defines
a canonical homomorphism), then we say E is a pre-Hilbert A–B–module. If A has a unit
and we refer to A as unital, explicitly, then we assume that the unit of A acts as a unit
on E.

Clearly, a homomorphism j extends to a homomorphism A → Ba(E), if and only
if it is contractive. We say a pre-Hilbert A–B–module E is contractive, if the canonical
homomorphism is contractive. In particular, if A is a C∗–algebra, then E is contractive,
automatically.

GNS 2.14 Example. Let A and B be unital pre–C∗–algebras and let T : A → B a completely
positive mapping. Then A⊗ B with inner product defined by setting

〈a⊗ b, a′ ⊗ b′〉 = b∗T (a∗a′)b′

is a semi-Hilbert A–B–module in a natural way. Setting E = A ⊗ B/NA⊗B and ξ =
1 ⊗ 1 + NA⊗B ∈ E, we have T (a) = 〈ξ, aξ〉. Moreover, ξ is cyclic in the sense that
E = span(AξB). The pair (E, ξ) is called the GNS-representation of T . The pre-Hilbert
module E is called GNS-module. If T is bounded, then the construction extends to A and
B, so that E is contractive and we may consider also E. Obviously, T is conservative (i.e.
T (1) = 1), if and only if 〈ξ, ξ〉 = 1.

If A or B are non-unital and T is contractive, then we can do the construction for T̃

(or, more generally, for T̃/ ‖T‖, if T is bounded). However, the statement that also T̃
is completely positive, actually, is equivalent to construct the GNS-module with a cyclic
vector; see the discussion in

Ske97p2
[Ske97].
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2.15 Tensor product of Hilbert modules. Let A, B, and C be pre–C∗–algebras. Let
E be a pre-Hilbert A–B–module and let F be a pre-Hilbert B–C–module. Then the tensor
product E ⊗ F with inner product defined by setting

〈x⊗ y, x′ ⊗ y′〉 =
〈
y, 〈x, x′〉y′〉

is a semi-Hilbert A–C–module in a natural way; see
AcSk98p
[AS98] for an elementary proof of

positivity. The interior tensor product of Hilbert modules or shortly tensor product is the
pre-HilbertA–C–module E¯F = E⊗F/NE⊗F . By E ¯̄ F we denote the completion of E¯
F . (There is also an exterior tensor product of pre-Hilbert modules; see

Lan95,Ske98
[Lan95, Ske98].)

Stinespring 2.16 Example. Let G be a pre-Hilbert space and B ⊂ B(G) a ∗–algebra of operators on
G. In other words, G is a pre-Hilbert B–C–module. Let E be a pre-Hilbert B–module.
Then H = E ¯ G is another pre-Hilbert space. Moreover, any element x in E gives rise
to a mapping Lx : g 7→ x ¯ g in B(G,H) such that 〈x, y〉 = L∗xLy and Lxb = Lxb. We
see that any pre-Hilbert module may be identified as a submodule of some B(G,H) as in
Example

space
2.9. For reasons, which we clarify immediately, we refer to this construction as

the Stinespring construction.
If E is a contractive pre-Hilbert A–B–module, then any element a in A gives rise

to an operator ρ(a) : x ¯ g 7→ ax ¯ g in B(H); cf. Observation
contractive
2.20. Clearly, ρ is a

contractive representation of A on H. If we apply this construction to the GNS-module
of a completely positive mapping in Example

GNS
2.14, then T (a) = L∗ξρ(a)Lξ. In other words,

we obtain the usual Stinespring construction. (Observe that Lξ is an isometry in B(G,H),
if and only if 〈ξ, ξ〉 = 1, i.e. if T is conservative.)

The same construction works, if we start with an arbitrary contractive representation
of a pre–C∗–algebra B on a pre-Hilbert space G. In other words, a contractive pre-Hilbert
A–B–module may be considered as a functor which sends contractive representations of B
to contractive representations of A. It is easy to check that the composition of two such
functors amounts to construct the tensor product of the underlying pre-Hilbert modules.
In this case we also have Lx¯y = LxLy.

As an interesting application we will draw some consequences for compositions of
completely positive mappings. The following observation is essential in understanding
the first inductive limit in Section

1st
4. This idea is already present in

Rie74
[Rie74].

factor 2.17 Observation. Let T : A → B and S : B → C be contractive completely positive
mappings with GNS-modules E and F and with cyclic vectors ξ and ζ, respectively. Let
G be the GNS-module of the composition S ◦ T with cyclic vector χ. Then the mapping

χ 7−→ ξ ¯ ζ

extends (uniquely) as a two-sided isometric homomorphism G → E ¯ F . In particular,
we have S ◦ T (a) = 〈ξ ¯ ζ, aξ ¯ ζ〉.

Observe that E ¯ F = span(AξB ¯ BζC) = span(Aξ ¯ BζC) = span(AξB ¯ ζC). By
the above isometry we may identify G as the submodule span(Aξ¯ζC) of E¯F . In other
words, inserting a unit 1 in χ = ξ ¯ ζ in between ξ and ζ amounts to an isometry.

Suppose that B and C are algebras of operators on some pre-Hilbert spaces. We
want to emphasize that, unlike the GNS-construction, the knowledge of the Stinespring
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construction for the mapping T does not help in finding the Stinespring construction for
S ◦T . What we need is the Stinespring construction for T based on the representation of
B arising from the Stinespring construction for S. The GNS-construction, on the other
hand, is representation free. It is sufficient to do it once for each completely positive
mapping.

The importance of the following simple observation cannot be overestimated. It assures
that the mappings γτσ, which mediate the second inductive limit in Section

2nd
5, and, as a

consequence, also the canonical mappings kτ appearing there have an adjoint.

tensorvec 2.18 Observation. Let E be a pre-Hilbert B–module and let F be a contractive pre-
Hilbert B–C–module. Let x ∈ E. Then

x¯ id : y 7−→ x¯ y

defines a mapping F → E ¯ F with ‖x¯ id ‖ ≤ ‖x‖. The adjoint mapping is defined by

x∗ ¯ id : x′ ¯ y 7−→ 〈x, x′〉y

In the special case when F = B (cf. Example
algmod
2.8), whence E¯F = E, we write x∗ : x′ 7→

〈x, x′〉.
Moreover, if 〈x, x〉 = 1, then x¯id is an isometry. More precisely, (x∗¯id)(x¯id) = idF

and (x¯ id)(x∗ ¯ id) is the projection (|x〉〈x|)¯ id in Ba(E ¯ F ).
All these observations follow from the fact that the mapping x⊗ id : F → E ⊗ F has

an adjoint and Observations
semi
2.12 and

isoob
2.11.

2tensor 2.19 Observation. Let E, F, F ′, G be pre-Hilbert modules and let β : F → F ′ be an
isometric two-sided homomorphism of two-sided pre-Hilbert modules. Then also the map-
ping id¯β ¯ id : E ¯ F ¯ G → E ¯ F ′ ¯ G is an isometric two-sided homomorphism of
two-sided pre-Hilbert modules.

contractive 2.20 Observation. Let E be a pre-Hilbert B–module and let F be a contractive pre-
Hilbert B–C–module. Let a ∈ Br(E). Then ‖a¯ idF‖ ≤ ‖a‖; see

Lan95,Ske97p2
[Lan95, Ske97]. In

particular, the tensor product of two contractive pre-Hilbert modules is again contractive.

2.21 The strict topology. It is well-known that Ba(E) is the multiplier algebra of
K(E). In other words, Ba(E) is the completion of K(E) with respect to the locally convex
Hausdorff topology defined by the two families of seminorms a 7→ ‖ak‖ and a 7→ ‖ka‖
(k ∈ K(E)). Another topology on Ba(E) is given by the two families of seminorms
a 7→ ‖ax‖ and a 7→ ‖a∗x‖ (x ∈ E). Also in this topology Ba(E) is complete. In general,
the two topologies are different. They coincide, however, on bounded subsets. We follow
the convention in

Lan95
[Lan95] and mean by the strict topology one of the above topologies

restricted to bounded subsets of Ba(E). We say a bounded mapping T : Ba(E) → Ba(F )
is strict, if it sends bounded strictly convergent nets to bounded strictly convergent nets.
By boundedness it is sufficient to check convergence on total subsets of E.

So far, we have stated the preliminary definitions and facts which are needed in the
main part of this article. Basics about inductive limits of Hilbert modules are postponed
to Appendix

inductive
A. We do not know a reference for this, so formal proofs are included.
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The basics about von Neumann modules are needed only for Sections
vN
12 –

doco
14. They are

postponed to Appendix
vNm
C. Proofs of some results on von Neumann modules, extending

those of
Ske97p2
[Ske97], are included. Like von Neumann algebras, which may be considered

as concrete realizations of abstract W ∗–algebras in the sense of
Sak71
[Sak71], von Neumann

modules may be considered as concrete realizations of abstract W ∗–modules in the sense
of

JSchw96
[Sch96].

3 Weak Markov flows of CP-semigroups and dila-

tions to e0–semi-groups: Module version
Mmod

In this section we give the definition of weak Markov flow and dilation to an e0–semigroup
for a CP-semigroup T similar to that given in

BhPa94
[BP94] and

Bha96p
[Bha96], however, in terms of

operators acting on a Hilbert module rather than on a Hilbert space. In Sections
1st
4 and

2nd
5

we construct a Hilbert module E on which a minimal and a maximal weak Markov flow
may be realized. In Section

algvers
6 we show that among all weak Markov flows the minimal

and the maximal are distinguished by universal properties. In this way, we also recover
the uniqueness result for the minimal weak Markov flow obtained in

BhPa94
[BP94].

modMd 3.1 Definition. Let T be R+ (the non-negative reals) or N0 (the non-negative integers).
Let T =

(
Tt

)
t∈T be a conservative CP-semigroup on a unital C∗–algebra B. A weak Markov

flow of T on a pre-Hilbert B–module E is a pair (A, j), where A is a pre–C∗–subalgebra
of Ba(E) and j =

(
jt

)
t∈T is a family of homomorphisms jt : B → A, fulfilling the Markov

property
js(1)jt(b)js(1) = js(Tt−s(b)) for all t, s ∈ T; t ≥ s; b ∈ B, (3.1) Markov

and j0 is injective. We use the abbreviation pt := jt(1). (See also
Acc78,Bel84,Bel85
[Acc78, Bel84, Bel85].)

A weak Markov flow (A, j) on E is cyclic, if there is a cyclic unit vector ξ ∈ E (i.e.
E = Aξ and 〈ξ, ξ〉 = 1), such that j0(b) = |ξ〉b〈ξ|.

By A∞ we denote the (∗–)algebra generated by jT(B). A cyclic weak Markov flow is
essential, if ξ is cyclic already for A∞, i.e. E = A∞ξ.

An essential weak Markov flow (A, j) is minimal, if A = A∞. It is maximal, if A =
Ba(E).

The cyclic vector ξ intertwines j0 and idB in the sense that j0(b)ξ = ξb, so that E =
Ap0ξ = Aj0(B)ξ = AξB. It follows that ϕ(a) = p0ap0 defines a conditional expectation
ϕ : A → j0(B). The cyclicity condition just means that E is the GNS-module of ϕ.
Essential means that this GNS-module is generated by A∞ alone.

It is not difficult to check that a minimal weak Markov flow is determined up to
unitary equivalence. For instance, doing the Stinespring construction (Example

Stinespring
2.16) we

are reduced to
BhPa94
[BP94, Theorem 2.7]. (Notice that the formulation in

BhPa94
[BP94] does not

require existence of a cyclic vector. It is, however, replaced by the requirement that j0 is,
in our language, the left-regular representation of B on itself. If we remove existence of
the cyclic vector, then an arbitray direct sum of minimal weak Markov flows would also
be minimal.) We give a different proof of uniqueness in Section

algvers
6. Additionally, we show

that also the maximal weak Markov flow is unique.
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Many authors require that jt sends the unit of B to the unit of A; see e.g.
EvLe77,Kuem85,Sau86
[EL77,

Küm85, Sau86]. However, in our setting this contradicts the Markov property (
Markov
3.1),

unless T is an E0–semigroup.

E0 3.2 Example. Suppose T consists of unital endomorphisms (i.e. T is an E0–semigroup).
Set E = A = B (cf. Example

algmod
2.8). Define jt by setting jt(b)x = Tt(b)x. Then (A, j) is a

minimal and a maximal weak Markov flow of T on E with cyclic vector ξ = 1.
Conversely, if jt(1) = 1 for all t ∈ T, then we easily conclude from the Markov property

and injectivity of j0 that T is an E0–semigroup.

3.3 Definition. Let E be a pre-Hilbert B–module and let j0 : B → Ba(E) be a homo-
morphism. An e0–semigroup ϑ =

(
ϑt

)
t∈T on a pre–C∗–subalgebra A of Ba(E) is called

an e0–dilation of T on E, if (A, j) with jt = ϑt ◦ j0 is a weak Markov flow. It is said to be
an E0–dilation, if ϑ is an E0–semigroup.

A dilation is called minimal and maximal, if the weak Markov flow (A, j) is minimal
and maximal, respectively. In either case, there exists an element ξ in E, such that

〈ξ, ϑt ◦ j0(b)ξ〉 = Tt(b).

The results on uniqueness in Section
algvers
6 imply that both the minimal and the max-

imal dilation of T are unique, too. In particular, the maximal dilation is always an
E0–dilation, and by Example

E0
3.2 the minimal dilation is only an e0–dilation, unless T is

an E0–semigroup.

4 The first inductive limit: Product systems
1st

In this section we construct for each τ ∈ T a pre-Hilbert B–B–module Eτ which is more or
less the GNS-module of Tτ enlarged by inserting the algebra B at each time σ in between
0 and τ . Suppose τ = σ2 + σ1. By Observation

factor
2.17 the GNS-modules Eτ , Eσ1 , and Eσ2 ,

at times τ , σ1, and σ2, respectively, are related by the tensor product Eτ ⊂ Eσ2 ¯ Eσ1 . In
order to have equality we could try to replace the GNS-module at time τ by Eσ2 ¯ Eσ1 .
In other words, we inserted B at time σ1. However, for a different choice of σ1 and σ2, in
general, we obtain different modules. Also splitting [0, τ ] into three or more subintervals
will destroy the desired factorization. In order to be stable under any further splitting
we have to perform an inductive limit over all possible partitions of the interval [0, τ ].
Concerning inductive limits we use the notations from Appendix

inductive
A.

There exist, essentially, two ways of looking at an interval partition. Firstly, with
emphasis on the end points of each subinterval. Secondly, with emphasis on the length of
each subinterval. The different pictures are useful for different purposes. In these notes
we will concentrate on the second point of view. Whereas, we need the first in order to
see that the interval partitions form a lattice.

Let τ > 0 in T. We define Iτ to be the set of all finite ordered tuples
{
(tn, . . . , t1) ∈

Tn : n ∈ N, τ = tn > . . . > t1 > 0
}
. On Iτ we have a natural notion of inclusion, union,

and intersection of tuples. By inclusion we define a partial order on Iτ .
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We define Jτ to be the set of all finite tuples t = (tn, . . . , t1) ∈ Tn (n ∈ N, ti > 0)
having length

|t| :=
n∑

i=1

ti = τ.

For two tuples s = (sm, . . . , s1) ∈ Jσ and t = (tn, . . . , t1) ∈ Jτ we define the joint tuple
s ` t ∈ Jσ+τ by

s ` t = ((sm, . . . , s1), (tn, . . . , t1)) = (sm, . . . , s1, tn, . . . , t1).

We equip Jτ with a partial order by saying t ≥ s = (sm, . . . , s1), if for each j (1 ≤ j ≤ m)
there are (unique) sj ∈ Jsj

such that t = sm ` . . . ` s1.
We extend the definitions of Iτ and Jτ to τ = 0, by setting I0 = J0 = {()}, where () is

the empty tuple. For t ∈ Jτ we put t ` () = t = () ` t.

orderprop 4.1 Proposition. The mapping o : (tn, . . . , t1) 7→
( n∑

i=1

ti , . . . ,
1∑

i=1

ti

)
is an order iso-

morphism Jτ → Iτ .

Proof. Of course, o is bijective. Obviously, the image in Iτ of a tuple (|sm| , . . . , |s1|)
in Jτ is contained in the image of sm ` . . . ` s1. Conversely, let (sm, . . . , s1) be a tuple
in Iτ and (tn, . . . , t1) ≥ (sm, . . . , s1). Define a function n : {0, . . . , m} → {0, . . . , n} by
requiring tn(j) = sj (j ≥ 1) and n(0) = 0. Set t = o−1(tn, . . . , t1) and s = o−1(sm, . . . , s1).
Furthermore, define sj = o−1(tn(j), . . . , tn(j−1)+1) (j ≥ 1). Then t = sm ` . . . ` s1 ≥
(|sm| , . . . , |s1|) = s.

latob 4.2 Observation. Iτ is a lattice with the union of two tuples being their unique least
upper bound and the intersection of two tuples being their unique greatest lower bound.
In particular, Iτ is directed increasingly. Observe that (τ) is the unique minimum of Iτ
(τ > 0). By Proposition

orderprop
4.1 all these assertions are true also for Jτ .

The reason why we use the lattice Jτ instead of Iτ is the importance of the operation
`. Notice that ` is an operation not on Jτ , but rather an operation Jσ × Jτ → Jσ+τ .
We can say two tuples s ∈ Jσ and t ∈ Jτ are just glued together to a tuple s ` t ∈ Jσ+τ .
Before we can glue together the corresponding tuples o(s) ∈ Iσ and o(t) ∈ Iτ , we first
must shift all points in o(s) by the time τ . (This behaviour is not surprising. Recall that
the ti in a tuple in Jτ stand for time differences. These do not change under time shift.
Whereas the ti in a tuple in Iτ stand for time points, which, of course, change under
time shift.) Hence, in the description by Iτ the time shift must be acted out explicitly,
whereas in the description by Jτ the time shift is intrinsic and works automatically. Our
decision to use Jτ instead of the more common Iτ is the reason why, in the sequel, in many
formulae where one intuitively would expect a time shift, no explicit time shift appears.
It is, however, always encoded in our notation. (Cf., for instance, Equations (

cyclic
5.2), (

C2fac
8.1),

and (
F0fac
11.1).)

Let T =
(
Tt

)
t∈T be a conservative CP-semigroup on a unital C∗–algebra B. For each

t let Et denote the GNS-module of Tt and ξt ∈ Et the cyclic vector. (Observe that E0 = B
and ξ0 = 1.) Let t = (tn, . . . , t1) ∈ Jτ . We define

Et = Etn ¯ . . .¯ Et1 and E() = E0.
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In particular, we have E(τ) = Eτ . By Observations
factor
2.17 and

2tensor
2.19

ξτ 7−→ ξt := ξtn ¯ . . .¯ ξt1

defines an isometric two-sided homomorphism βt(τ) : Eτ → Et.
Now suppose that t = (tn, . . . , t1) = sm ` . . . ` s1 ≥ s = (sm, . . . , s1) with |sj| = sj.

By
βts = βsm(sm) ¯ . . .¯ βs1(s1)

we define an isometric two-sided homomorphism βts : Es → Et. Obviously, βtrβrs = βts for
all t ≥ r ≥ s. All this follows by repeated application of Observation

2tensor
2.19. We obtain the

following result.

1stil 4.3 Proposition. The family
(
Et

)
t∈Jτ together with

(
βts

)
s≤t

forms an inductive system
of pre-Hilbert B–B–modules. Hence, also the inductive limit Eτ = lim ind

t∈Jτ
Et is a B–B–pre-

Hilbert module and the canonical mappings it : Et → Eτ are isometric two-sided homo-
morphisms.

This is the first step of the inductive limit where the involved isometries preserve left
multiplication. In other words, if we restrict to a fixed endpoint τ , then we are concerned
with a well-defined left multiplication, no matter how many time points in the interval
[0, τ ] are involved.

Before we investigate the connections among the Eτ , we observe that Eτ contains a
distinguished element.

unit 4.4 Proposition. Let ξτ = i(τ)ξτ . Then itξt = ξτ for all t ∈ Jτ . Moreover, 〈ξτ , bξτ 〉 =
Tτ (b). In particular, 〈ξτ , ξτ 〉 = 1.

Proof. Let s, t ∈ Jτ and choose r, such that r ≥ s and r ≥ t. Then isξs = irβrsξs =
irξr = irβrtξt = itξt.

Moreover, 〈ξτ , bξτ 〉 = 〈i(τ)ξτ , bi(τ)ξτ 〉 = 〈i(τ)ξτ , i(τ)bξτ 〉 = 〈ξτ , bξτ 〉 = Tτ (b).

4.5 Corollary. (ξτ )∗it = ξ∗t for all t ∈ Jτ . Therefore, ξ∗t βts = ξ∗s for all s ≤ t.

1tensor 4.6 Remark. Clearly, E0 = E0 = B and ξ0 = ξ0 = 1. In particular, Eτ = E0 ¯ Eτ =
ξ0 ¯ Eτ where id = ξ0 ¯ id gives the identification.

In
Arv89
[Arv89] Arveson defined the notion of tensor product system of Hilbert spaces. We

generalize this, on the one hand, dropping measurability and separability conditions and,
on the other hand, considering pre-Hilbert B–B–modules instead of Hilbert spaces. The
difference to a version for Hilbert modules is only marginal, because the completions
always can be performed. (Recall that a pre-Hilbert B–B–module is contractive, auto-
matically, if B is a C∗–algebra; see also Section

C*
10.) On the other hand, it may be of some

interest to know that certain operators leave invariant the algebraic domain, or even have
adjoints on this domain. So it is important to consider pre-Hilbert module versions.

psdef 4.7 Definition. Let B be a C∗–algebra. A family E¯ =
(
Et

)
t∈T of pre-Hilbert B–B–mod-

ules is called a tensor product system of pre-Hilbert modules or shortly a product system, if
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E0 = B, and if there exists a family
(
ust

)
s,t∈T of two-sided unitaries ust : Es ¯Et → Es+t,

fulfilling the associativity condition

ur(s+t)(id¯ust) = u(r+s)t(urs ¯ id)

for all r, s, t ∈ T.
A family ξ¯ =

(
ξt

)
t∈T of vectors ξt ∈ Et with ξ0 = 1 is called a unit for the product

system, if ust(ξs¯ξt) = ξs+t. A unit is called unital, if it consists of unit vectors (i.e. 〈ξt, ξt〉 =
1). A unit is called generating, if Et is spanned by images of elements bnξtn ¯ . . .¯ b1ξt1b0

(t ∈ Jt, bi ∈ B) under successive applications of appropiate mappings id¯uss′ ¯ id.

prodsys 4.8 Theorem. The family E¯ =
(
Eτ

)
τ∈T (with Eτ as in Proposition

1stil
4.3) forms a product

system. The family ξ¯ =
(
ξτ

)
τ∈T (with ξτ as in Proposition

unit
4.4) forms a generating unital

unit for this product system.

Proof. Let σ, τ ∈ T and choose s ∈ Jσ and t ∈ Jτ . Then the proof that the Eτ form a
product system is almost done by observing that

Es ¯ Et = Es`t. (4.1) preasscond

From this, intuitively, the mapping uστ : isxs¯ityt 7→ is`t(xs¯yt) should define a surjective
isometry. Surjectivity is clear, because elements of the form is`t(xs¯yt) are total in Eσ+τ .
To see isometry we observe that isxs = iŝβŝsxs and ityt = îtβt̂tyt for t̂ ≥ t and ŝ ≥ s.
Similarly, is`t(xs ¯ yt) = iŝ ˆ̀t(βŝsxs ¯ βt̂tyt). Therefore, for checking the equation

〈isxs ¯ ityt, is′x
′
s′ ¯ it′y

′
t′〉 = 〈is`t(xs ¯ yt), is′`t′(x

′
s′ ¯ y′t′)〉

we may assume that t′ = t and s′ = s. (This is also a key observation in showing that
Eσ¯Eτ = lim ind

(s,t)∈Jσ×Jτ
Es¯Et.) Now isometry is clear, because both is¯it : Es¯Et → Eσ¯Eτ

and is`t : Es`t = Es ¯ Et → Eσ+τ are (two-sided) isometries. The associativity condition
follows directly from associativity of (

preasscond
4.1).

The fact that the ξτ form a unit follows by similar arguments from Proposition
unit
4.4.

Obviously, this unit is unital. It is also generating, because Eτ is generated by vectors of
the form it(bnξtn ¯ . . .¯ b1ξt1b0) (bi ∈ B).

iident 4.9 Remark. In the sequel, we always make the identification

Eσ ¯ Eτ = Eσ+τ . (4.2) tensorid

We, actually, have shown, using this identification and (
preasscond
4.1), that is ¯ it = is`t. Thanks

to this identification we have a natural embedding of Ba(Eσ) into Ba(Eσ+τ ) by sending a
to a¯ id. By Observation

contractive
2.20 this embedding is contractive. It need not be faithful.

In a certain sense, product systems of Hilbert modules with units for them are in one-
to-one correspondence with CP-semigroups. This correspondence is more specific than
the correspondence of product systems of Hilbert spaces with E0–semigroups discovered
by Arveson

Arv89
[Arv89], which is only up to cocycle conjugacy. We investigate this more

systematically in Section
uco
7. The paradigm example of a product system of Hilbert spaces is

the family Γ(L2([0, τ ], H)) of symmetric Fock spaces which is well-known to be isomorphic
to a corresponding family of time ordered Fock spaces. In Section

Fock
11 we will see that the

time ordered Fock module (Theorem
tofm
11.4) plays the same distinguished role for product

systems of Hilbert modules.
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5 The second inductive limit: Dilations and flows
2nd

Now we are going to glue together the Eτ in a second inductive limit, mediated by
mappings γτσ (τ ≥ σ). Since these mappings no longer preserve left multiplication,
we no longer have a unique left multiplication on the inductive limit E = lim ind

τ→∞
Eτ .

It is, however, possible to define on E for each time τ a different left multiplication,
which turns out to be more or less the left multiplication from Eτ . This family of left
multiplications will be the weak Markov flow. Also the identification by (

tensorid
4.2) has a counter

part obtained by sending, formally, σ to ∞. The embedding of Ba(Eσ) into Ba(Eσ+τ ),
formally, becomes an embedding Ba(E“∞”) into Ba(E“∞+ τ”), i.e. an endomorphism of
Ba(E). This endomorphism depends, however, on τ . The family formed by all these
endomorphisms will be the dilating E0–semigroup.

Let τ, σ ∈ T with τ ≥ σ. Using the notation from Observation
tensorvec
2.18, we define the

isometry
γτσ = ξτ−σ ¯ id : Eσ −→ Eτ−σ ¯ Eσ = Eτ .

Let τ ≥ ρ ≥ σ. Since
(
ξτ

)
is a unit, we have

γτσ = ξτ−σ ¯ id = ξτ−ρ ¯ ξρ−σ ¯ id = γτργρσ.

That leads to the following result.

5.1 Proposition. The family
(
Eτ

)
τ∈T together with

(
γτσ

)
σ≤τ

forms an inductive system
of right pre-Hilbert B–modules. Hence, also the inductive limit E = lim ind

τ→∞
Eτ is a right

pre-Hilbert B–module. Moreover, the canonical mappings kτ : Eτ → E are isometries.

Also E contains a distinguished element.

5.2 Proposition. Let ξ = k0ξ
0. Then kτξ

τ = ξ for all τ ∈ T. Moreover, 〈ξ, ξ〉 = 1.

Proof. Precisely, as in Proposition
unit
4.4.

j0def 5.3 Corollary. By j0(b) = |ξ〉b〈ξ| we define a faithful representation of B by operators in
Ba(E). Moreover, ϕ : a 7→ j0(1)aj0(1) defines a conditional expectation Ba(E) → j0(B).

indtensorT 5.4 Theorem. For all τ ∈ T we have

E ¯ Eτ = E, (5.1) indtensor

extending (
tensorid
4.2) in a natural way. Moreover, ξ ¯ ξτ = ξ.

Proof. The mapping uτ : kσxσ ¯ yτ 7→ kσ+τ (xσ ¯ yτ ) defines a surjective isometry. We
see that this is an isometry precisely as in the proof of Theorem

prodsys
4.8.

To see surjectivity let us choose ρ ∈ T and zρ ∈ Eρ. If ρ ≥ τ then consider xρ as an
element of Eρ−τ ¯Eτ and apply the prescription to see that kρxρ is in the range of uτ . If
ρ < τ , then apply the prescription to 1¯ γτρxρ ∈ E0 ¯ Eτ .

E_0cor 5.5 Corollary. The family ϑ =
(
ϑτ

)
τ∈T of endomorphisms ϑτ : Ba(E) → Ba(E ¯ Eτ ) =

Ba(E) defined by setting
ϑτ (a) = a¯ idEτ

forms an E0–semigroup.
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Proof. Of course, uσ+τ ◦ (id¯uστ ) = uτ ◦ (uσ ¯ id). So, the semigroup property follows
directly from E ¯ Eσ+τ = E ¯ (Eσ ¯ Eτ ) = (E ¯ Eσ)¯ Eτ .

kident 5.6 Remark. Making use of the identifications given by (
indtensor
5.1) and (

tensorid
4.2), the proof of

Theorem
indtensorT
5.4, actually, shows that, kσ ¯ id = kσ+τ . Putting σ = 0 and making use of

Remark
1tensor
4.6, we find

kτ = (k0 ¯ id)(ξ0 ¯ id) = ξ ¯ id .

5.7 Corollary. kτ is an element of Ba(Eτ , E). The adjoint mapping is

k∗τ = ξ∗ ¯ id : E = E ¯ Eτ −→ Eτ .

Therefore, k∗τkτ = idEτ and kτk
∗
τ is a projection onto the range of kτ .

main 5.8 Theorem. Define the family j =
(
jτ

)
τ∈T of representations, by setting jτ = ϑτ ◦ j0

and let A∞ be as in Definition
modMd
3.1. Then (A∞, j) is a minimal weak Markov flow and

(Ba(E), j) is a maximal weak Markov flow of the CP-semigroup T with cyclic vector ξ.
ϑ is a maximal E0–dilation of the CP-semigroup T . The restrictions ϑτ ¹ A∞ form a

minimal e0–dilation.

Proof. Postponing cyclicity of ξ, the remaining statements are clear, if we show the
Markov property jσ(1)jτ (b)jσ(1) = jσ(Tτ−σ(b)) for σ ≤ τ . By definition of j and the
semigroup property of ϑ it is enough to restrict to σ = 0. We have

〈ξ, jτ (b)ξ〉 = 〈ξ ¯ ξτ , (j0(b)¯ id)(ξ ¯ ξτ )〉 = 〈ξτ , bξτ 〉 = Tτ (b)

by Corollary
j0def
5.3 and Proposition

unit
4.4. Hence, p0jτ (b)p0 = |ξ〉Tτ (b)〈ξ| = j0(Tτ (b)).

Let us come to cyclicity. It is enough to show that for each τ ∈ T, t = (tn, . . . , t1) ∈ Jτ ,
bn, . . . , b0 ∈ B, and (sn, . . . , s1) = o(t) ∈ Iτ (cf. Proposition

orderprop
4.1)

ϑsn(bn) . . . ϑs1(b1)ϑ0(b0)ξ = ξ ¯ bnξtn ¯ . . .¯ b1ξ
t1b0, (5.2) cyclic

because by Remarks
iident
4.9 and

kident
5.6, ξ¯ bnξtn ¯ . . .¯ b1ξ

t1b0 = kτ it(bnξtn ¯ . . .¯ b1ξt1b0), and
E is spanned by these vectors. First, observe that

ϑτ (b)ξ = (|ξ〉b〈ξ| ¯ id)(ξ ¯ ξτ ) = ξ ¯ bξτ . (5.3) bshift

Now we proceed by induction on n. Extending (
cyclic
5.2) to the empty tuple (i.e. τ = 0), the

statement is true for n = 0. Let us assume that (
cyclic
5.2) holds for n and choose tn+1 > 0 and

bn+1 ∈ B. Then by (
bshift
5.3) and Remark

kident
5.6

ϑtn+1+τ (bn+1)(ξ ¯ bnξ
tn ¯ . . .¯ b1ξ

t1b0)

= (ϑtn+1(bn+1)¯ idEτ )(ξ ¯ bnξ
tn ¯ . . .¯ b1ξ

t1b0)

= (ϑtn+1(bn+1)ξ)¯ bnξtn ¯ . . .¯ b1ξ
t1b0

= ξ ¯ bn+1ξ
tn+1 ¯ bnξtn ¯ . . .¯ b1ξ

t1b0.

In principle, our construction finishes here. It seems, however, interesting to see clearly
that jτ is nothing but the left multiplication from Eτ . The following obvious proposition
completely settles this problem.
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kpt 5.9 Proposition. We have kτbk
∗
τ = ϑτ

(|ξ〉b〈ξ|) = jτ (b). In particular, pτ = kτk
∗
τ .

5.10 Remark. Let (k∗τ )σ = k∗τkσ be the family associated with k∗τ by Proposition
uniprop
A.3.

One may check that

(k∗τ )σ =

{
γτσ for σ ≤ τ

γ∗στ for σ ≥ τ.

Hence, the action of k∗τ on an element kσxσ ∈ E coming from Eσ can be interpreted as
lifting this element to Eτ via ξτ−σ, if σ is too small, and truncating it to Eτ via (ξσ−τ )∗,
if σ is too big.

5.11 Observation. Since ξ is cyclic for A∞, the ideal in A∞ (or in Ba(E)) generated
by p0 consists precisely of the finite rank operators F(E). The question, whether F(E) is
already all of A∞, is equivalent to the question, whether pτ ∈ F(E) for all τ ∈ T. This
is true, for instance, in all cases when pτ = p0 (cf. Example

E0
3.2). In general, we do not

know the answer.

5.12 Proposition. The endomorphisms ϑτ are strict.

Proof. This trivially follows from the observation that vectors of the form x¯ xτ (x ∈
E, xτ ∈ Eτ ) form a total subset of E.

5.13 Conclusion. The e0–semigroup ϑ ¹ A∞ is (up to completion) the e0–dilation con-
structed in

Bha96p
[Bha96]. More precisely, if B is represented faithfully on a Hilbert space

G, then the Stinespring construction (Example
Stinespring
2.16) gives rise to a (pre-)Hilbert space

H = E¯G and a faithful representation ρ of A∞ by operators on H. Lifting ϑ to ρ(A∞),
we obtain the e0–semigroup from

Bha96p
[Bha96].

New in our construction is the extension to an E0–semigroup of strict endomorphisms
of Ba(E). Of course, Ba(E) also has a faithful image in B(H). However, it seems not
possible to find this subalgebra easily without reference to the module description. The
module description also allows us to show that, if T is a normal and strongly continuous
CP-semigroup on a von Neumann algebra B ⊂ B(G) (i.e. T is continuous in the strong
topology of B), then ϑ is normal and strongly continuous, too; see Section

vN
12. In Section

B(G)
13 we will see that in the case when B = B(G) (and T normal), then ρ(Ba(E)) is all of
B(H) (Corollary

BHdil
13.10). In this way, we recover a result from

Bha98p
[Bha98a].

6 Weak Markov flows of CP-semigroups: Algebraic

version
algvers

In this section we give the definition of weak Markov flow of a CP-semigroup in an alge-
braic fashion and answer as to how far minimal and maximal dilations are unique. The
definition only refers to the family j of homomorphisms, but no longer to the representa-
tion module. Other structures like a family of conditional expectations ϕτ = pτ • pτ can
be reconstructed; see Propositions

incproj
6.2 and

tCE
6.8. This is the only section in these notes,

where j0 is not necessarilly faithful; cf. Definition
faithful
6.3.

If we want to encode properties of a weak Markov flow, which are of an essentially
spatial nature, then we have to require that the GNS-representation of the conditional
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expectation ϕ0 is suitably faithful. This leads to the notion of an essential weak Markov
flow. Among all such flows we are able to single out two universal objects, which are
realized by the minimal and the maximal weak Markov flow in Theorem

main
5.8.

algMd 6.1 Definition. Let T =
(
Tt

)
t∈T be a conservative CP-semigroup on a unital C∗–algebra

B. A weak Markov flow of T is a pair (A, j), where a A is a pre–C∗–algebra and j =
(
jt

)
t∈T

is a family of homomorphisms jt : B → A, fulfilling the Markov property (
Markov
3.1)

Let I be a subset of T . ByAI we denote the algebra generated by
{
jt(b) : t ∈ I, b ∈ B}

.
In particular, we set At] = A[0,t], A[t = A[t,∞), and A∞ = A[0,∞) =

⋃
t∈T
At].

A morphism from a weak Markov flow (A, j) of T to a weak Markov flow (C, k) of T
is a contractive ∗–algebra homomorphism α : A → C fulfilling

α ◦ jt = kt for all t ∈ T.

α is an isomorphism, if it is also an isomorphism between pre–C∗–algebras (i.e. α is iso-
metric onto). The class consisting of weak Markov flows and morphisms among them
forms a category.

In the original definition in
BhPa94
[BP94] the family of projections js(1) in (

Markov
3.1) is replaced

by a more general family of projections ps, so that the Markov property reads psjt(b)ps =
js(Tt−s(b)) (s ≤ t). However, one easily checks that ps ≥ js(1). (Putting t = s and b = 1,

we obtain psjs(1)ps = js(1). Multiplying this by (1− ps) ∈ Ã from the left and from the
right we obtain js(1) = psjs(1) and js(1) = js(1)ps, respectively.) Therefore, j fulfills
(
Markov
3.1).

Actually, in
BhPa94
[BP94] the family pt is required to be increasing. Proposition

incproj
6.2 shows

that the jt(1) fulfill this requirement, automatically. After that, we always set pt := jt(1).
This is natural also in view of Proposition

tCE
6.8. The existence of conditional expectations

ϕt onto At], guaranteed therein, usually, forms a part of the definitition of Markov process
used by other authors; see e.g.

Acc78,AFL82,Kuem85,Sau86
[Acc78, AFL82, Küm85, Sau86].

incproj 6.2 Proposition. The jt(1) form an increasing family of projections, i.e. js(1) ≤ jt(1)
for s ≤ t.

Proof. For arbitrary projections p, q with pqp = p we have qp = p = pq so that p ≤ q.
(Indeed, consider the |(1− q)p|2 = p(1 − q)2p = p(1 − q)p = 0 in Ã. This implies
(1− q)p = p− qp = 0.) Using this, our assertion follows directly from (

Markov
3.1).

Proposition
incproj
6.2 shows that the pt form an approximate unit for the C∗–completion of

A∞. This shows, in particular, that A∞ is non-unital, unless pt = 1 for some t ∈ T. In a
faithful non-degenerate representation of A∞ the pt converge to 1 strongly.

faithful 6.3 Definition. A weak Markov flow j is called faithful, if j0 is injective.

Of course, the main goal in constructing a weak Markov flow is to recover Tt in terms
of jt. This is done by p0jt(b)p0 = j0(Tt(b)) and, naturally, leads to the requirement that
j0 should be injective. Nevertheless, as the following remark shows, there are interesting
examples of weak Markov flows where j0 is not injective.
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shiftM 6.4 Remark. If j is a weak Markov flow, then also the time shifted family jτ with
jτ
t = jt+τ for some fixed τ ∈ T is a weak Markov flow. The jτ are, in general, far from

being injective. This shows existence of a non-faithful weak Markov flow. Of course, a
trivial example is jt = 0 for all t.

Now we are going to construct a univeral mapping T very similar to the correla-
tion kernels introduced in

AFL82
[AFL82]. We will see that T and j0 determine (A∞, j) com-

pletely. Moreover, (A∞, j) always admits a faithful representation on a suitable pre-
Hilbert j0(B)–module Ej (closely related to E as constructed in Theorem

main
5.8) as a mini-

mal flow in the sense of Definition
modMd
3.1. This flow always extends to Ba(Ej) as a maximal

flow on Ej. Both flows are determined by j0 up to unitary equivalence and enjoy universal
properties.

6.5 Lemma. Denote by B =
⋃

n∈N0

(T×B)n the set of all finite tuples
(
(t1, b1), . . . , (tn, bn)

)

(n ∈ N) of pairs in T× B. Let V be a vector space and T : B→ V a mapping, fulfilling

T
(
(t1, b1), . . . , (s, a), (t, b), (s, c), . . . , (tn, bn)

)

= T
(
(t1, b1), . . . , (s, aTt−s(b)c), . . . , (tn, bn)

)
, (6.1) T1

whenever s ≤ t; a, b, c ∈ B, and

T
(
(t1, b1), . . . , (tk,1), . . . , (tn, bn)

)
= T

(
(t1, b1), . . . , (̂tk,1), . . . , (tn, bn)

)
, (6.2) T2

whenever tk−1 ≤ tk (1 < k), or tk+1 ≤ tk (k < n), or k = 1, or k = n.
Then T is determined uniquely by the values T

(
(0, b)

)
(b ∈ B). Moreover, the range

of T is contained in span T
(
(0,B)

)
.

Proof. In a tuple
(
(t1, b1), . . . , (tn, bn)

) ∈ B go to the position with maximal time tm.
By (

T1
6.1) we may reduce the length of this tuple by 2, possibly, after having inserted by

(
T2
6.2) a 1 at a suitable time in the neighbourhood of (tm, bm). This procedure may be

continued until the length is 1. If this is achieved, then we insert (0,1) on both sides and,
making again use of (

T1
6.1), we arrive at a tuple of the form

(
(0, b)

)
.

6.6 Corollary. Let (A, j) be a weak Markov flow of a conservative CP-semigroup T .
Then the mapping Tj, defined by setting

Tj

(
(t1, b1), . . . , (tn, bn)

)
= p0jt1(b1) . . . jtn(bn)p0,

is the unique mapping Tj : B→ j0(B), fullfilling (
T1
6.1), (

T2
6.2), and

Tj

(
(0, b)

)
= j0(b). (6.3) T3

0CE 6.7 Corollary. The mapping ϕ0 : a 7→ p0ap0 defines a conditional expectation A∞ → A0.

tCE 6.8 Proposition. For all τ ∈ T the mapping ϕτ : a 7→ pτapτ defines a conditional expec-
tation A∞ → Aτ .
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Proof. Consider the time shifted weak Markov flow jτ as in Remark
shiftM
6.4. Since jτ

0 = jτ ,
it follows by Corollary

0CE
6.7 that pτ • pτ defines a conditional expectation A[t → jτ (B).

Now consider a tuple in B and split it into subtuples which consist either totally of
elements at times ≤ τ , or totally at times > τ . At the ends of these tuples we may insert
pτ , so that the elements at times > τ are framed by pτ . By the first part of the proof
the product over such a subtuple (including the surrounding pτ ’s) is an element of jτ (B).
The remaining assertions follow by the fact that pτ is a unit for At].

6.9 Theorem. There exists a unique mapping T : B −→ B, fullfilling (
T1
6.1), (

T2
6.2), and

T
(
(0, b)

)
= b for all b ∈ B. We call T the correlation kernel of T .

Proof. Suppose that j is a faithful weak Markov flow. Then the mapping j−1
0 ◦Tj has the

desired properties. Existence of a faithful weak Markov flow has been settled in Theorem
main
5.8.

6.10 Corollary. Let j be a weak Markov flow. Then Tj = j0 ◦ T.

6.11 Remark. In the sense of
Mur97
[Mur97] the module E from Theorem

main
5.8 may be consid-

ered as the Kolmogorov decomposition of the positive definite B–valued kernel k : B×B→
B, defined by setting

k
((

(tn, bn), . . . , (t1, b1)
)
,
(
(sm, cm), . . . , (s1, c1)

))

= T
(
(t1, b

∗
1), . . . , (tn, b

∗
n), (sm, cm), . . . , (s1, c1)

)
.

More generally, if (A, j) is a weak Markov flow, then the GNS-module Ej associated with
j (see Definition

GNSj
6.12 below) is the Kolmogorov decomposition for the positive definite

kernel j0 ◦ k.
This interpretation throws a bridge to the reconstruction theorem in

AFL82
[AFL82], where

k is a usual C–valued kernel, and the original construction of the minimal weak Markov
flow in

BhPa94
[BP94], which starts by writing down a positive definite kernel on B × G (where

G denotes a Hilbert space on which B is represented). Cf. also
Acc78
[Acc78] and

Bel85
[Bel85].

GNSj 6.12 Definition. Let (A, j) be a weak Markov flow. Then by (Ej, ξj) we denote the
GNS-representation of ϕ0 : A∞ → A0. We call Ej the GNS-module associated with (A, j).
Denote by αj : A∞ → Ba(Ej) the canonical homomorphism. Obviously, αj : (A∞, j) →
(αj(A∞), αj ◦j) is a morphism of weak Markov flows. We call (αj(A∞), αj ◦j) the minimal
weak Markov flow associated with (A, j) and we call (Ba(Ej), αj ◦ j) the maximal weak
Markov flow associated with (A, j).

Observe that the minimal and the maximal weak Markov flow associated with a faith-
ful flow (A, j) are essential flows in the sense of Definition

modMd
3.1. It is natural to ask under

which conditions the representation of A∞ on Ej is faithful or, more generally, extends to
a faithful (isometric) representation of A on Ej. In other words, we ask under which con-
ditions a weak Markov flow is isomorphic to an essential flow on a pre-Hilbert B–module.
The following definition and proposition settle this problem. We leave a detailed analysis
of similar questions for cyclic flows to future work. We mention, however, that satisfactory
answers exist.
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essdef 6.13 Definition. A weak Markov flow (A, j) is called essential, if the ideal I0 in A∞
generated by p0 is an ideal also in A, and if I0 is essential in the C∗–completion of A (i.e.
for all a ∈ A we have that aI0 = {0} implies a = 0).

Let us drop for a moment the condition in Definition
modMd
3.1 that j0 be faithful.

essprop 6.14 Proposition. A weak Markov flow (A, j) is isomorphic to an essential weak Markov
flow on Ej in the sense of Definition

modMd
3.1 (j0 not necessarily faithful), if and only if it

is essential in the sense of Definition
essdef
6.13. In this case also ϕ(a) = p0ap0 defines a

conditional expectation ϕ : A → A0.

Proof. We have span
(AA∞p0

)
= span

(A(A∞p0)p0

) ⊂ span
(AI0p0

)
= span

(
I0p0

)
=

A∞p0. Therefore, A∞p0 is a left ideal in A so that ϕ, indeed, takes values in A0. By con-
struction ϕ is bounded, hence, extends toA. (Observe thatA0 is the range of a C∗–algebra
homomorphism and, therefore, complete.) Now our statement follows immediately by an
application of Lemma

essnorm
B.1 to the extension of ϕ.

If j is essential, then we identify A as a pre–C∗–subalgebra of Ba(Ej). In this case,
we write (A∞, j) and (Ba(Ej), j) for the minimal and the maximal weak Markov flow
associated with (A, j), respectively. An essential weak Markov flow (A, j) lies in between
the minimal and the maximal essential weak Markov flow associated with it, in the sense
that A∞ ⊂ A ⊂ Ba(Ej).

Observe that Ej is justA∞p0 with cyclic vector p0. If we weaken the cyclicity condition
in Definition

modMd
3.1 to E ⊂ A∞p0, then in order to have Proposition

essprop
6.14 it is sufficient to

require that I0 is an essential ideal in A (without requiring that I0 is an ideal in A).
Proposition

essprop
6.14 does not mean that ϕ0 is faithful. In fact, as ϕ0(jt(1) − j0(1)) = 0,

we see that ϕ0 is faithful, if and only if jt(1) = j0(1) for all t ∈ T. If j is also faithful,
then we are precisely in the situation as described in Example

E0
3.2.

The C∗–algebraic condition in Definition
essdef
6.13 seems to be out of place in our pre–

C∗–algebraic framework for the algebra A. In fact, we need it only in order to know
that the GNS-representation of A is isometric. This is necessary, if we want that the
E0–semigroup ϑ in Theorem

main
5.8 extends to the completion of Ba(E); see Section

C*
10.

Example
counter
B.3 shows that the C∗–algebraic version is, indeed, indispensable.

Notice that there exist interesting non-essential weak Markov flows. For instance, ten-
sor products of weak Markov flows with E0–semigroups are rarely essential; see

Bha98p
[Bha98a]

for details.
By Observation

multiplier
B.2 I0 may be identified with the compact operators K(Ej). The

multiplier algebra of K(Ej) is Ba(Ej). In other words, Ba(Ej) is the biggest C∗–algebra,
containing K(Ej) as an essential ideal. This justifies to say ‘maximal essential weak
Markov flow’.

6.15 Observation. Obviously, the minimal weak Markov flow (A∞, j) from Theorem
main
5.8 is essential, minimal, and faithful. For reasons which will become clear soon, and in
accordance with Definition

modMd
3.1, we refer to (A∞, j) as the minimal weak Markov flow.

Similarly, we refer to (Ba(E), j) as the maximal weak Markov flow.

6.16 Definition. For a (unital) C∗–algebra B we introduce the homomorphism category
h(B). The objects of h(B) are pairs (A, j) consisting of a C∗–algebra A and a surjective
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homomorphism j : B → A. A morphism i : (A, j) → (C, k) in h(B) is a homomorphism
A → C, also denoted by i, such that i ◦ j = k. Clearly, such a morphism exists, if and
only if ker(j) ⊂ ker(k). If there exists a morphism, then it is unique.

In the sequel, by (E, ξ) we always mean then GNS-module of the minimal weak Markov
flow as constructed in Sections

1st
4 and

2nd
5. Also j, the notions related to AI , and ϕτ refer

to the minimal weak Markov flow. (C, k) stands for an essential weak Markov flow. CI

and related notions are defined similar to AI . (The flow k is not to be confused with the
canonical mappings kτ in Section

2nd
5.)

Mlem 6.17 Lemma. Let (C, k) be an essential weak Markov flow of T . Furthermore, denote by
(Ek,1k) the GNS-construction of k0 : B → C0 = k0(B). Then Ek = E ¯ Ek and ξk =
ξ ¯ 1k. Moreover, in this identification we have

kt(b) = jt(b)¯ id . (6.4) Mhom

Proof. Clearly, Ek = k0(B), when considered as a Hilbert B–k0(B)–module via bk0(b
′) :=

k0(bb
′) and 1k = k0(1). It follows that E ¯Ek is just E equipped with the new C0–valued

inner product 〈x, x′〉k = k0(〈x, x′〉) divided by the kernel N of this inner product. ξ ¯ 1k

is just ξ + N.
Let x = jtn(bn) . . . jt1(b1)ξ and x′ = jt′m(b′m) . . . jt′1(b

′
1)ξ (ti, t

′
j ∈ T; bi, b

′
j ∈ B) be ele-

ments in E. Then

〈x, x′〉 = T
(
(t1, b

∗
1), . . . , (tn, b

∗
n), (t′m, b′m) . . . , (t′1, b

′
1)

)
.

For y = ktn(bn) . . . kt1(b1)ξ
k and y′ = kt′m(b′m) . . . kt′1(b

′
1)ξ

k in Ek we find

〈y, y′〉 = Tk

(
(t1, b

∗
1), . . . , (tn, b

∗
n), (t′m, b′m) . . . , (t′1, b

′
1)

)
.

Therefore, by sending x¯1k to y we define a unitary mapping u : E¯Ek → Ek. Essentially
the same computations show that the isomorphism Ba(E ¯ Ek) → Ba(Ek), a 7→ uau−1

respects (
Mhom
6.4).

6.18 Proposition. Let (C = Ba(Ek), k) and (C ′ = Ba(Ek′), k′) be two maximal weak
Markov flows. Then there exists a morphism α : (C, k) → (C ′, k′), if and only if there
exists a morphism i : (C0, k0) → (C ′0, k′0). If i exists, then α is unique. In particular,
(C, k) and (C ′, k′) are isomorphic weak Markov flows, if and only if (C0, k0) and (C ′0, k′0)
are isomorphic objects in h(B).

Proof. If i does not exist, then there does not exist a morphism α. So let us assume
that i exists. In this case we denote by (Ekk′ ,1kk′) the GNS-construction of i. One easily
checks that Ek ¯ Ekk′ = Ek′ and 1k ¯ 1kk′ = 1k′ . Thus, Ek′ = Ek ¯ Ekk′ . By Observation
contractive
2.20 it follows that α : a 7→ a¯id defines a contractive homomorphism Ba(Ek) → Ba(Ek′).
Clearly, we have k′t(b) = kt(b)¯ id, so that α is a morphism of weak Markov flows.

If i is an isomorphism, then we may construct Ek′k as the GNS-module of i−1. We find
Ek′ ¯Ek′k = Ek¯Ekk′ ¯Ek′k = Ek. This enables us to reverse the whole construction, so
that α is an isomorphism. The remaining statements are obvious.
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6.19 Corollary. Let (C, k) be an arbitrary weak Markov flow. Then the minimal and
maximal weak Markov flows associated with (C, k) are determined up to isomorphism by
the isomorphism class of (C0, k0) in h(B).

6.20 Corollary. Let (C0, k0) be an object in h(B). Then there exist a unique minimal
and a unique maximal weak Markov flow extending k0.

Proof. Construct again the GNS-module Ek of k0 and set Ek = E¯Ek. Then, obviously,
(
Mhom
6.4) defines a maximal weak Markov flow (Ba(Ek), k) with a minimal weak Markov flow

sitting inside. By the preceding corollary these weak Markov flows are unique.

The following theorem is proved by appropiate applications of the preceding results.

universal 6.21 Theorem. The maximal weak Markov flow (Ba(E), j) is the unique universal object
in the category of maximal weak Markov flows. In other words, if (C, k) is another maximal
weak Markov flow, then there exists a unique morphism α : (Ba(E), j) → (C, k).

The minimal weak Markov flow (A∞, j) is the unique universal object in the category
of all essential weak Markov flows. In other words, if (C, k) is an essential weak Markov
flow, then there exists a unique morphism α : (A∞, j) → (C, k). Moreover, if (C, k) is
minimal, then α is onto.

In this way we obtain a different proof of Corollary
E_0cor
5.5. (ϑτ is the morphism which

sends j to jτ .) Of course, also this proof is based on the factorization (
indtensor
5.1) so that there

is nothing new in it.
Let (C, k) be an essential weak Markov flow. We could ask, whether the E0–semigroup

ϑ on Ba(E) gives rise to an E0–semigroup on Ba(Ek) (or at least to an e0–semigroup
on C∞). A necessary and sufficient condition is that the kernels of Tt should contain the
kernel of k0. (In this case, Tt gives rise to a completely positive mapping T k

t on k0(B).
Denote by Ek

t the GNS-module of T k
t . It is not difficult to see that Ek¯Ek

t carries a faithful
representation of the time shifted weak Markov flow kt, and that the mapping a 7→ a¯ id
sends the weak Markov flow k on Ek to the weak Markov flow kt on Ek¯Ek

t . From this it
follows that the time shift on C∞ is contractive.) However, the following example shows
that this condition need not be fufilled, even in the case, when B is commutative, and
when T is uniformly continuous.

6.22 Example. Let B = C2. By setting Tt

(
z1
z2

)
= z1+z2

2

(
1
U

)
+ e−t z1−z2

2

(
1−1

)
we define

a conservative CP-semigroup T . We define a homomorphism k : C2 → C, by setting
k
(

z1
z2

)
= z1. Then k

(
0
2

)
= 0, but k ◦ Tt

(
0
2

)
= 1− e−t 6= 0 (for t 6= 0).

For these reasons we dispense with an algebraic formulation of e0–dilation and content
ourselves with the module version in Section

Mmod
3.

7 Units and cocycles
uco

In Section
1st
4 we started from a conservative CP-semigroup T on a unital C∗–algebra B.

We constructed a product system E¯ of pre-Hilbert B–B–modules Eτ and a unit ξ¯ for
this product system. This unit turned out to be unital and generating. In Section

2nd
5 we
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constructed an inductive limit E of the modules Eτ with the help of the unit. On E it
was possible to realize a weak Markov flow (Ba(E), j) and an E0–dilation ϑ of T .

In this section we reverse the proceeding and start with a product system and a unital
unit. We construct an associated conservative CP-semigroup and investigate in how far
the CP-semigroups are classified by such pairs. The results of Section

non1
8 indicate how the

constructions may be generalized to non-unital units bounded by 1, which correspond to
general contractive CP-semigroups.

7.1 Definition. Let B be a unital C∗–algebra. Let (E¯, ξ¯) be a pair consisting of a
product system E¯ of pre-Hilbert B–B–modules Eτ and a (unital) unit ξ¯ =

(
ξτ

)
τ∈T.

It is readily verified that T =
(
Tτ

)
τ∈T with Tτ (b) = 〈ξτ , bξτ 〉 defines a (conservative)

CP-semigroup on B. We call T the CP-semigroup associated with (E¯, ξ¯).
Suppose the unit ξ¯ is unital. Then the family

(
γτσ

)
σ≤τ

as defined in Section
2nd
5

provides an inductive limit over Eτ . We denote this inductive limit by Eξ = lim ind
ξ

Eτ in

order to indicate that it depends on the choice of the unit ξ¯. We say Eξ is the inductive
limit associated with ξ¯.

Again we find the factorization Eξ ¯ Eτ = Eξ so that ϑτ (a) = a ¯ id defines an
E0–semigroup on Ba(Eξ), the E0–semigroup associated with ξ¯. As j0 = |ξ〉b〈ξ| acts
faithfully on ξ, we find that (Ba(Eξ), j) with jτ = ϑτ ◦ j0 defines a weak Markov flow
of T , the weak Markov flow associated with ξ¯, and that ϑ is an E0–dilation of T , the
E0–dilation associated with ξ¯.

7.2 Proposition. Let T be the CP-semigroup associated with (E¯, ξ¯). Furthermore, let
(E0)¯, ξ¯0 , and E0 denote the product system, the unit, and the inductive limit, respec-
tively, constructed from T as in Sections

1st
4 and

2nd
5. Then for each τ ∈ T the mapping

uτ : bnξ
tn
0 ¯ . . .¯ b1ξ

t1
0 b0 7−→ bnξtn ¯ . . .¯ b1ξt1b0

(tn, . . . , t1) ∈ Jτ , bi ∈ B) extends uniquely to a two-sided isometry uτ : E0
τ → Eτ . In other

words, the product system (E0)¯ is isomorphic to a product subsystem of E¯. Of course,
uτ (ξ

τ
0 ) = ξτ .
The mapping

u : k0
τ (x

0
τ ) 7−→ kτuτ (x

0
τ )

(τ ∈ T, xτ ∈ E0
τ ) extends uniquely to an isometry u : E0 → E. In other words, E0 is

isomorphic to a submodule of E.
The product systems (E0)¯ and E¯ are isomorphic, if and only if ξ¯ is generating for

E¯. In this case also the weak Markov flows and the E0–dilations constructed on E0 and
on E are the same (up to unitary isomorphism).

Proof. Clear.

We see that, given a certain (conservative) CP-semigroup T , then there is essentially
one pair (E¯, ξ¯) with a generating unit with which T is associated.

7.3 Theorem. CP-semigroups are classified by pairs (E¯, ξ¯) consisting of a product
system E¯ and a generating unital unit ξ¯, up to isomorphism of the pairs.
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This is the classification of CP-semigroups by product systems and units. In
Arv89
[Arv89]

Arveson classifies (normal, strongly continuous) E0–semigroups on B(G) by product sys-
tems of Hilbert spaces up to cocycle conjugacy. In the sequel, we look in how far CP-
semigroups are classified by their product sytems alone, and what cocycle conjugacy could
mean in our context.

7.4 Definition. Let B be a unital C∗–algebra, let E be a pre-Hilbert B–module, and let
ϑ be an E0–semigroup on Ba(E). A family u =

(
uτ

)
τ∈T of operators uτ ∈ Ba(E) is called

a left (right) cocycle for ϑ, if for all σ, τ ∈ T

uτ+σ = uτϑτ (uσ)
(
uτ+σ = ϑτ (uσ)uτ

)
.

A cocycle u is called contractive, positive, unitary, isometric, partially isometric, if uτ is
contractive, positive, unitary, isometric, partially isometric, respectively, for each τ ∈ T.
A cocycle is called local, if uτ is in the relative commutant ϑτ (B

a(E))′ of ϑτ (B
a(E)) in

Ba(E) for each τ ∈ T. (In this case u is a left and a right cocycle.)
Let ϑ be the E0–semigroup associated with a pair (E¯, ξ¯). A cocycle u for ϑ is called

adapted, if pτuτpτ = uτ for each τ ∈ T (cf. Proposition
kpt
5.9). In other words, uτ is the image

of the unique operator uτ = k∗τuτkτ on Eτ under the embedding kτ •k∗τ : Ba(Eτ ) → Ba(E).

Of course, u =
(
uτ

)
τ∈T is a left cocycle, if and only if u∗ =

(
u∗τ

)
τ∈T is a right cocycle.

Moreover, if u is a unitary left cocycle for ϑ, then ϑ̂τ (a) = uτϑτ (a)u∗τ defines another
E0–semigroup on Ba(E). We provide the following lemma on local cocycles for later use
in Section

doco
14, where we establish an order isomorphism for partial orders defined on a

certain set of local cocycles and and a certain set of CP-semigroups on a von Neumann
algebra.

loccoc 7.5 Lemma. Let ϑ be the E0–semigroup associated with a pair (E¯, ξ¯). Let w be a
family of operators wτ on Eξ and define wτ = k∗τwτkτ ∈ Ba(Eτ ). Then w is a local
cocycle for ϑ, if and only if the following conditions are satisfied.

1. All wτ are B–B–linear.

2. wτ = id¯wτ in Ba(Eξ ¯ Eτ ) = Ba(Eξ).

3. wσ ¯ wτ = wσ+τ for all σ, τ ∈ T.

Of course, the wτ are unique and w is adapted.
Conversely, if w is a family of operators wτ ∈ Ba(Eτ ) fulfilling 1 and 3, then 2 defines

a local cocycle w for ϑ.

Proof. Recall that kτ = ξ ¯ idEτ and k∗τ = ξ∗ ¯ idEτ . Therefore, it is sufficient to
consider the set-up where E is a pre-Hilbert B–module with a unit vector ξ, where F is
a pre-Hilbert B–B–module, and where w is an operator on E ¯ F which commutes with
all elements of Ba(E)¯ id ⊂ Ba(E ¯ F ).

Of course, for any B–B–linear mapping w ∈ Ba(F ) the mapping id¯w is well-defined
and commutes with a¯ id for each a ∈ Ba(E).
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Conversely, let w ∈ Ba(E ¯ F ) be in the relative commutant of Ba(E) ¯ id. Set
w = (ξ∗ ¯ id)w(ξ ¯ id) ∈ Ba(F ). By j(b) = |ξ〉b〈ξ| we define a representation of B on E.
Then j(b)¯ id is an element of Ba(E)¯ id and, therefore, commutes with w. We find

bw = (ξ∗ ¯ id)(j(b)¯ id)w(ξ ¯ id) = (ξ∗ ¯ id)w(j(b)¯ id)(ξ ¯ id) = wb,

i.e. w is B–B–linear. In particular, id¯w is a well-defined element of Ba(E ¯ F ). For
arbitrary x ∈ E and y ∈ F we find

w(x¯ y) = w(|x〉〈ξ| ¯ id)(ξ ¯ y) = (|x〉〈ξ| ¯ id)w(ξ ¯ y)

= x¯ wy = (id¯w)(x¯ y),

where |x〉〈ξ| ¯ id is an element of Ba(E)¯ id and, therefore, commutes with w. In other
words, w = id¯w.

Therefore, there is a one-to-one correspondence between operators w in the commutant
of Ba(E)¯ id and B–B–linear operators in Ba(F ). Applying this to F = Eτ we see that
a family

(
wτ

)
of mappings in the commutant of Ba(E)¯ idEτ is a cocycle, if and only if

the corresponding family
(
wτ

)
fulfills 3.

Let us return to the problem of finding the right notion of cocycle conjugacy. Notice
that the members uτ of an adapted right cocycle u are necessarily of the form uτ = |kτζτ 〉〈ξ|
where ζτ are the unique elements k∗τuτξ ∈ Eτ . Indeed, by the cocycle property we have
uτ = ϑ0(uτ )u0 = uτu0. By adaptedness we have u0 = u0p0 and uτ = pτuτ . Hence,
uτ = kτk

∗
τuτu0|ξ〉〈ξ| = |kτζτ 〉〈ξ|.

adacoc 7.6 Proposition. Let ϑ be the E0–semigroup associated with a pair (E¯, ξ¯). Then by
setting ζτ = k∗τuτξ we establish a one-to-one correspondence between adapted right cocycles
u for ϑ and units ζ¯ =

(
ζτ

)
.

Proof. Let u be an adapted right cocycle. Then

ζσ+τ = k∗σ+τuσ+τξ = k∗σ+τϑτ (uσ)uτξ = k∗σ+τ (uσξ ¯ k∗τuτξ) = k∗σuσξ ¯ k∗τuτξ = ζσ ¯ ζτ ,

i.e. ζ¯ is a unit.
Conversely, let ζ¯ be a unit and set uτ = |kτζτ 〉〈ξ|. Then

ϑτ (uσ)uτξ = (uσ ¯ id)(ξ ¯ ζτ ) = kσ+τ (ζσ ¯ ζτ ) = uσ+τξ.

Moreover, uσ+τ is 0 on the orthogonal complement (1 − |ξ〉〈ξ|)E of ξ. In other words,
uσ+τ = ϑτ (uσ)uτ so that the u is an adapted right cocycle for ϑ.

coccondef 7.7 Definition. If in the situation of Proposition
adacoc
7.6 the cocycle is contractive, we say

the CP-semigroup S associated with ζ¯ is cocycle subconjugate to the CP-semigroup T
associated with ξ¯.

If both ξ¯ and ζ¯ are generating and unital, then we say S is cocycle conjugate to T .

coco 7.8 Theorem. Cocycle conjugacy is an equivalence relation among conservative CP-
semigroups on B, and CP-semigroups are classified by their product systems up to cocycle
conjugacy.
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Proof. Of course, classifying CP-semigroups by their product systems is an equivalence
relation. If S is cocycle conjugate to T , then S and T have the same product system E¯,
but possibly different unital generating units ξ¯ and ζ¯. Hence, Proposition

adacoc
7.6 tells us

that two CP-semigroups with the same product system, indeed, are cocycle conjugate.

Notice that our cocycles appearing in the definition of cocycle conjugacy, in general, are
partial isometries. The cocycle conjugacy used by Arveson is through unitary cocylces. We
see, however, in the following theorem that in the case of E0–semigroups our cocycles are
unitaries, automatically. In other words, it is the additional structure of E0–semigroups
(compared with a conservative CP-semigroup) which leads to unitary cocycles (cf. also
Example

E0
3.2). In Section

B(G)
13 we will see that in the case of normal E0–semigroups on B(G)

our product systems of Hilbert modules are in one-to-one correspondence with Arveson’s
product systems of Hilbert spaces so that the classification of Arveson and ours coincide.
More precisely, we will see that Arveson’s product system sits inside our product system
and, conversely, determines the structure of our product system completely; see Corollary
Hsprod
13.14.

E_0rem 7.9 Theorem. Let ϑ and ϑ′ be E0–semigroups on B which are cocycle conjugate (as CP-
semigroups). Then the unique right cocycle u with respect to ϑ providing this equivalence
is a unitary cocycle.

Conversely, if u is a unitary right cocycle with respect to ϑ, then the E0–semigroup(
u∗τϑτuτ

)
is cocycle conjugate to ϑ (as CP-semigroup).

Proof. Recall from Example
E0
3.2 that pτ = 1. So any cocycle is adapted. And by

Proposition
adacoc
7.6 a right cocycle u providing cocycle conjugacy of two E0–semigroups is

unique.
We encourage the reader to check that for a given E0–semigroup ϑ on B the Hilbert

B–modules Eτ = B equipped with the left multiplication b.b′ = ϑτ (b)b
′, indeed, form a

product system. Of course, the elements ξτ = 1 form a generating unital unit for this
product system. The inductive limit provided by this unit is again E = B with cyclic
vector ξ = 1. If we construct the maximal dilation as described in Section

2nd
5 we recover

nothing but the original E0–semigroup acting on Ba(E) = Ba(B) = B. All these assertions
follow from the fact that B as a right module has a module basis which consists of one
element 1, and any right linear mapping on B is determined by its value at 1.

Let ϑ′ be another E0–semigroup on B with the same product system Eτ and unit ξ′τ .
Of course, ξ′τ 6= 1 in the above identification, unless ϑτ = ϑ′τ . The mapping |ξ′τ 〉〈ξτ | is
nothing but multiplication with ξ′τ ∈ Eτ = B from the left. (〈ξτ , •〉 : Eτ = B → B is just
the identity mapping.) It is an isometry as ξ′τ has length

√
〈ξ′τ , ξ′τ 〉 = 1. It is surjective,

because Eτ is generated as a right module by ξ′τ . (Otherwise Eτ was not isomorphic to
the corresponding member in the product system for ϑ′.) In other words, ξ′τ ∈ B is a
unitary. Observing that kτ is nothing but the identification mapping Eτ = B → B = E,
we find that also the lifting

kτ |ξ′τ 〉〈ξτ |k∗τ = |kτξ
′
τ 〉〈kτξτ | = |kτξ

′
τ 〉〈ξ| = uτ

of |ξ′τ 〉〈ξτ | from Ba(Eτ ) = B to Ba(E) = B is a unitary.
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Conversely, let u be a unitary right cocycle with respect to ϑ, and set ϑ′τ = u∗τϑτuτ .
Interpret uτ as an element of B = Ba(Eτ ). Then for b ∈ B, b′ ∈ Eτ = B we find

b.(uτb
′) = ϑτ (b)uτb

′ = uτϑ
′
τ (b)b

′.

In other words, the mapping which sends b′ ∈ E ′
τ (where E ′¯ is the product system of ϑ′)

to uτb
′ ∈ Eτ is a two-sided isomorphism E ′

τ → Eτ . So ϑ and ϑ′ have the same product
system.

7.10 Remark. The innocuous looking identifications in the preceding proof, actually,
require some comments to avoid confusion. In fact, all modules appearing there are
isomorphic as right Hilbert B–modules to B. This isomorphism even includes the cyclic
vector 1 contained in B. Indeed, also Eτ with the cyclic vector ξ′τ is isomorphic to B with
the cyclic vector 1. In other words, even the mapping ξτ 7→ ξ′σ extends uniquely as an
isomorphism of right Hilbert modules. It is the left multiplication which distinguishes the
different modules.

The decisive assumption of cocycle conjugacy is that there exists a unitary on Eτ

(i.e. a unitary in B) which intertwines ϑτ and ϑ′τ . (This is the meaning of isomorphism
of product systems.) However, even in the case of automorphisms this assumption is
not true in general. Let E = B be the Hilbert B–B–module B with the natural left
multiplication by elements of B, and let Eα = B be the Hilbert B–B–module B where B
acts via an automorphism α. If there exists an intertwining unitary for these two-sided
Hilbert modules, this means that α is inner. Of course, in general not all automorphisms
of a C∗–algebra are inner. In fact, classifying all Eα up to two-sided unitary isomorphism
is nothing but classifying the automorphisms of B up to (inner) unitary equivalence. We
can reformulate the contents of Theorem

E_0rem
7.9 as follows. Two E0–semigroups on B are

cocycle conjugate, if and only if there exists a family
(
ατ

)
of inner automorphisms of B

such that ϑ′τ = ατ ◦ ϑτ .

We should emphasize that our classification starts from the assumption that there
are two CP-semigroups. They belong to the same class, if they have the same product
system (i.e. they are cocycle conjugate). In contrast with Arveson’s result in

Arv90
[Arv90]

that (under certain measurability and separability assumptions) each Arveson product
system can be obtained from an E0–semigroup, in our case the analogue statement for
conservative CP-semigroups is not true already in the case B = C. Indeed, a unital unit
in a product system of Hilbert spaces is generating, if and only if this product system
consists of one-dimensional Hilbert spaces.

If a product system of pre-Hilbert modules arises from our construction in Section
1st
4,

then it has a unital generating unit. In this context, and also in order to find a satisfactory
definition of type and index of a product system of pre-Hilbert modules, we consider it as
an interesting problem, to determine all units of a given product system. In particular, we
ask whether for each B there are product systems without any unit. At least for B = C
Powers has shown in

Pow87
[Pow87] that there exists a type III E0–semigroup on B(G) which

means precisely that the associated product system of Hilbert spaces has no units.
In Section

Fock
11 we will see that (after suitable completion) any conservative CP-semi-

group with bounded generator is cocycle subconjugate to the trivial semigroup. In Section
doco
14 we will see that (also after suitable completion) any normal CP-semigroup S on a von
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Neumann algebra which is dominated by a conservative normal CP-semigroup T is cocycle
subconjugate to T through a local cocycle.

8 The non-conservative case
non1

In this section we study the procedures from Sections
1st
4 and

2nd
5 in the case, when B still is

unital, however, T may be non-conservative. We still assume that all Tt are contractive
and, of course, that T0 = id.

There are two essentially different ways to proceed. The first way as done in
Bha96p
[Bha96]

uses only the possibly non-conservative CP-semigroup T . Although the first inductive
limit still is possible, the second inductive limit breaks down, and the inner product must
be defined a priori. The second way to proceed uses the unitization T̃ on B̃ as indicated
in Paragraph

unitization
2.4.

Here we mainly follow the second approach. In other words, we do the constructions
of Sections

1st
4 and

2nd
5 for the conservative CP-semigroup T̃ . As a result we obtain a pre-

Hilbert B̃–B̃–module Ẽ, a cyclic vector ξ̃, a weak Markov flow j̃ acting on Ẽ, and an
E0–semigroup ϑ̃ on Ba(Ẽ). The restriction of ϑ̃ to the submodule E which is generated

by ξ̃ and ϑ̃T ◦ j̃0(B) is cum grano salis a dilation of T . We will see that the (linear)

codimension of E in Ẽ is 1.

Recall that B̃ = B ⊕ C1̃, and that (B is unital)

B ⊕ C −→ B̃, (b, µ) 7−→ (b− µ1)⊕ µ1̃

is an isomorphism of C∗–algebras, where B ⊕ C is the usual C∗–algebraic direct sum. In
BhPa94
[BP94] the unitization has been introduced in the picture B ⊕ C. In the sequel, we will

switch between the pictures B̃ and B ⊕ C according to our needs.
We start by reducing the GNS-construction (Ẽt, ξ̃t) for T̃t to the GNS-construction

(Et, ξt) for Tt. Since B is an ideal in B̃, we may consider Et also as a pre-Hilbert B̃–B̃–mod-
ule. Since Tt is not necessarily conservative, ξt is not necessarily a unit vector. However,
〈ξt, ξt〉 ≤ 1 as Tt is contractive. Denote by ξ̂t the positive square root of 1̃− 〈ξt, ξt〉 in B̃.

Denote by Êt = ξ̂tB̃ the right ideal in B̃ generated by ξ̂t considered as a right pre-Hilbert
B̃–module (see Example

algmod
2.8). By defining the left multiplication bξ̂t = 0 for b ∈ B and

1̃ξ̂t = ξ̂t, we turn Êt into a pre-Hilbert B̃–B̃–module. We set Ẽt = Et⊕ Êt and ξ̃t = ξt⊕ ξ̂t.
One easily checks that (Ẽt, ξ̃t) is the GNS-construction for T̃t.

xirules 8.1 Observation. Among many other simple relations connecting ξt, ξ̃t, and ξ̂t with
the central projections 1, and 1̃ − 1 like e.g. 1ξ̃t = ξt, (1̃ − 1)ξ̃t = ξ̂t, or ξ̃t(1̃ − 1) =

(1̃− 1)ξ̂t(1̃− 1), the relation

ξ̂t1 = (1̃− 1)ξ̃t1 = 1̃ξ̃t1− 1ξ̃t1 = ξ̃t1− 1ξ̃t

is particularly crucial for the proof of Theorem
ortho
8.4.

Notice that (like for any pre-Hilbert B̃–module; cf. Observation
rightob
9.1) the mapping

ωt : x 7→ x(1̃− 1) defines a projection on Ẽt. We denote Ωt = ξ̃t(1̃− 1) and b̃ = (b, µ) in
the picture B⊕C. The following proposition is verified easily by looking at the definition
of ξ̂t and by the rules in Observation

xirules
8.1.
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8.2 Proposition. Ωt may be identified with the element 1̃− 1 in the right ideal Êt in B̃.
We have

b̃ ξ̃t b̃
′(1̃− 1) = Ωtµµ′ = (1̃− 1)Ωtµµ′.

In particular, ωt is a projection onto CΩt. The orthogonal complement of Ωt may be
considered as a pre-Hilbert B–B–module.

Doing the constructions of Sections
1st
4 and

2nd
5 for T̃ , we refer to Ẽt, Ẽτ = lim ind

t∈Jτ
Ẽt, and

Ẽ = lim ind
τ

Ẽτ . Also other ingredients of these constructions are indicated by the dweedle.

Letters without dweedle refer to analogue quantities coming from Tt. For instance, we
already remarked that the first inductive limit may be performed also for non-conservative
CP-semigroups. We obtain a family of pre-Hilbert B–B–modules Eτ as inductive limits
of pre-Hilbert B–B–modules Et (t ∈ Jτ ). These modules form a product system and the
vectors ξτ ∈ Eτ still form a generating unit. This unit is, however, not necessarily unital.

By sending it(bnξtn ¯ . . . ¯ b1ξt1b0) to ĩt(bnξtn ¯ . . . ¯ b1ξt1b0) (t = (tn, . . . , t1) ∈
Jτ ; bn, . . . , b0 ∈ B) we establish a B–B–linear isometric embedding Eτ → Ẽτ . In this
identification we conclude from

1b̃nξ̃tn ¯ . . .¯ b̃1ξ̃t1 b̃0 = bnξtn ¯ . . .¯ b1ξt1b0

that 1Ẽτ = Eτ . We remark that here and in the remainder of this section it does not
matter, whether we consider the tensor products as tensor products over B or over B̃.
By definition of the tensor product the inner products coincide, so that the resulting pre-
Hilbert modules are isometrically isomorphic. As long as the inner product takes values
in B we are free to consider them as B–modules or as B̃–modules.

8.3 Proposition. Let τ ∈ T and set Ωτ = ξ̃τ (1̃−1) ∈ Ẽτ . Then ĩt(Ωtn ¯ . . .¯Ωt1) = Ωτ

for all t ∈ Jτ . Moreover, the Ωτ form a unit for Ẽτ .
Set ξ̂τ = (1̃− 1)ξ̃τ ∈ Ẽτ . Then ĩ(τ)ξ̂τ = ξ̂τ for all τ ∈ T.

Set Ω = ξ̃(1̃− 1) ∈ Ẽ. Then k̃τΩ
τ = Ω for all τ ∈ T.

Proof. From Observation
xirules
8.1 we find

Ωτ = ξ̃τ (1̃− 1) = ĩt(ξ̃tn ¯ . . .¯ ξ̃t1)(1̃− 1) = ĩt(Ωtn ¯ . . .¯ Ωt1)

from which all assertions of the first part follow. The second and third part are proved in
an analogue manner.

Clearly, we have Ẽ(1̃ − 1) = CΩ. Denote by E = Ẽ1 the orthogonal complement of

this submodule and denote by ξ = ξ̃1 the component of ξ̃ in E. Denote by ω : x 7→ x1
the projection in Ba(Ẽ) onto E. We may consider E as a pre-Hilbert B–module.

ortho 8.4 Theorem. The operators in j̃T(B) leave invariant E, i.e. j̃τ (b) and ω commute for
all τ ∈ T and b ∈ B. For the restrictions jτ (b) = j̃τ (b) ¹ E the following holds.

1. E is generated by jT(B) and ξ.

2. The jτ fulfill the Markov property (
Markov
3.1) and, of course, j0 is faithful.
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3. The restriction of ϑ̃ to Ba(E) defines an E0–semigroup ϑ on Ba(E), which fulfills
ϑτ ◦ jσ = jσ+τ . Clearly, ϑ leaves invariant A∞ = span jT(B).

8.5 Remark. Extending our definitions to the non-conservative (contractive) case in an
obvious way, we say (A∞, j) is the (unique) minimal weak Markov flow of T . Also the
definition of essential generalizes, so that (Ba(E), j) is the (unique) maximal weak Markov
flow of T . Extending the result in

Bha96p
[Bha96] where an e0–dilation on A∞ was constructed,

we say that ϑ is an E0–dilation of T .

Proof of Theorem
ortho
8.4. Observe that j̃τ (1)Ẽ = k̃τ1Ẽτ = ξ̃¯Eτ . By Ê ⊂ E we denote

the linear span of all these spaces. Clearly, Ê is a pre-Hilbert B–module. Moreover, all
j̃τ (b) leave invariant Ê. We will show that Ê = E, which implies that also E is left
invariant by j̃τ (b).

Ẽ is spanned by the subspaces ξ̃¯ Ẽτ , so that E is spanned by the subspaces ξ̃¯ Ẽτ1.
The space Ẽτ1 is spanned by elements of the form xτ = ĩt(̃bnξ̃tn ¯ . . .¯ b̃1ξ̃t1b0). For each

1 ≤ k ≤ n we may assume that either b̃k = bk ∈ B or b̃k = µk(1̃−1). If b̃k = µk(1̃−1) for

some k, then we may assume that b̃` = µ`(1̃−1) for all ` ≥ k. (Otherwise, the expression

is 0.) We have to distinguish two cases. Firstly, all b̃k are in B. Then xτ is in Eτ so

that ξ̃ ¯ xτ ∈ Ê. Secondly, there is a unique smallest number 1 ≤ k ≤ n, such that
b̃` = µ`(1̃− 1) for all ` ≥ k. Then it is easy to see that

xτ = ĩ(σ3,σ2,σ1)(Ωσ3 ¯ ξ̂σ2 ¯ xσ1), i.e. ξ̃ ¯ xτ = ξ̃ ¯ ξ̂σ2 ¯ xσ1

where σ1 + σ2 + σ3 = τ and xσ1 ∈ Eσ1 . By Observation
xirules
8.1, we obtain

ξ̃ ¯ ξ̂σ2 ¯ xσ1 = ξ̃ ¯ (ξ̃σ21− 1ξ̃σ2)¯ xσ1 = ξ̃ ¯ (ξ̃σ21− 1ξσ2)¯ xσ1

= (j̃σ1(1)− j̃σ2+σ1(1))ξ̃ ¯ xσ1 ,

so that also in this case ξ̃ ¯ xτ ∈ Ê. Therefore, E ⊂ Ê.
1. It remains to show that ξ̃ ¯ xτ for xτ ∈ Eτ can be expressed by applying a

suitable collection of operators jt(b) to ξ and building linear combinations. But this

follows inductively by the observation that jt(b)(ξ̃ ¯ xs) = ξ̃ ¯ bξt−s ¯ xs for t > s.
2. This assertion follows by applying ω to the Markov property of j̃.
3. Clear.

non1ip 8.6 Remark. Considering B as a C∗–subalgebra of B(G) for some Hilbert space G and
doing the Stinespring construction for E as described in Example

Stinespring
2.16, we obtain the

results from
Bha96p
[Bha96]. It is quite easy to see that the inner products of elements in Eτ

(that is for fixed τ) coincide, when tensorized with elements in the initial space G, with
the inner products given in

Bha96p
[Bha96]. We owe the reader to compute the inner products

of elements in k̃τEτ ⊂ E and k̃σEσ ⊂ E for τ 6= σ. Let xτ ∈ Eτ and yσ ∈ Eσ and assume
without loss of generality that σ < τ . We find

〈ξ̃ ¯ xτ , ξ̃ ¯ yσ〉 = 〈ξ̃ ¯ xτ , ξ̃ ¯ ξ̃τ−σ ¯ yσ〉 = 〈xτ , ξ̃
τ−σ ¯ yσ〉 = 〈xτ , ξ

τ−σ ¯ yσ〉.

(In the last step we made use of 1xτ = xτ and 1ξ̃τ−σ = ξτ−σ.) This shows in full
correspondence with

Bha96p
[Bha96] that an element in Eσ has to be lifted to Eτ by “inserting
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a 1 at time τ”, before we can compare it with an element in Eτ . This lifting is done by
tensorizing ξτ−σ. As this operation is no longer an isometry, the second inductive limit
breaks down in the non-conservative case. Cf. also Remark

non1rem
A.8.

nonex 8.7 Example. Now we study in detail the most simple non-trivial example. We start
with the non-conservative CP-semigroup Tt : z 7→ e−tz on C. Here the product system
Eτ = C consists of one-dimensional Hilbert spaces and the unit consists of the vectors
ξτ = e−

τ
2 ∈ Eτ .

For the unitization we find it more convenient to consider C2 rather than C̃. The
mappings T̃t : C2 → C2 are given by T̃t

(
a
b

)
= b

(
1
U

)
+ (a − b)

(
e−t

0

)
. The first component

corresponds to the original copy of C, whereas the second component corresponds to
C(1̃− 1).

We continue by writing down Ẽ and Ẽτ , showing afterwards that these spaces are the
right ones. (To be precise we are dealing rather with their completions. But, by Section
C*
10 this difference is not too important.) We define the Hilbert C2–module Ẽ and its inner
product by

Ẽ = L2(R+)⊕ CΩ and
〈(

f
µ

)
,
(

g
ν

)〉
=

(〈f,g〉
µν

)
.

The inner product already determines completely the right multiplication by elements of
C2 to be the obvious one.

Let us define eτ ∈ L2(R+) by setting eτ (t) = χ[τ,∞)(t)e
− t

2 . Observe that 〈eτ , eτ 〉 = e−τ .

We define the Hilbert C2–submodule Ẽτ of Ẽ by Ẽτ = L2(0, τ) ⊕ Ceτ ⊕ CΩ. (Observe

that, indeed, 〈L2(0, τ), eτ 〉 = {0}.) We turn Ẽτ into a Hilbert C2–C2–module by defining
the left multiplication (

a
b

) (
g
β
ν

)
= b

(
g
0
ν

)
+ a

(
0
β
0

)
.

We define the homomorphism j̃τ : C2 → Ba(Ẽ) by, first, projecting down to the submodule

Ẽτ , and then, applying the left multiplication of C2 on Ẽτ ⊂ Ẽ. Clearly, the j̃τ form a
weak Markov flow of T̃ .

Let us define the shift Sτ on L2(R+) by setting Sτf(t) = f(t − τ), if t ≥ τ , and
Sτf(t) = 0, otherwise. (Observe that also here 〈L2(0, τ), SτL

2(R+)〉 = {0}.) One easily
checks that the mappings

(
f
µ

)¯
(

g
β
ν

)
7−→

(
µg+e−

τ
2 βSτ f

µν

)
and

(
f
α
µ

)
¯

(
g
β
ν

)
7−→

(
µg+e−

τ
2 βSτ f

αβ
µν

)
(8.1) C2fac

define isomorphisms Ẽ¯Ẽτ → Ẽ and Ẽσ¯Ẽτ → Ẽσ+τ , respectively. Remarkably enough,
no completion is necessary here.

It remains to show that Ẽ (and, similarly, also Ẽτ ) is generated by ξ̃ =
(

e0

1

)
and j̃T(C2).

But this is simple, as we have j̃0

(
0
1

)
ξ̃ = Ω and

(
j̃τ

(
1
0

) − j̃σ

(
1
0

))
ξ̃ =

(χ[σ,τ ]e0

0

)
for σ < τ .

Therefore, we obtain all functions which consist piecewise of arcs of the form e−
t
2 . Clearly,

these functions form a dense subspace of L2(R+). Until now we, tacitly, have assumed to
speak about Hilbert modules. It is, however, clear that the arcwise exponentials form an
algebraically invariant subset.

In this example we see in an extreme case that the product system of a non-conser-
vative CP-semigroup T may be blown up considerably, when changing to its unitization
T̃ . Notice that the original one-dimensional product system of T is present in the middle
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component
(

0
α
0

)
¯

(
0
β
0

)
=

(
0

αβ
0

)
in the factorization by (

C2fac
8.1). (Recall that

∥∥∥
(

0
β
0

)∥∥∥
2

= |β|2 e−τ

depends on τ .) Responsible for the blow up is the part ξ̂t1 of ξ̂t which lies in B. If T was
already conservative, then this part is 0.

9 A classical process of operators on E
class

Our construction of a weak Markov flow is essentially non-commutative. The reason for
this is that by definition jτ (1) is a projection (at least in non-trivial examples) which
“levels out” whatever happened before “in the future of τ”. As a consequence, jτ (b) and
jσ(b) have no chance to commute in general. Indeed, for σ < τ we find

jτ (b)jσ(b)x¯ xτ−σ ¯ xσ = ξ ¯ bξτ−σ ¯ 〈ξ ¯ ξτ−σb∗, x¯ xτ−σ〉xσ, (9.1a) nc1

whereas

jσ(b)jτ (b)x¯ xτ−σ ¯ xσ = ξ ¯ ξτ−σb¯ 〈ξ ¯ b∗ξτ−σ, x¯ xτ−σ〉xσ. (9.1b) nc2

Since b and ξτ−σ do not commute, unless T is the trivial semigroup, Equations (
nc1
9.1a,

nc2
9.1b)

describe different elements of E.
If we restrict ourselves to the center of B, then the weak Markov flow j can be modified

as shown in
Bha93
[Bha93] to a commutative flow k called the central flow. If the initial algebra B

is commutative to begin with, then the flow k can be interpreted as the classical Markov
process obtained by the Daniell-Kolmogorov construction. Central flows play a crucial
role in

AtPa96p
[AP96]. In this section we recover k as a process of operators on E. This example,

almost a triviality now, illustrates once again the power of the module approach. (The
central flow k appears only in this section and should not be confused with the canonical
mappings kτ : Eτ → E.)

The approach is based on the following simple observation, which we already made
use of in Section

non1
8.

rightob 9.1 Observation. Let E be a pre-Hilbert B–module and b in the center CB(B) of B, i.e.
b commutes with all elements of B. Then by setting ωbx = xb (x ∈ E), we define an
element of Ba(E).

Now let T be a conservative CP-semigroup on B. Let E be the pre-Hilbert B–module
as constructed in Sections

1st
4 and

2nd
5. We define k0(b) = ωb (b ∈ CB(B)) and kτ = ϑτ ◦ k0.

9.2 Proposition. k0 is an isomorphism onto the center of Ba(E).

Proof. (Cf. also Lemma
loccoc
7.5.) Clearly, k0 maps into the center. So let c be in the center

of Ba(E). Then

〈ξ, cξ〉b = 〈ξ, cξ〉〈ξ, j0(b)ξ〉 = 〈ξ, ξ〉〈ξ, cj0(b)ξ〉 = 〈ξ, j0(b)cξ〉 = b〈ξ, cξ〉
for all b ∈ B, i.e. 〈ξ, cξ〉 ∈ CB(B). Now let x ∈ E. Then

cx = cx〈ξ, ξ〉 = x〈ξ, cξ〉 = k0(〈ξ, cξ〉)x,

i.e. c = k0(〈ξ, cξ〉) so that k0, indeed, is onto.
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9.3 Theorem. The process k =
(
kτ

)
τ∈T is commutative (i.e. [kT(CB(B)), kT(CB(B))] =

{0}) and 〈ξ, kτ (b)ξ〉 = 〈ξ, jτ (b)ξ〉 = Tτ (b) for all τ ∈ T, b ∈ CB(B). In particular, if
TT(CB(B)) ⊂ CB(B), then k is a classical Markov process.

Proof. Clearly, k0(CB(B)) commutes with kτ (CB(B)) ⊂ Ba(E). The remaining state-
ments follow by time shift.

The explicit action of kτ is

kτ (b)x¯ xτ = xb¯ xτ . (9.2) kcom

Let us have a closer look at the difference between j and k. Both jτ (b) and kτ (b) let act
the algebra element b at time τ . This can be seen explicitly by the observation that the
actions of jτ (b) and kτ (b) restricted to the submodule ξ ¯ Eτ coincide. In other words,
both jτ (b) and kτ (b) can be thought of as the left multiplication of Eτ , first, lifted to
ξ ¯ Eτ ⊂ E and, then, extended to the whole of E. It is this extension which makes
the difference. jτ (b) is extended just by 0 to the orthogonal complement of ξ ¯ Eτ in E.
Correspondingly, jτ (1) projects down the future t > τ to the presence t = τ . Whereas
kτ (b) inserts b at time τ without changing the future part x of x ¯ xτ . Therefore, all kτ

are unital homomorphisms.
A look at Equation (

kcom
9.2) reminds us of the ampliation id¯lb of the operator of left

multiplication lb : xτ 7→ bxτ on Eτ by b to the tensor product E ¯ Eτ . We emphasize,
however, that in contrast to a ¯ id (see Observation

contractive
2.20), a mapping id¯a on a tensor

product of pre-Hilbert modules, in general, only exists, if a is B–B–linear. (This is the
case, for instance, for ωb, if b ∈ CB(B). Cf. also Lemma

loccoc
7.5.) The problem of how to find

dilations to unital homomorphisms is also in the background of Section
Fock
11.

10 The C∗–case
C*

Until now we considered product systems of pre-Hilbert modules. All definitions were
understood algebraically. This was possible, essentially, because we were able to write
down the mappings γστ and their adjoints explicitly on the algebraic domain. Unlike
on Hilbert spaces, where existence of adjoints of bounded operators (or, equivalently,
projections onto closed subspaces) is always guaranteed, the approach by Hilbert modules,
forced us to find the adjoint in a different way. Retrospectively, this way turned out to be
more effective. In principle, by Stinespring construction it is also possible to interpret the
whole construction in terms of pre-Hilbert spaces. However, it seems impossible to see
the contents of the crucial Observation

tensorvec
2.18 directly. In particular, in the Hilbert space

approach there is no natural way to distinguish the algebra Ba(E), where the E0–dilation
ϑ lives, as a subalgebra of B(E ¯G).

In the following section we are going to consider quantum stochastic calculus. Since
in calculus we are concerned with limits of operators, the spaces on which the operators
act should be complete. Here we need completions for the first time essentially.

Let us repeat the facts which assure that we may complete all pre-Hilbert modules.
Thanks to the fact that we are dealing with CP-semigroups on a C∗–algebra B, all pre-
Hilbert B–B–modules are contractive. We may complete them to Hilbert B–B–modules.
All jt are representations of B, therefore, they are contractions. Therefore, by Observation
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bounded
2.6, A∞ acts boundedly on E, i.e. we may complete also E. The C∗–norm of the pre–
C∗–algebra A∞ is just the operator norm. By Observation

contractive
2.20, the time shift ϑτ is

contractive. In other words, we may complete A∞ to a C∗–subalgebra of Ba(E). The
E0–semigroup ϑ extends to Ba(E) and leaves invariant A∞.

Modifiying the definitions to Hilbert modules in an obvious manner and taking into
account Proposition

topindlim
A.10, we obtain “completed” versions of the results in Sections

1st
4 –

uco
7. We collect the most important.

C*thm 10.1 Theorem. Let T be a conservative CP-semigroup on a unital C∗–algebra B.

1. The family E¯ =
(
Eτ

)
τ∈T forms a product system of Hilbert modules, i.e. Eσ ¯̄ Eτ =

Eσ+τ .

2. The family ξ¯ =
(
ξτ

)
τ∈T forms a unital generating unit for this product system and

〈ξτ , bξτ 〉 = Tτ (b).

3. The inductive limit E over Eτ fulfills E ¯̄ Eτ = E and ξ ¯ ξτ = ξ.

4. By setting ϑτ (a) = a¯ id we define an E0–semigroup ϑ =
(
ϑτ

)
τ∈T of strict endomor-

phisms of Ba(E). Setting j0(b) = |ξ〉b〈ξ| ∈ Ba(E), we find that ϑ is the maximal
dilation of T . In other words, by setting jτ = ϑτ ¹ B, we find the maximal weak
Markov flow (j, Ba(E)) of T .

5. We have ϑτ ◦ jσ = jσ+τ so that ϑ leaves invariant A∞. In other words, ϑ ¹ A∞ is
the minimal dilation of T and (j,A∞) is the minimal weak Markov flow of T .

contsg 10.2 Theorem. Let T be a completely positive, conservative C0–semigroup on B (i.e.
T = R+ and for each b ∈ B the mapping t 7→ Tt(b) is continuous). Then ϑ is strictly
continuous (i.e. τ 7→ ϑτ (a)x is continuous for all a ∈ Ba(E) and x ∈ E).

Proof. First, observe that the mapping S
r
τ : x 7→ x ¯ ξτ is a contraction E → E. The

family x ¯ ξτ depends continuously on τ . (On the dense subset E this follows from the
fact that the correlation kernel T in Section

algvers
6 depends jointly continuously on all time

arguments. By contractivity of S
r
τ this extends to the whole of E.) Now we easily see that

for each a ∈ Ba(E) and for each x ∈ E

ax− ϑτ (a)x = ax− ax¯ ξτ + ax¯ ξτ − ϑτ (a)x = (ax)− (ax)¯ ξτ + ϑτ (a)(x¯ ξτ − x)

= (id−S
r
τ )(ax) + ϑτ (a)(S

r
τ − id)(x)

is small for τ sufficiently small. Replacing a by ϑt(a) we obtain continuity at all times
t.

10.3 Remark. Since ϑt ◦ j0(1) = jt(1) is an increasing family of projections, ϑ is in
general not a C0–semigroup.

Belrem 10.4 Remark. Of course, S
r
τ is not an element of Br(E), therefore, certainly neither

adjointable, nor isometric (unless T is trivial). In particular, passing to the Stinespring
construction (Example

Stinespring
2.16), S

r
τ will never be implemented by an operator in B(H). It

follows that the jτ (or better, the images of jτ in B(H)) do not form a stationary process
in the sense of

Bel85
[Bel85]. In the Hilbert space picture obtained by Stinespring construction,

in general, there is no time shift like S
r
τ , acting directly on the Hilbert space.
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11 The time ordered Fock module and dilations on

the full Fock module
Fock

In this section we discuss to some extent, in how far it is possible to find unital dilations
to E0–semigroups, in the sense that the homomorphisms jt are unital. This problem has
been settled completely in

Sau86
[Sau86]. The solution does, however, not preserve continuity

properties. Most recently, the problem of dilation to a strongly continuous E0–semigroup
has been solved in

GoSi99
[GS99] in the case, when T has a bounded generator, with the help of a

quantum stochastic calculus. This calculus is constructed on a symmetric Fock module as
defined in

Ske98
[Ske98] and generalizes the calculus on the symmetric Fock space

HuPa84
[HP84] in the

notations of
Par92
[Par92]. The goal of this section is to construct explicitly the product system

of T . Our construction makes use of the calculus on the full Fock module developed in
Ske99p0
[Ske99]. This calculus is a direct generalization of the calculus on the full Fock space
developed in

KueSp92
[KS92].

Throughout this section we speak of product systems of Hilbert modules as explained
in Section

C*
10. Tensor products and direct sums are assumed to be completed in the norm

topology. T is a conservative CP-semigroup on B with a bounded generator.

Let H be a Hilbert space. The best-known example of a product systems of Hilbert
spaces is the family Γ⊗ =

(
Γτ

)
τ∈R+ of symmetric Fock spaces Γτ = Γ(L2([0, τ ], H)). Of

course, the vacuum vectors Ωτ ∈ Γτ form a unital unit for this product system, and
Γ = Γ(L2(R+, H)) may be thought of as the inductive limit of Γτ provided by the unit(
Ωτ

)
τ∈R+ .

Notice that, following our approach and contrary to the usual conventions, in the
factorization Γ = Γ⊗Γτ we have to write the future on the left. Since this order is forced
by the module approach, it seems appropiate to rethink the usual conventions. Thanks to
the particularly simple C–C–module structure of Hilbert spaces we have two additional
properties. Firstly, unlike on E, on Γ we also have a left action of the C∗–algebra C which
is faithful and unital. Secondly, in a tensor product of such C–C–modules the order of
the factors may be exchanged. Hencforth, in this particularly simple case it is possible to
extend an operator a on Γτ to Γ⊗ Γτ via ampliation id⊗a. Whereas our extension jτ (z)
of the left multipliction by an algebra element z ∈ C corresponds to |Ω〉〈Ω| ⊗ z id. Of
course, this dilation of the conservative CP-semigroup Tt : z 7→ z is not minimal, because
out of Ω, the jt cannot create more than CΩ.

It is well-known that the symmetric Fock space Γ may be identified with a subspace
of the full Fock space F(L2(R+, H)), the time ordered Fock space F0(L2(R+, H)). The
n–particle sector of F0(L2(R+, H)) consists of those functions F : (R+)n → H⊗n which are
0, unless the argument (tn, . . . , t1) is ordered decreasingly. See, for instance,

MSchue93
[Sch93] for

a proof based on exponential vectors, or
Bha98
[Bha98b] for a proof based on number vectors.

We will see that also the time ordered Fock modules until time τ form a product system.
Unlike the symmetric Fock module

Ske98
[Ske98] whose construction is based on the requirement

that the one-particle sector is a centered Hilbert module (see Section
B(G)
13), the time ordered

Fock module may be constructed for modules of functions with values in an arbitrary two-
sided Hilbert module as one-particle sector.

11.1 Definition
Pim97,Spe98
[Pim97, Spe98]. Let B be a unital C∗–algebra and let F be a Hilbert
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B–B–module. The full Fock module is defined as F(F ) =
⊕

n∈N0

F¯n. By the vacuum ξ we

mean the element 1 ∈ B = F¯0.
For x ∈ F , we define the creator `∗(x) and the annihilator `(x) in Ba(F(F )), by setting

`∗(x)xn ¯ . . .¯ x1 = x¯ xn ¯ . . .¯ x1 `∗(x)b = xb

`(x)xn ¯ . . .¯ x1 = 〈x, xn〉xn−1 ¯ . . .¯ x1 `(x)b = 0.

11.2 Remark. Clearly, `∗(x) and `(x) are a pair of adjoint operators. Pimsner
Pim97
[Pim97]

shows that, like the Cuntz algebras, the C∗–algebra generated by all `∗(x) is cum grano
salis determined by the relations `(x)`∗(y) = 〈x, y〉 where the algebra element acts on
F(F ) via left multiplication.

Let I be a measurable subset of R+ (or any other polish measure space). By L2(I, F )
(or L2

I) we mean the completion of the exterior tensor product L2(I) ⊗ F with inner
product 〈f ⊗ x, g ⊗ y〉 = 〈x, y〉 ∫

I
f(t)g(t) dt and the obvious module operations. We

think of elements of L2(I, F ) as functions on I with values in F . Of course, L2(I, F )¯n =
L2(In, F¯n). We use the notations L2

[s,t) = L2([s, t), F ) (0 ≤ s ≤ t ≤ ∞), L2
t] = L2

[0,t),

L2
[t = L2

[t,∞), and L2 = L2
[0,∞). Furthermore, we set FI = F(L2(I, F )) and use the same

notations as for L2. F and F[t are isomorphic by the time shift St : F → F[t in an obvious
way.

The family
(
Ft]

)
t∈R+ does not form a product system. We have, however, factoriza-

tions like F = F[t ¯ (
ξ ⊕ L2

t] ¯ F
)
. Defining the time shift endomorphism St on

Ba
(
F(L2(R+, F ))

)
by setting St(a) = StaS

−1
t ¯ id in the above identification, it is not

difficult to check that the family S =
(
St

)
t∈R+ forms an E0–semigroup.

11.3 Definition. Let ∆n ∈ L2((R+)n) (n ∈ N) denote the indicator function of the
(unbounded) n–simplex

{
(tn, . . . , t1) ∈ (R+)n : tn ≥ . . . ≥ t1

}
and set ∆0 = 1. Letting

act ∆n as a multiplication operator on (L2
I)
¯n (I ⊂ R+), we define a projection.

The time ordered Fock module F0 ⊂ F is defined, by setting F0 =
( ⊕

n∈N0

∆n

)
F. We use

similar notations as for FI .

tofm 11.4 Theorem. The family (F0)¯ =
(
F0

t]

)
t∈R+ of time ordered Fock modules forms a

product system of Hilbert modules. The family ξ¯ =
(
ξt

)
t∈R+ with ξt = ξ forms a unital

unit for this product system. The inductive limit for this unit is F0. In particular, we have
F0 = F0¯F0

t], and the associated E0–semigroup is just S ¹ Ba(F0). Moreover, S ¹ Ba(F0)
is a dilation of the trivial CP-semigroup on B.

Proof. Once established the first assertion, the remaining ones are obvious. So let us
show that the F0

t] form a product system.

First, observe that the time shift St sends F0
s] onto F0

[t,t+s]. In particular, the projection

onto F0 commutes with all St. Let f be an element of the m–particle sector of F0
s] and let g

be an element of the n–particle sector of F0
t]. Let us define the function [f¯g] ∈ (L2)¯(m+n)

by setting

[f ¯ g](sm, . . . , s1, tn, . . . , t1) = (Stf)(sm, . . . , s1)¯ g(tn, . . . , t1). (11.1) F0fac
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By the first observation Stf is an element of (L2
[t,t+s])

¯m. However, we may identify

(L2
[t,t+s])

¯m as a subspace of (L2
t+s])

¯m. In this identification Stf is a function which

vanishes, unless s1 ≥ t. Therefore, the function [f ¯ g] is in F0
s+t] so that f ¯ g 7→ [f ¯ g]

extends to a two-sided isometric mapping ust : F0
s] ¯ F0

t] → F0
s+t]. It is clear that the ust

fulfill the associativity condition of Definition
psdef
4.7. It remains to show that ust is surjective.

(L2
s+t])

¯n is spanned by functions of the form f = χ[sn,tn]xn ¯ . . . ¯ χ[s1,t1]x1. Since

we are interested in ∆n(L2)¯n only, and since ∆n is continuous, (splitting an interval
into two, if necessary) we may restrict to the case where for each i = 1, . . . , n − 1 either
si+1 ≥ ti or si+1 = si, ti+1 = ti. Furthermore, (by the same argument) we may assume,
that s1 ≥ t, or that there exists m (1 ≤ m < n) such that tm ≤ t and sm+1 ≥ t, or
that tn ≤ t. In the first case we have f ∈ F[t,t+s] so that ∆nf = [S−1

t ∆nf ¯ ξ] is in the
range of ust. Similarly, in the third case f ∈ Ft] so that ∆nf = [ξ ¯∆nf ] is in the range
of ust. In the second case we set g2 = χ[sn,tn]xn ¯ . . . ¯ χ[sm+1,tm+1]xm+1 ∈ F[t,t+s] and
g1 = χ[sm,tm]xm ¯ . . .¯ χ[s1,t1]x1 ∈ Ft]. Again, we see that ∆nf = [S−1

t ∆n−mg2 ¯∆mg1] is
in the range of ust.

Let T =
(
Tt

)
t∈R+ be a conservative CP-semigroup on B with bounded generator

L : B → B. We know from
ChrEv79
[CE79] that (if necessary, after passing to the CP-semigroup

T ∗∗ on the bidual B∗∗) the generator has the form L(b) = L0(b) − bL0(1)+L0(1)b
2

+ i[h, b]
where L0 is a completely positive mapping (usually, neither unital nor contractive) and h
being a self-adjoint element of B. Doing the GNS-construction for L0, we find a Hilbert
module F and an element ζ ∈ F such that L(b) = 〈ζ, bζ〉 − b〈ζ,ζ〉+〈ζ,ζ〉b

2
+ i[h, b].

We summarize the necessary results from
Ske99p0
[Ske99]. Denoting d`∗t (ζ) = `∗(χ[t,t+dt]ζ), the

quantum stochastic differential equation

dut = ut

{
d`∗t (ζ)− d`t(ζ) +

(
ih− 1

2
〈ζ, ζ〉) dt

}
, u0 = 1 (11.2) dgl

has a unique unitary solution in the continuous Ba(F)–valued functions on R+. This
solution is adapted in the sense that for each t ∈ R+ there is a (unique) operator u0

t ∈
Ba(Ft]) such that ut = u0

t ¯ id in the identification F = Ft] ¯
(
ξ ⊕ L2

[t¯F
)

and ut is a

left cocycle with respect to the time shift, i.e. ut+s = utSt(us). Consequently, ϑ̂ =
(
ϑ̂t

)
t∈R+

with ϑ̂t(a) = utSt(a)u∗t is an E0–semigroup on Ba(F). Moreover, ϑ̂ is a dilation of T in the

sense that 〈ξ, ϑ̂t(b)ξ〉 = Tt(b) for all b ∈ B, where we identify B (faithfully) as a subalgebra
of Ba(F) by left multiplication on F.

11.5 Lemma. We have u∗t ξ ∈ F0
t] for all t ∈ R+.

Proof. By adaptedness we have u∗t ξ ∈ Ft]. So let us show that it is time ordered. First,
notice that u∗t fulfills the adjoint of (

dgl
11.2), i.e.

du∗t =
{
d`t(ζ)− d`∗t (ζ)− (

ih + 1
2
〈ζ, ζ〉) dt

}
u∗t u∗0 = 1.

Recall that the solution of this differential equation is given by u∗ = lim
n→∞

(un)∗ where

the processes (un)∗ are constructed inductively by setting (u0)
∗
t = 1 and (un+1)

∗
t = 1 +∫ t

0

{
d`t(ζ) − d`∗t (ζ) − (

ih + 1
2
〈ζ, ζ〉) dt

}
(un)∗t (n ∈ N0), and the integral is approximated

in norm by Riemann-Stieltjes sums; see
Ske99p0
[Ske99]. Clearly, (u0)

∗
t ξ = ξ ∈ F0. Now let us
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assume that (un)∗t ξ ∈ F0. Then
(
ih + 1

2
〈ζ, ζ〉)(un)∗t ξ dt ∈ F0, d`t(ζ) (un)∗t ξ = 0 ∈ F0, and

d`∗t (ζ) (un)∗t ξ ∈ F0. As (un+1)
∗
t ξ is approximated by sums over such elements, we find

(un+1)
∗
t ξ ∈ F0

t].

11.6 Theorem. The u∗t ξ form a unital unit for F0
t]. Consequently, the family v =(

vt

)
t∈R+ of mappings vt = |u∗t ξ〉〈ξ| forms an adapted right cocycle with respect to S ¹

Ba(F0) which takes values in the partial isometries. In other words, the CP-semigroup T
is cocycle subconjugate to the trivial semigroup on B. Moreover, the tensor product system
of T is isomorphic to the subsystem of F0

t] which is generated by the unit u∗t ξ.

Proof. By Section
uco
7 it is sufficient only to show the first assertion. We find

u∗sξ ¯ u∗t ξ = St(u
∗
s)u

∗
t ξ = u∗s+tξ.

11.7 Remark. The form of the unit u∗t ξ can be given explicitly; see
LiSk00p1
[LS00].

12 The von Neumann case
vN

This section is the analogue of Section
C*
10 for a normal CP-semigroup T on a von Neumann

algebra B acting on a Hilbert space G. By Proposition
normal1
C.4, the strong completions Et

s
of

the GNS-modules Et are von Neumann B–B–modules. By Corollary
normal3
C.6, also the tensor

products Es
s ¯̄ s Et

s
are von Neumann B–B–modules. By Proposition

topindlim
A.10, the inductive

limits Eτ
s ⊂ B(G,Hτ ) with Hτ = Eτ ¯̄ G are von Neumann B–B–modules.

Of course, the inductive limit E
s ⊂ B(G,H) with H = E ¯̄ G is a von Neumann

B–module. Therefore, the algebra Ba(E
s
) is a von Neumann subalgebra of B(H); see

Ske97p2
[Ske97]. By Corollary

normal3
C.6, E

s ¯̄ s Et
s

is a von Neumann Ba(E
s
)–B–module. In other

words, the mapping ϑτ : a 7→ a ¯ id is a normal endomorphism of Ba(E
s
). This answers

the question raised in
Bha96p
[Bha96], whether the e0–semigroup ϑ ¹ A∞ consists of normal

mappings, in the affirmative sense.

After these preparations, it is clear that Theorem
C*thm
10.1 remains true, replacing C∗–al-

gebras by von Neumann algebras, Hilbert modules by von Neumann modules, and adding
the word “normal” to all mappings between von Neumann algebras. We also find the
analogue of Theorem

contsg
10.2.

scont 12.1 Theorem. Let T =
(
Tt

)
t∈R+ be a weakly continuous normal CP-semigroup on a

von Neumann algebra B on a Hilbert space G. Then ϑ is a ∗–strongly continuous normal
E0–semigroup (i.e. ϑτ (a)x¯ g is continuous for all a ∈ Ba(E

s
), x ∈ E

s
, and g ∈ G).

Proof. Very much like the proof of Theroem
contsg
10.2, but starting from the observation

that the family x¯ ξτ ¯ g of vectors in H = E
s ¯̄ G depends continuously on τ .

13 Centered modules: The case B = B(G)
B(G)

13.1 Definition
Ske98
[Ske98]. A pre-Hilbert (Hilbert, von Neumann) B–B–module E is

called a centered pre-Hilbert (Hilbert, von Neumann) B–module, if it is generated by its
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center CB(E) =
{
x ∈ E : xb = bx (b ∈ B)

}
as a pre-Hilbert (Hilbert, von Neumann)

B–module.

13.2 Remark. The requirement that a pre-Hilbert module is centered is, in general, a
rather serious restriction. Nevertheless, we will see in Theorem

BGcen
13.11 that von Neumann

B(G)–B(G)–modules are centered, automatically. Since the best understood examples
are normal CP-semigroups and normal E0–semigroups on B(G), there is a vast area for
applications of centered modules. As examples, in Corollaries

BHdil
13.10,

Hsprod
13.14, and

indHsprod
13.15 we

recover some results of
Bha98p
[Bha98a] as consequences of Theorems

main
5.8 and

BGcen
13.11.

centex 13.3 Example. Let H be a pre-Hilbert space. Then B⊗H is a pre-Hilbert B–B–module
with inner product 〈b ⊗ h, b′ ⊗ h′〉 = b∗b′〈h, h′〉 and the obvious B–B–module structure.
Moreover, B⊗H is generated by its subset 1⊗H which, clearly, is contained in the center.

Assume that B is a pre–C∗–algebra of operators acting non-degenerately on a pre-
Hilbert space G. Then (B⊗H)¯G = G⊗H so that by Stinespring construction (Example
Stinespring
2.16) B ⊗ H may be considered as a subset of Ba(G,G ⊗ H) via b ⊗ h : g 7→ bg ⊗ h. In
particular, the elements 1⊗ h ∈ 1⊗ H are identified with mappings g 7→ g ⊗ h.

If G is a Hilbert space and B = B(G) then the strong closure of B(G)⊗H in B(G,G⊗̄H)
is all of B(G,G ⊗̄H) (cf. Proposition

B(G,H)
13.9 below). In particular, B(G, G ⊗̄H) is a centered

von Neumann B(G)–module (cf. Proposition
skeprop
13.8 below). It is easy to see that the center

coincides with 1⊗ H.

13.4 Remark. We mention that in the preceding example we changed the order of the
factors in the tensor products B⊗H and G⊗H compared with the conventions in

Ske98,Ske97p2
[Ske98,

Ske97]. We did this in order to avoid in Corollary
Hsprod
13.14 anti-product systems.

ipcent 13.5 Proposition. In a pre-Hilbert B–B–module E we have 〈CB(E), CB(E)〉 ⊂ CB(B).

Proof. Direct verification.

flip 13.6 Corollary. Let E and F be centered pre-Hilbert B–modules. Then the mapping

x¯ y 7−→ y ¯ x, (x ∈ CB(E), y ∈ CB(F ))

extends to a (unique) two-sided unitary E ¯ F → F ¯ E.

13.7 Remark. If E is centered, then Corollary
flip
13.6 allows for a symmetrization on E¯n.

That is the basis for the construction of the symmetric Fock module over a centered one-
particle sector; see

Ske98
[Ske98]. One can show that, like for Hilbert spaces, also the symmetric

Fock module is isomorphic to the time ordered Fock module. For non-centered one-particle
sectors, the symmetric Fock module cannot be constructed without additional effort. This
suggests that the time ordered Fock module is a proper generalization of the symmetric
Fock space.

13.8 Proposition
Ske97p2
[Ske97]. A centered von Neumann module is a two-sided von Neu-skeprop

mann module (i.e. the algebra is represented normally by multiplication from the left).

B(G,H) 13.9 Proposition. Let E be a von Neumann B(G)–module. Then E = B(G,H) (where
H = E ¯̄ G). Moreover, ρ : Ba(E) → B(H) is a normal isomorphism.
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Proof. By definition ρ is normal. And it is easy to see that Ba(B(G,H)) is isomorphic
to B(H); see the appendix in

Ske98
[Ske98]. So let us show that E = B(G,H).

B(G,H) is generated by rank-one operators as a von Neumann module. Since B(G)
contains all rank-one operators and elements of the form x¯g form a total subset of H =
E ¯̄ G, we can approximate (even in norm) arbitrary rank-one operators in B(G,H).

BHdil 13.10 Corollary. The maximal E0–dilation ϑ of a normal conservative CP-semigroup
on B(G) is isomorphic to a normal E0–dilation on B(H) in the sense of

Bha98p
[Bha98a].

Now we are going to show that any von Neumann B(G)–B(G)–module E (= B(G,H)
by Proposition

B(G,H)
13.9) is centered. As E is a von Neumann B(G)–B(G)–module, we have

a normal (unital) representation ρ of B(G) on H such that the left multiplication is
bx = ρ(b)x. In the language of Arveson the center is the space of intertwiners between
the representations id on G and ρ on H (i.e. mappings x : G → H such that xb = ρ(b)x
for all b ∈ B(G)). By Proposition

ipcent
13.5 the inner product of elements in the center takes

values in the center of B. In the case B = B(G) the center of B is trivial so that,
as observed by Arveson

Arv89
[Arv89], there is a C–valued scalar product 〈•, •〉c on CB(G)(E)

fulfilling 〈x, y〉 = 〈x, y〉c1. Obviously, CB(G)(E) with this scalar product is a Hilbert space,
which we denote by H.

BGcen 13.11 Theorem. Let E be a von Neumann B(G)–B(G)–module. Then E is isomorphic
to B(G,G ⊗̄H) as von Neumann B(G)–B(G)–module. In particular, E is a centered von
Neumann B(G)–module.

Proof. The representation ρ of B(G) on H is normal. Therefore, there exists a Hilbert
space H such that ρ is unitarily equivalent to the representation id⊗1 on G ⊗̄ H. Mak-
ing use of Proposition

B(G,H)
13.9 and identifying G ⊗̄ H with H we find E = B(G,G ⊗̄ H).

By a straightforward generalization of Proposition
smcont
C.3 any homomorphism between von

Neumann modules is strongly continuous so that identifying B(G,H) and B(G, G ⊗̄ H),
indeed, respects the strong topology. By Example

centex
13.3 the center of E is 1 ⊗ H so that

H, indeed, is the Hilbert space obtained from the center.

Henceforth, we will speak of centered von Neumann B(G)–modules and von Neumann
B(G)–B(G)–modules interchangeably.

centiso 13.12 Proposition. Let E1 = B(G,G ⊗̄ H1) and E2 = B(G,G ⊗̄ H2) be two arbitrary
centered von Neumann B(G)–modules. Then (identifying Hi with 1 ⊗ Hi) a 7→ a ¹ H1

establishes a canonical isomorphism from the B(G)–B(G)–linear mappings in Ba(E1, E2)
to B(H1,H2). In particular, a B(G)–B(G)–linear mapping E1 → E2 is a unitary, an
isometry, a projection (for H1 = H2), etc., if and only if the corresponding mapping in
B(H1,H2) is.

Proof. This follows from the fact that bilinear mappings respect the center (i.e. the
range of a ¹ H1 is, indeed, contained in H2).

13.13 Proposition. Let B(G,H) be an arbitrary von Neumann B(G)–module and let
B(G,G ⊗̄ H) be an arbitrary centered von Neumann B(G)–module. Then

B(G,H) ¯̄ s B(G,G ⊗̄ H) = B(G,H ⊗̄ H)
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via x¯ y 7→ (x⊗ id) ◦ y.
Let B(G,G ⊗̄ H1) and B(G,G ⊗̄ H2) be two arbitrary centered von Neumann B(G)–

modules. Then the isomorphism

B(G,G ⊗̄ H1) ¯̄ s B(G,G ⊗̄ H2) = B(G,G ⊗̄ H1 ⊗̄ H2)

is two-sided. In particular, the restriction of this isomorphism to the centers is the tensor
product of Hilbert spaces.

Proof. Simple verification.

Hsprod 13.14 Corollary. Let E¯ be a product system of centered von Neumann B(G)–modules.
Denote by Hτ the center of Eτ . Then H⊗ =

(
Hτ

)
τ∈T is a product systems of Hilbert spaces.

Moreover, two product systems E¯ and E ′¯ of centered von Neumann B(G)–modules
are isomorphic, if and only if the corresponding product systems H⊗ and H′⊗ of Hilbert
spaces are isomorphic, where the isomorphisms Eτ −→ E ′

τ and Hτ −→ H′
τ are identified

via Proposition
centiso
13.12.

indHsprod 13.15 Corollary. Let ξ¯ be a unital unit for E¯ and denote by E the inductive limit
associated with this unit. Let H = E ¯̄ G. Then H ⊗̄ Hτ = H.

Proof. We have E ¯̄ s Eτ = E, hence, H ⊗̄ Hτ = E ¯̄ Eτ ¯̄ G = E ¯̄ G = H.

If E¯ is the product system of a normal E0–semigroup ϑ on B(G), then H⊗ as given
in Corollary

Hsprod
13.14 is the associated Arveson product system of Hilbert spaces. More

precisely, if G is infinite-dimensional and separable, and if ϑ is strongly continuous and
indexed by R+, then the associated Arveson system is

{
(τ, a) ∈ (0,∞)×B(G) : a ∈ CB(G)(Eτ )

}

as a toplogical subspace of (0,∞)×B(G); see
Arv89
[Arv89]. Recall from the proof of Theorem

E_0rem
7.9 that all Eτ can be identified with B(G). Henceforth, CB(G)(Eτ ) can, indeeed, be
considered as a subset of B(G). Clearly, if G is separable and G = G ⊗̄ Hτ , then also Hτ

must be separable. Consequently, as operator norm and Hilbert space norm on CB(G)(Eτ )
coincide, Arveson’s product system is isomorphic to (0,∞)×G as a topological space.

In Theorem
coco
7.8 we have classified conservative CP-semigroups up to cocycle conju-

gacy or, what is the same, by product systems. In Theorem
E_0rem
7.9 we have shown that in

the case of E0–semigroups the cocyle providing the equivalence is unitary. In Corollary
Hsprod
13.14 we have seen that in the case of CP-semigroups on B(G) classification by product
systems of Hilbert modules is the same as classification by product systems of Hilbert
spaces. Altogether, we have shown that normal E0–semigroups on B(G) are classified
by product systems of Hilbert spaces up to unitary cocycle conjugacy. This generalizes
Arveson’s result

Arv89
[Arv89] to the case where G is not necessarily separable and where ϑ is

not necessarily strongly continuous.
Let us repeat, however, that we do not have a one-to-one correspondence as in

Arv90
[Arv90]. Besides the question in how far this result depends on the assumption that ϑ
is strongly continuous, droping the separibilty condition on G has changed the situation
completely. Assuming G infinite-dimensional and separable means that there is essentially
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one C∗–algebra B(G) under consideration. Allowing arbitrary dimension for G raises the
question, whether each product system of Hilbert spaces arises from an E0–semigroup,
once for each dimension. We remarked already that in the case of G = C the answer is
negative, and it is very well possible that the answer generally depends on the dimension
of G.

14 Domination and cocycles
doco

Let T : A → B be a (bounded) completely positive mapping with GNS-construction
(E, ξ). Let w be an operator in A′, the relative commutant of (the image of) A in Ba(E),
with 0 ≤ w ≤ 1. Then S(a) = 〈ξ, waξ〉 = 〈√wξ, a

√
wξ〉 defines a (bounded) completely

positive mapping. Moreover, S is dominated by T , i.e. also T − S is completely positive.
Clearly, domination defines a partial order on the set of (bounded) completely positive
mappings A → B. The mapping O : w 7→ S is one-to-one (as Sw1 = Sw2 implies 0 =
b∗〈ξ, (w1−w2)a

∗a′ξ〉b′ = 〈aξb, (w1−w2)a
′ξb′〉 for all a, a′ ∈ A and b, b′ ∈ B) and, obviously,

order preserving.
In the case when B = B(G), Arveson

Arv69
[Arv69] has shown, based on the usual Stinespring

construction, that O, actually, is surjective, hence, an order isomorphism. Paschke has
generalized this to arbitrary von Neumann algebras B ⊂ B(G). The proof of the following
(slightly weaker) lemma shows that we need self-duality. Therefore, it is not clear, whether
the result can be generalized to arbitrary C∗–algebras.

14.1 Lemma
Pas73
[Pas73]. Let A be a C∗–algebra, let B be a von Neumann algebra onpaslem

a Hilbert space G, and let T ≥ S be a completely positive mapping A → B. Let (E, ξ)
denote the GNS-construction for T . Then there exists an operator in w ∈ A′ ⊂ Ba(E

s
)

such that S(a) = 〈ξ, waξ〉.

Proof. Let (F, ζ) denote the GNS-construction for S. As T − S is completely posi-
tive, the mapping v : ξ 7→ ζ extends to an A–B–linear contraction E → F and further
(similar to Proposition

smcont
C.3) to a contraction E

s → F
s
. By Remark

sd
C.2, v has an ad-

joint v∗ ∈ Ba(F
s
, E

s
). Since adjoints of bilinear mappings and compositions among

them are bilinear, again, it follows that w = v∗v commutes with all a ∈ A. Of course,
〈ξ, waξ〉 = 〈ξ, v∗vaξ〉 = 〈ζ, aζ〉 = S(a).

Of course, we can equip also the set of CP-semigroups on a unital C∗–algebra B with
a partial order, by saying that T ≥ S, if Tt ≥ St for all t ∈ T. In

Bha98p
[Bha98a] the order

structure of the set of normal strongly continuous CP-semigroups on B(G) which are
dominated by a fixed normal E0–semigroup (with T = R+) is studied. In the remainder
of this section we generalize the results in

Bha98p
[Bha98a] to arbitrary von Neumann algebras

B ⊂ B(G), to normal CP-semigroups (not necessarily strongly continuous) dominated by
a fixed conservative normal CP-semigroup, and arbitrary T.

To begin with, let T be an arbitrary normal CP-semigroup on a von Neumann algebra
B ⊂ B(G) and let S be a normal CP-semigroup dominated by T . Denote by Et,Et, Eτ

and Ft, Ft, Fτ (t, τ ∈ T, t ∈ Jτ ) the strong closures of the modules related to the first
inductive limit in Section

1st
4 for the CP-semigroups T and S, respectively. (Ft should not

be confused with the Fock modules in Section
Fock
11.) Denote by ζt ∈ Ft, ζt ∈ Ft, ζ

τ ∈ Fτ the
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anlogues for S of the elements ξt, ξt, ξ
τ for T . Denote by βT

ts, i
T
t and βS

ts, i
S
t the embeddings

related to the constructions for T and for S, respectively.
For each t ∈ T denote by vt ∈ Ba(Et, Ft) the B–B–linear contraction extending ξt 7→ ζt

as constructed in the proof of Lemma
paslem
14.1. For t ∈ Jτ define the B–B–linear contraction

vt = vtn ¯ . . .¯ vt1 ∈ Ba(Et,Ft).

Obviously,
vs ¯ vt = vs`t (14.1) vtensor

for s ∈ Jσ and t ∈ Jτ . Moreover, vtβ
T
ts = βS

tsvs for all s ≤ t ∈ Jτ . Applying iSt to both sides,
we find iSt vtβ

T
ts = iSs vs. Therefore, by Proposition

uniprop
A.3 (extended to strong completions

via Proposition
smcont
C.3), for each τ ∈ T there exists a unique B–B–linear contraction vτ ∈

Ba(Eτ , Fτ ) fulfilling vτ iTt = iSt vt for all t ∈ Lτ . By (
vtensor
14.1) we find vσ ¯ vτ = vσ+τ . By

Remark
sd
C.2 these operators have adjoints. By B–B–linearity one easily checks that also

the adjoint equation (vσ)∗ ¯ (vτ )∗ = (vσ+τ )∗ is valid. Therefore, by setting wτ = (vτ )∗vτ

(τ ∈ T), we define B–B–linear positive contraction on Eτ . This family of contractions
fulfills

wσ ¯ wτ = wσ+τ . (14.2) precoc

wcor 14.2 Corollary. Also the family
(√

wτ
)

τ∈T fulfills (
precoc
14.2). The family ξ¯S =

(
ξτ
S

)
τ∈T with

ξτ
S =

√
wτξτ is a unit for the product system E¯. Moreover, the CP-semigroup 〈ξτ

S, •ξτ
S〉

associated with ξ¯S is S.

In the sequel, we assume that T is conservative. (Of course, S is not conservative,
unless S = T .) Then we may construct the strong closure E of the second inductive limit
from Section

2nd
5 and a normal E0–semigroup ϑ on Ba(E).

By Lemma
loccoc
7.5 the family w =

(
wτ

)
τ∈T of operators wτ = id¯wτ ∈ Ba(E) =

Ba(E ¯̄ s Eτ ) is a positive contractive local cocycle with respect to ϑ.
On the set of positive local cocycles we define a partial order by saying w ≥ v, if

wτ ≥ vτ , pointwise.

CPdoco 14.3 Theorem. Let T be a conservative normal CP-semigroup on a von Neumann al-
gebra B and let ϑ be the maximal dilation of T . Then the mapping w 7→ S defined, by
setting

St = 〈√wtξ, •
√

wtξ〉 (= 〈ξ, •wtξ〉),
establishes an order isomorphism from the partially ordered set of positive contractive local
cocycles w with respect to ϑ to the partially ordered set of all normal CP-semigroups S
dominated by T .

Proof. Of course, the mapping w 7→ S maps into the normal CP-semigroups dominated
by T , and we have just shown that it is surjective. By Lemma

paslem
14.1 the restriction of

wτ to BξτB = i(τ)(BξτB) is determined uniquely by Sτ . By (
precoc
14.2) this determines wτ

completely. By Lemma
loccoc
7.5 the correspondence wτ and wτ is one-to-one. Therefore, the

mapping is also injective.
Certainly, the mapping respects the order, i.e. w ≥ w′ ⇒ S ≥ S ′. Conversely, if

S ≥ S ′, then (cf. the discussion before Corollary
wcor
14.2) there exists a family uτ ∈ Ba(Fτ , F

′
τ )

of B–B–linear contractions such that w′τ = (v′τ )∗v′τ = (vτ )∗(uτ )∗uτvτ ≤ (vτ )∗vτ = wτ .
This implies w′ ≤ w.
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14.4 Remark. Notice that also the embedding of wτ via w0
τ = (|ξ〉〈ξ|) ¯ wτ defines a

cocycle. This cocycle is positive and adapted. Therefore, S is cocycle subconjugate to T .
Here we have, at least, that w0

τ is in the relative commutant of jτ (B), so that w0 is local
in the sense of

Bha98p
[Bha98a]. Also in this sense we have a one-to-one correspondence.

Appendix

A Inductive limits
inductive

il A.1 Definition. Let L be a partially ordered set which is directed increasingly. An
inductive system over L is a family

(
Et

)
t∈L of vector spaces Et with a family

(
βts

)
t≥s

of
linear mappings βts : Es → Et fulfilling

βtrβrs = βts

for all t ≥ r ≥ s and βtt = idEt .
The inductive limit E = lim ind

t∈L
Et of the family

(
Et

)
is defined as E = E⊕/N, where

E⊕ =
⊕
t∈L

Et and N denotes the subspace of E⊕ consisting of all those x =
(
xt

)
for which

there exists s ∈ L (with s ≥ t for all t with xt 6= 0) such that
∑
t∈L

βstxt = 0 ∈ Es. (Clearly,

if s fulfills this condition, then so does each s′ ≥ s.)

canon A.2 Proposition. The family
(
it
)

t∈L of canonical mappings it : Et → E fulfills itβts = is
for all t ≥ s. Clearly, E =

⋃
t∈L

itEt.

Proof. Let us identify xt ∈ Et with its image in E⊕ under the canonical embedding. We
have to check, whether βtsxs − xs ∈ N(⊂ E⊕) for all xs ∈ Es. But this is clear, because
βtt(βtsxs)− βts(xs) = 0.

uniprop A.3 Proposition. Let F be another vector space and suppose f : E → F is a linear
mapping. Then the familiy

(
ft

)
t∈L of linear mappings, defined by setting

ft = fit, (A.1) fdef

fulfills
ftβts = fs for all t ≥ s. (A.2) famcond

Conversely, if
(
ft

)
t∈L is a family of linear mappings ft : Et → F fulfilling (

famcond
A.2), then

there exists a unique linear mapping f : E → F fulfilling (
fdef
A.1).

Proof. Of course, f = 0, if and only if ft = 0 for all t ∈ L, because E is spanned by all
itEt. In other words, the correspondence is one-to-one.

Consider a linear mapping f : E → F and set ft = fit. Then by Proposition
canon
A.2 we

have ftβts = fitβts = fis = fs.
For the converse direction let

(
ft

)
be a family of linear mappings ft : Et → F which

satisfies (
famcond
A.2). Define f⊕ =

⊕
t∈L

ft : E⊕ → F and let x =
(
xt

) ∈ N so that for some s ∈ L
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we have
∑
t∈L

βstxt = 0. Then f⊕(x) =
∑

t∈L ftxt =
∑

t∈L fsβstxt = fs

∑
t∈L βstxt = 0, so

that f⊕ defines a mapping f on the quotient E fulfilling (
fdef
A.1).

A.4 Remark. The inductive limit E together with the family
(
it
)

is determined by the
second part of Proposition

uniprop
A.3 up to vector space isomorphism. This is refered to as the

universal property of E.

If the vector spaces Et carry additional structures, and if the mediating mappings βts

respect these structures, then simple applications of the universal property show that,
usually, also the inductive limit carries the same structures.

A.5 Example. If all Et are right (left) modules and all βts are right (left) module homo-
morphisms, then E inherits a right (left) module structure in such a way that all it also
become right (left) module homomorphisms. A similar statement is true for two-sided
modules.

Moreover, if F is another module (right, left, or two-sided) and
(
ft

)
is a family of

homomorphisms of modules (right, left, or two-sided) fulfilling (
famcond
A.2), then also f is ho-

momorphism.

Sometimes it is necessary to work slightly more in order to see that E carries the same
structure. Denote by i : E⊕ → E the canonical mapping.

A.6 Proposition. Let all Et be pre-Hilbert modules and let all βts be isometries. Then

〈x, x′〉 =
∑

t,t′
〈βstxt, βst′x

′
t′〉 (A.3) ip

(x = i((xt)), x′ = i((x′t)) ∈ E, and s such that xt = x′t = 0 whenever t > s) defines an
inner product on E. Obviously, also the it are isometries.

Moreover, if
(
ft

)
t∈L with ftβts = fs (t ≥ s) is a family of isometries from Et into a

pre-Hilbert module F , then so is f .

Proof. We have to show that (
ip
A.3) does not depend on the choice of s. So let s1 and

s2 be different possible choices. Then choose s such that s ≥ s1 and s ≥ s2 and apply
the isometries βss1 and βss2 to the elements of Es1 and Es2 , respectively, which appear in
(
ip
A.3).

Since any element of E may be written in the form itxt for suitable t ∈ L and xt ∈ Et,
we see that that the inner product defined by (

ip
A.3) is, indeed, strictly positive.

The remaining statements are obvious.

A.7 Remark. Of course, the inductive limit over two-sided pre-Hilbert modules Et with
two-sided βts is also a two-sided pre-Hilbert module and the canonical mappings it respect
left multiplication.

non1rem A.8 Remark. If the mappings βts are non-isometric, then Equation (
ip
A.3) does not make

sense. However, if L is a lattice, then we may define an inner product of two elements
itxt and it′x

′
t′ by 〈βstxt, βst′x

′
t′〉 where s is the unique maximum of t and t′. This idea is

the basis for the construction in
Bha96p
[Bha96] where also non-conservative CP-semigroups are

considered. Cf. also Remark
non1ip
8.6.
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Sometimes, however, in topological contexts it will be necessary to enlarge the alge-
braic inductive limit in order to preserve the structure. For instance, the inductive limit
of Hilbert modules will only be rarely complete. In this case, we refer to the limit in
Definition

il
A.1 as the algebraic inductive limit.

A.9 Definition. By the inductive limit of an inductive system of Hilbert modules we
understand the norm completion of the algebraic inductive limit.

By the inductive limit of an inductive system of von Neumann modules we understand
the strong completion of the algebraic inductive limit; see Appendix

vNm
C.

topindlim A.10 Proposition. 1. Let A be a pre–C∗–algebra and let B be a unital C∗–algebra.
Then the inductive limit of contractive Hilbert A–B–modules is a contractive Hilbert
A–B–module.

2. Let A be a von Neumann algebra and let B be a von Neumann algebra acting
on a Hilbert space G. Then the inductive limit of von Neumann A–B–modules is a von
Neumann A–B–module.

Proof. Any element in the algebraic inductive limit may be written as itxt for suitable
t ∈ L and tt ∈ Et. Therefore, the action of a ∈ A is bounded by ‖a‖ on a dense subset
of the inductive limit of Hilbert modules. Moreover, if all Et are von Neumann modules,
then the functionals 〈itxt ¯ g, •itxt ¯ g〉 on A all are normal. (Cf. Appendix

vNm
C.)

B Conditional expectations generated by projections

and essential ideals
essid

essnorm B.1 Lemma. Let A be a C∗–algebra with a unital C∗–subalgebra B, for which ϕ : a 7→
1Ba1B defines a conditional expectation. Denote by I the closed ideal in A generated by
1B.

If I is an essential ideal, then the algebra A acts faithfully on the GNS-Hilbert module
E for the conditional expectation ϕ. In particular, ‖a‖ = ‖a‖E for all a ∈ A, where ‖•‖E

denotes the operator norm in Ba(E).

Proof. One easily, checks that the GNS-Hilbert module is precisely E = A1B and that
the cyclic vector is ξ = 1B. We are done, if show that A acts faithfully on E, because
faithful homomorphisms from one C∗–algebra into another are isometric, automatically.
So let a be a non-zero element in A. We know that there exists an element i ∈ I, such
that ai 6= 0. Since I = spanA1BA, we may find (by polarization, if necessary) a′ ∈ A,
such that aa′1Ba′

∗ 6= 0. Therefore, aa′1B 6= 0, where a′1B is an element of E.

multiplier B.2 Observation. The preceding proof also shows that we may identify I with the
compact operators K(E) on E.

counter B.3 Example. We show that an algebraic version of ‘essential’ is not sufficient. Consider
the ∗–algebra P = C〈x〉 of polynomials in one self-adjoint indeterminate. By p 7→ p(x) we
define a homomorphism from P into the C∗–algebra of continuous functions on the subset
[0, 1] ∪ {2} of R. Denote by A the image of P under this homomorphism. Furthermore,
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choose the ideal I in A consisting of all functions which vanish at 2. Clearly, I is essential
in A. But, the completion of A contains just all continuous functions. These are no longer
separated by I.

C Von Neumann modules
vNm

In this appendix we recall the definition of von Neumann modules and their basic prop-
erties. Like von Neumann algebras, which are strongly closed subalgebras of B(G), we
think of von Neumann modules as strongly closed submodules of B(G,H)

Ske97p2
[Ske97]. Other

authors (e.g. Schweitzer
JSchw96
[Sch96]) follow an abstract approach paralleling Sakai’s character-

ization of W ∗–algebras. Consequently, they define W ∗–modules as Hilbert modules with
a pre-dual. Both approaches are more or less equivalent. The most important properties
of von Neumann modules or W ∗–modules already can be found in the first paper

Pas73
[Pas73]

on Hilbert modules by Paschke.
For two reasons we decided to follow the concrete operator approach. Firstly, the ac-

cess to topological questions seems to be more direct. For instance, using the embedding
B(G,H) ⊂ B(G⊕H), it is almost a triviality to see that a von Neumann module can be
embedded as a strongly closed subset into a von Neumann algebra. In the W ∗–approach
one needs to work slightly harder to see this. Secondly, starting from the usual Stinespring
construction, the existing results on both CP-semigroups and E0–semigroups are formu-
lated exclusively, using the language of operators on or between Hilbert spaces. Therefore,
in order to keep contact with earlier work, von Neumann modules are the more reasonable
choice. Our general reference for von Neumann modules is

Ske97p2
[Ske97]. This is just, because

we do not know another reference where the operator approach is used systematically.

We start by repeating some well-known facts on normal mappings which can be found
in any text book like

Sak71,Tak79
[Sak71, Tak79]. We also recommend the almost self-contained

appendix in Meyer’s book
Mey93
[Mey93]. First of all, recall that a von Neumann algebra is

order complete, i.e. any bounded increasing net of positive elements in a von Neumann
algebra converges in the strong topology to its unique least upper bound. A positive linear
mapping T between von Neumann algebras is called normal, if it is order continuous. In
other words, T is normal, if and only if lim sup

λ
T (aλ) = T (lim sup

λ
aλ) for each bounded

increasing net
(
aλ

)
. Of particular interest is the set of normal states on a von Neumann

algebra. An increasing net
(
aλ

)
converges to a in the strong topology, if and only if ϕ(aλ)

converges to ϕ(a) for any normal state ϕ. The linear span of the normal states is a Banach
space, the pre-dual. As normality is a matter of bounded subsets, a positive mapping T is
normal, if ϕ◦T (aλ) converges to ϕ◦T (a) for all bounded increasing nets

(
aλ

)
and all ϕ in

a subset of normal states which is total in the pre-dual. If a von Neumann algebra acts on
a Hilbert space G, then the functionals of the form 〈f, •f〉 form a total subset of the pre-
dual, whenever f ranges over a dense subset of G. Moreover, using the technique of cyclic
decomposition (see

Ske97p2
[Ske97]), one can show that also the set of functionals 〈x¯ g, •x¯ g〉

is total in the pre-dual of B(E ¯̄ G), whenever x ranges over a dense subset of E and g
ranges over a dense subset of G.

C.1 Definition. Let B ⊂ B(G) be a von Neumann algebra on a Hilbert space G. A
Hilbert B–module E is called a von Neumann B–module, if the set LE constructed via
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Stinespring construction (Example
Stinespring
2.16) is a strongly closed subset of B(G,H). In this

case we assume that H = E ¯̄ G is a part of the definition of E, and do no longer
distinguish between x ∈ E and Lx ∈ B(G,H).

Let A be another von Neumann algebra. A Hilbert A–B–module E is called a von
NeumannA–B–module, if it is a von Neumann B–module, and if the representation ρ : A →
B(H) (see Example

Stinespring
2.16) is normal.

sd C.2 Remark. A von Neumann module is self-dual. More precisely, for any element
Φ ∈ Br(E,B) there exists an element x ∈ E such that Φ(y) = x∗y (y ∈ E). Therefore,
Ba(E) = Br(E). The algebra Ba(E) is a von Neumann algebra. A Hilbert module over a
von Neumann algebra is self-dual, if and only if it is a von Neumann module. A bounded
B–sesquilinear form (•, •) : E × F → B on a pair of von Neumann B–modules defines a
unique operator a ∈ Ba(F, E) fulfilling 〈x, ay〉 = 〈a∗x, y〉 = (x, y). For Hilbert modules,
in general, this is not so. See

Pas73,Ske97p2
[Pas73, Ske97].

smcont C.3 Proposition. Let A be a C∗–algebra and let B be von Neumann algebra acting on a
Hilbert space G. Let E be a Hilbert A–B–module. Then the operations x 7→ xb, x 7→ 〈y, x〉,
and x 7→ ax are strongly continuous. Therefore, E

s
is a Hilbert A–B–module and a von

Neumann B–module.

Proof. This trivially follows from the embedding E ⊂ B(G,H) ⊂ B(G ⊕ H); see
Ske97p2
[Ske97].

normal1 C.4 Proposition. If E is the GNS-module of a normal completely positive mapping
T : A → B between von Neumann algebras, then E

s
is a von Neumann A–B–module.

Proof. We have to show that the representation ρ for the GNS-module of T is normal.
So let

(
aλ

)
be a bounded increasing net in A. This net converges strongly to some a ∈ A.

Then for each b ∈ A also the net
(
b∗aλb

)
is bounded and increasing, and it converges

strongly to b∗ab, because multiplication in A is separately strongly continuous. Since T
is normal, we have lim

λ
T (b∗aλb) = T (b∗ab). Let g ∈ G be a unit vector and define the

normal state 〈g, •g〉 on B. Then for f = (b⊗ 1 + NA⊗B)¯ g ∈ E ¯G we have

lim
λ
〈f, ρ(aλ)f〉 = lim

λ
〈g, T (b∗aλb)g〉 = 〈g, T (b∗ab)g〉) = 〈f, ρ(a)f〉

where f ranges over all vectors of the form x¯ g.

normal2 C.5 Lemma. Let E be a von Neumann A–B–module. Let π be a normal representation
of B on G. Then the representation ρ of A on H = E ¯̄ G is normal.

Proof. This is a small modification of the preceding proof. Let
(
aλ

)
be a bounded

increasing net in A. Then
lim

λ
〈x, aλx〉 = 〈x, ax〉 (C.1) netconv

for all x ∈ E. This can be seen by choosing π = id to be the defining representation of B
and then checking (

netconv
C.1) with normal states 〈g, •g〉 (g ∈ G). Our assertion follows by the

same check, however, turning to arbitrary normal π.
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normal3 C.6 Corollary. Let E be a von Neumann A–B–module and let F be a von Neumann
B–C–module where C acts on a Hilbert space G. Then the strong closure E ¯̄ s F of E¯F
in B(G,E ¯̄ F ¯̄ G) is a von Neumann A–C–module.

Proof. We have to show that the representation ρ of A on E ¯̄ F ¯̄ G is normal. But this
follows from Lemma

normal2
C.5 and the fact that the representation of B on F ¯̄ G is normal.
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