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Introduction

Convolution semi-groups of probability measures are among the most important objects of classical
probability theory. On the one hand, they turn out to be classified by their infinitesimal generators.
On the other hand, they classify themselves all stochastic processes with stationary and independent
increments (or ‘white noises’) up to stochastic equivalence. In other words, it is possible to classify
white noises by giving a formula for all infinitesimal generators. In the case of processes on the real
line (or, more generally, on R™) this is the contents of the famous LEVY—KHINTCHINE formula for the
logarithm of the FOURIER transform of an infinitely divisible probability measure. This formula has
been generalized to locally compact groups, basically in two ways. There is HUNT’s formula [13] for the
infinitesimal generators of convolution semi-groups of probability measures on an arbitrary LIE group
(cf. also vON WALDENFELS [34]). In the other direction of generalization there is a formula for the
logarithm of an infinitely divisible positive definite function on a (not necessarily commutative) locally
compact group (see ARAKI [4], GUICHARDET [11], PARTHASARATHY, SCHMIDT [20], and STREATER
30))-

We quickly recall the quantum stochastic generalizations of these notions. One dualizes the notion
of a probability space (2, F, ) by introducing a pair (A, ¢,,) consisting of a (commutative) x—algebra
A of certain integrable functions on  and a state ¢, on A given by ¢, (f) = [ f(p) p(dp). A quantum
probability space is a pair (A, ¢) where the algebra A is allowed to be non-commutative.

If the probability space € is also a compact group (with F being the BOREL sets) and A the
coefficient algebra of 2, then A has a natural HOPF x—algebra structure, where the comultiplication
A: A — AR A is defined by [A(f)](z,y) = f(ay) for z,y € Q, and the counit § : A — C is
given by 6(f) = f(I) with I being the idenity of © and the antipode S : A — A is defined by
[S(H))(x) = f(xz~1). (Cf. Section 5.4 of these notes where we make this explicit for SU(2). See also
the preliminaries in Chapter 1.) Consequently, a (not necessarily commutative) HOPF s—algebra is
a candidate for a compact quantum group. We emphasize that in the literature, in general, more
structure is required for a quantum group. However, in all cases a quantum group is a HOPF *—
algebra. If  is only a semi-group, then the antipode is missing and one obtains only a *—bialgebra.
If Q is only locally compact (for instance the real line), we may choose the C*—algebra of continuous
bounded functions on © (or, even more generally, the sx—algebra of bounded measurable functions).
It is still possible to define a ‘comultiplication’” A in the stated way. However, we want to emphazise
that this A is not the comultiplication of a HOPF algebra, because it does, in general, not map into
the algebraic tensor product A ® A.

If 1 and v are probability measures on the (locally compact) group 2 then there is a convolution
product p x v which is again a probability measure. This convolution structure turns over to the
corresponding states. One has

Pusv = Pu * Pv = (‘P,u ® pu) 0 A.

A classical random variable is a function J : Q — FE from ) into a measurable space E. The
probability measure o J ™! is called the distribution of J. Denoting by Ag the x—algebra of bounded
measurable functions on E, we see that in the dualized language the mapping j : Ag — A defined by

jifr—tolJ



is a homomorphism between *-algebras and the state defined by the measure p o J~! is given by
pj = @oj. Consequently, a quantum random variable on a quantum probability space is a *—algebra
homomorphism j from a *x—algebra B into A and the state ¢ o j is called its distribution. One says
the quantum random variable is over A and on B.

A pair of classical random variables j, k is called independent, if pomo (j® k) = poj®@pok
with m denoting the multiplication map of A. Since A is commutative, this property is sufficient to
calculate all the momenta of the joined distribution. In the case of quantum random variables an
additional assumption is required. Throughout these notes a pair j, k of quantum random variables is

called independent if the above condition holds and if in addition [j (Bj), k(Bk)] = {0} where [o, o] is

the usual commutator. For other notions of non-commutative independence see e.g. [15, 29, 33].

A classical stochastic process is a family of random variables J;,7 € Z, mapping into the same
measurable space and, consequently, a quantum stochastic process is a family of quantum random
variables j;,7 € Z, on the same x—algebra B (see ACCARDI, FRIGERIO, LEWIS [2]). If the random
variables of a classical stochastic process map into a compact group (semi-group) the dualized process
is on a commutative HOPF *—algebra (x—bialgebra) B. For the quantum analogue, B is allowed to be
non-commutative. In this case one defines the usual convolution of mappings from coalgebra into an
algebra by jr * jo = mo (jx ® jo) o A. If ji and j, are independent then ji * j, is also a x—algebra
homomorphism.

A stochastic process (dualized classical or quantum) on a *—bialgebra with independent and sta-
tionary increments (or white noise) is a stochastic process jg indexed by 0 < s < ¢, such that for all
s1 <ty <...< s, <t, the random variables js,;, and js,+, are independent for all 7,£ € {1,...,n},
the distribution ¢ o jg; converges to ¢ o jss weakly for t — s,

jrs *jst = jrt

for r < s < t, and the distributions ¢ o js depend only on the difference ¢ — s. (See ACCARDI,
SCHURMANN, VON WALDENFELS [3].)

In a series of papers [22, 23, 24, 25, 26] (which are summarized in [27]) SCHURMANN has shown as
an extension of the classical results for stochastic processes with values in a compact LIE group that
any quantum stochastic process jg with stationary and independent increments on a x—bialgebra B
gives rise to an infinitesimal generator ¢ from which the process can be reconstructed up to quantum
stochastic equivalence. All infinitesimal generators ¢ are conditionally positive (linear, hermitian)
functionals, i.e. ¢ is positive on ker(d), vanishing at identity. Moreover, given any such %, there
is a quantum stochastic process with stationary and independent increments associated with . A
representation of this process can be obtained on a Boson FOCK space I'(H) over a HILBERT space
H in the vacuum state by finding the unique solution of the system of quantum stochastic differential
equations in the sense of HUDSON and PARTHASARATHY [12]

djst = Jaex(dAfon+dAiomo(Id—091)+dAron+pdt), jss = 01,

where the *x—representation 7w of B and the 1-cocycle n with repect to 7 can be constructed from ¥ by
Theorem 1.1 in Chapter 1 of these notes, and 77 = 1o *.

In these notes we investigate the structure of all conditionally positive functionals on the quantum
group SU4(2). The SU,(2) introduced by WoroNowICzZ [35] (for further references see the survey
of KOORNWINDER [14]) is one of the standard examples of a quantum group and it seems, therefore,
natural to investigate its behaviour as a state space for quantum white noise. Partly, our results (in
particular those of the first three chapters) are already published in [28].

We find that there is, in some sense, a strong formal anology between our results and the classical
ones. Let, for instance, u;,t > 0, be a weakly continuous semi-group of probability measures on the
real line. Then it is not difficult to see that it is possible to find a function m(k), such that the
FOURIER transform fi;(k) = [ €™ dp,(z) is of the form

ﬁt(k) — et;L(k).



In 1934 LEvY [17] found that m(k) can always be chosen to be of the form

ikx

m(k) = irk— k2+/ <“”—1—>d£
m(k) 1 r o) e T2 (2)

where 71 € R, r > 0, and the LEVY measure £ fulfills the condition [ lfr% dL(x) < oco. By replacing
ikx

Tho? with ¢k sin x, we obtain the equivalent formulation

in the integrand the function

m(k) = irk—rk? —|—/ (e?*® — 1 —iksinx) dL(x)
R\{0}

which is more convenient for our purposes.

For ¢ € [—1,1] the quantum group SU,(2) can be considered as the *—bialgebra 4, having the
matrix (f; 73:’* as unitary corepresentation (see the preliminaries in Chapter 1). Our Theorem 4.16

in Chapter 4 says that in the case when |g| < 1 the infinitesimal generators of white noises on A, have
the form

Yla) = s(a) + (ni|moP(a)lm). (*)

Here 15 is a GAUSSian part, P is a projection onto a certain ideal K of A, and 7 is a x—representation
of A, acting on a HILBERT space H where H contains no invariant subspace on which the representation
is given by d. The vector 1; € H is an element of a certain completion of H, and the brackets are to
be understood as the continuation of the usual scalar product on H to elements of H.

Notice that the mappings d,, defined by a — €™, v — 0 can be extended to a *~homomorphism
of A,. Using the derivatives

d",(a)
5™ = e\
(a) d@” Lp:O’
the precise form of 15 and P is given by
s = 16 +rd’

and

oa—aoF

P = Id—61-4¢ -
21

H is the completion of H with respect to the scalar product
(r(a* —1) o |T(a* — 1))

where m(a* — 1) has to be an injective operator according to the condition on H. It is easy to check
that P projects onto the ideal Ks being the linear span of all products of elements of ker(d).

Now we want to explain why the formula for m is in analogy to (x). It is well-known that the
semi-group 7% of linear transformations on the algebra Cj,(R) of continuous bounded functions on the
real line, defined by setting

T,f(x) = /f@+yNM@%

has an infinitesimal generator L. If we define a linear functional on a suitable dense subset of Cy(R)
by setting

v(f) = Lf(0),

we obtain (see [13]) that the ‘FOURIER transform’ of 1 is given by

YE) = ).



By defining the derivatives
0 (f) = ")

and the projection

[P(Hx) = flx)=d(f) =0 (f)sinz,

we obtain

G(f) = nd +r+ /R o PO L)

Notice that 1 is positive on ker(d), that the domain of P consists of all functions in C,(R) differentiable
at 0 and that P projects onto the ideal K5 in this domain consisting of all functions f € Cp(R) with

f(0) = f'(0) =0.
Now consider the positive functional ¢y on Cp(R), defined by setting

ox(f) = / f(x) dA(z)

where ) is the finite measure

172

It has a GNS representation 7 on H = L?(R, \) with the constant function 1 being the cyclic vector.
If we introduce the function space

— 1+ 22
H = { 2 n(w)neH}
and 1, € H by setting
14 22
m(x) = 22

we indeed obtain that the functional ¢ on C,(R) can also be written in the form (x).

Having a look at the results for the classical case (¢ = 1) in Section 5.4 (cf. also the general results
of HUNT [13]), we see that the ‘quantization’ SU,(2) of the three-parameter group SU(2) behaves
much more like a one-parameter group. It turns out that also the classical case can be described in
the form (x); see Theorem 5.18. However, the GAUssian part ¢s and the projection P are considerably
more complicated and the space H out of which 7; can be chosen is no longer a completion of the
representation space H. Notice that the mapping a — f(¢) = d,(a) defines a homomorphism from
A, onto the coefficient algebra of the one-dimensional torus which, therefore, can be considered to be
contained in A, as a subgroup. In view of this ‘embedding’” we can say that in the case |g| < 1 the
GAussian part and the projection are those of the one-dimensional torus.

The case ¢ = —1 which we call anti-classical is in some respects a ‘mixture’ of the foregoing cases
(see Section 5.5). It can also be described in the form (x) with the exception that we have to add
a part ¥s which we call anti-GAussian; see Theorem 5.26. This part corresponds to the GAUsSian
part of the classical case and is similarly complicated. On the other hand, the GAuUSsian part and the
projection of the anti-classical case are those of the case |q| < 1.

The contents of these notes is organized as follows. By Theorem 1.1 in Chapter 1 the search for all
possible white noises (i.e. for all conditionally positive functionals) becomes, as in classical probability
theory, a cohomological problem; cf. [4, 11, 20, 30]. Throughout the first four chapters we solve the

4



problem of finding all conditionally positive functionals for the cases when 0 < |¢| < 1 in which we
have the crucial Lemma 1.6. This lemma shows to be the key to the whole theory.

In Chapter 2 we solve the cohomological problems. It turns out that the conditionally positive
functionals are classified (more or less) by states.

The representation theory is placed in Chapter 3. By Lemma 1.6 we are able to give a new
completely algebraic proof and recover the well-known irreducible representations. Using the co-
multiplication which induces a convolution of representations, we are able to decompose our results
not only according to irreducible representations but into expressions which are built up in terms of
one-dimensional representations and only one infinite dimensional irreducible representation.

In Chapter 4 we recover a faithful representation, introduced by WORONOWICZ, as the convolution
square of an irreducible representation. We show that this representation is a C*—algebra isomorphism.
We find that all continuous infinitesimal generators are (more or less) given by states. By solving the
problem of finding a topology in which all conditionally positive functionals are continuous, we find
as a main result of these notes a new formulation of our results of Chapter 2. This new formula is in
perfect anology to the classical LEVY-KHINTCHINE formula.

Chapter 5 deals with the exceptional cases ¢ = 1 (which is the classical case), ¢ = —1 (which is a
GRASSMANN analogue of the classical case), and ¢ = 0. The cases ¢ = —1, 1 show to be quite similar
and much more complicated than the other ones. For ¢ € (—1,1) we find that all our results are, in a
certain sense, equivalent. As a further main result we point out (Theorem 5.27) that in all cases the
set consisting of all functionals ¢ o Q, where ¢ runs over all positive functionals on A, and Q runs
over all possible projections onto K», is dense in the set of all conditionally positive functionals on A,
with respect to pointwise convergence.

In the final chapter we show that it is possible to approximate any given conditionally positive
functional for the cases ¢ = —1, 1 by conditionally positive functionals for |g| < 1. This is nothing but
a correspondence principle for SU;(2) and shows that the quantum group SU,(2) may indeed serve as
convenient quantization of SU(2).






Chapter 1

Basic definitions and results

1.1 Preliminaries

Let A be a unital *—algebra and § : A — C a *x—algebra homomorphism into the complex numbers.
Let K1 = ker(d) be the kernel of 6. We call a linear hermitian functional ¥ on A conditionally positive
(with respect to d) if it is positive on the ideal K7, i.e. if

Y(a*a) >0 forall ae€ K.

Let D be a pre-HILBERT space and 7 a #-representation of A acting on D. By a I-cocycle with respect
to m we mean a linear mapping 7 : A — D such that

n(ab) = w(a)n(b) + n(a)d(d) for all a,be A. (1.1)

Let Ko = lin(K; - K1) be the ideal which is given by the linear span of all products of elements of
K;. In [26] the following has been proved.

Theorem 1.1 (SCHURMANN) For an arbitrary conditionally positive functional v there is a triplet
(D,m,n) consisting of a pre-HILBERT space D, a x—representation m on D and a I-cocycle n with
respect to this representation such that the values of ¥ on Ky are given by

Y(ab) = (n(a*)|n(b)) for all a,be Kj. (1.2)
The restriction of w to the invariant subspace n(A) of D is determined up to unitary equivalence.

By Theorem 1.1 we are able to reduce the problem of finding all conditionally positive functionals to
that of finding all *—representations, all 1-cocycles with respect to these representations, and checking
for which of them we can find a conditionally positive functional satisfying (1.2).

We define for any «—representation 7 on a pre-HILBERT space D and any vector 1 € D the mappings
(n|mwln) : A — C and 7 : A — D by

(nlwln)(a) = (nm(a)ln) and (wn)(a) = m(a)y (1.3)
respectively. The mapping Id — 61 : A — A defined by
(Id —61)(a) = a—d(a)l,
is a canonical projection onto K. We immediately see that
(mn) o (Id — 61) and (n|7|n) o (Id — 1)

are a l-cocycle and a conditionally positive functional respectively, satisfying (1.2). In cohomology
theory such a 1—cocycle is called a coboundary and the functional is a positive multiple of ¢ — §, where
@ is a state on A.

From LEIBNIZ rule of differentiation we obtain the following

7



Proposition 1.2 Let 0, be a family of homomorphisms 6, : A — C which are pointwise continuous
in @ and such that g = 0. Then we have

(1) If 6, is pointwise differentiable with respect to ¢ at =0, then &j is a 1-cocycle with respect to
d.
(it) If 0, is pointwise twice differentiable with respect to ¢ at ¢ = 0, then &) is a 1-cocycle with

respect to & and %’/ is a conditionally positive functional satisfying (1.2).

A x—coalgebra C is a (C-)linear space together with two linear mappings, the comultiplication
A :C — C®C and the counit § : C — C, such that

(A®Id)oA = (Id® A)o A (coassociativity)
(®Id)oA =1Id = (Id®6)o A, (counit property)

and an involution * : C — C such that

Aox = (x®x*)oA and
SJox = 4.
A x-bialgebra B is a unital x—algebra and also a *—coalgebra such that A and § are unital algebra
homomorphisms, i.e.

A(ab) = A(a)A(db) and
0(ab) = 06(a)o(b) for all a,b e B

where B ® B is equipped with the natural multiplication
(a®b)(d @b) = (ad @bY).
If we define an involution on B ® B by * ® *, then A and ¢ are also *—algebra homomorphisms.

A HoPF x—algebra H is a x—bialgebra together with a linear mapping S : H — H, called antipode,
such that

mo(Id®8)oA = 61 = mo(S®Id)oA

where m : H ® H — H denotes the multiplication coming from the algebra structure of H. It can be
shown that S is an algebra anti-homomorphism, i.e.

S(ab) = S(b)S(a).

An n x n-matrix U = (uj;)i j=1,...,» With entries in a *—bialgebra B is said to be a corepresentation
of B if B, as a unital x—algebra, is generated by the matrix entries and if the coalgebra structure of B
is determined by

A(’U,”) = Z Uik & Uk and
k=1
(5(’[1,”) = 61]

U is said to be a corepresentation of a HOPF x—algebra H if it is a corepresentation of the x—bialgebra
structure of H and if the antipode of H is determined by

S(U”) = Uj,**.
A corepresentation U of a *—bialgebra B and a HOPF x—algebra H respectively is said to be unitary if
U'U =1=UU".

For further details on co—, bi- and HOPF algebras see the textbooks of ABE [1] and SWEEDLER
[31] on these subjects.



1.2 Conventions

Our conditionally positive functionals are always assumed to be hermitian. All representations are
supposed to be non-degenerate x—representations. This yields immediately that all 1-cocycles vanish
at 1. Cocycle always means 1-cocycle.

For a HILBERT space H by B(H) we mean the VON NEUMANN algebra of bounded operators on
H.

The natural, integer, real, and complex numbers are denoted by N, Z, R, and C respectively. Let
a be an element of an involutive algebra (e.g. C together with complex conjugation). For ¢ € Z we

define o’ by putting

ai B al for £>0
N ()" for £<0°

If an equation concerning a and a* is also valid if we replace a by a* (and conversely), we indicate
this by writing a®® for a and a*, and writing a**) for a* and a, respectively.

1.3 Definition of the algebra structure

For the time being, we only need the algebra structure of the quantum group SU,(2) and a homomor-
phism § for investigating its conditionally positive functionals. (Later this homomorphism will be the
counit of the underlying coalgebra structure.)

Definition 1.1 For a real number q with |q| € (0,1) we denote by Ay the unital *—algebra generated
by a7y, with the following relations:

(a) ay = gy

(b) Yt = ¢V

(c) Yy o= (1.4)
(d) ac* —afa = (1-¢ )y

(e) Yy+ata = 1.

These relations describe the algebra structure of SUy(2) in the case when |g| € (0,1) (cf. [35]).
The remaining cases ¢ = —1,0, 1 are treated seperately in Chapter 5. Throughout the other chapters
we always refer to the case |gq| € (0,1) unless stated otherwise. The irreducible *—representations (cf.
[32]) are given by the following two families:

Theorem 1.3 (VAKSMAN, SOIBELMAN) Let hg be a HILBERT space with an ONB {ey};cn,- The
following equations

(i)
pola)er, = /1—q?Fe,_q, keN

ptp(a)eo = Oa k = O
po(Mex = €q ey, ke N,
(iz)
w(a) = €
dp(y) = 0

define irreducible x-representations p, : Aq — B(ho) and d, : Ay — C of Ay for any ¢ € [0,27).
Any irreducible x—representation must be unitarily equivalent to one of these representations.



We will obtain this result (i.e. the completeness and the well-definedness of p, and d,,) as Corollary
3.5 in the general representation theory in Chapter 3.

The homomorphism 0 is just dp. Clearly, , evaluated at a fixed algebra element a is an analytic
function of . We use the notation of Proposition 1.2 and ommit the subscript ¢ = 0.

1.4 The structures of K; and K,

Now we investigate the sets K7 = ker(d) and Ko the latter being the linear span of all products of
elements of K;. Clearly, if we introduce

ﬁ:a_lv

the set {1, 3, 0%, 7,7} generates the whole algebra. Henceforth, since we have (3, 8*,v,7* € K; and
1 ¢ K, the set

G={B,8" 77"} (1.5)
generates K. Relations (1.4), expressed in terms of 8 and +, transform into
(a) By = qB—(1-aq)
(b) By = avB—(1—q
(¢) vy o= " (1.6)
(d) Be =36 = (1-¢)7'y
(e) Yy +BB+B+8 = O

An arbitrary element a of 4, can be written in the form

a = c1 + chg—I—c
geG

where c¢1, ¢, are complex numbers and ¢ € K,. From Relations (@), (b), and (€), we immediately see
that the elements v,v*, and 8+ 8* can be expressed as sums of products of elements of K7, hence are
elements of Ky. In other words, we have that any a € A, can be written as

* *

B
— 1
9 teTalte—y

a=cl+c +c (1.7
where ¢y, co are complex numbers and ¢ € K», in at least one way.

Proposition 1.4 Decomposition (1.7) is unique for any a € A,.

PrROOF We apply § and ¢’ to (1.7). By definition § is 0 on K; and K», hence d(a) = ¢;.
Using the factorization property of §, we obtain by an application of LEIBNIZ rule of differentiation
that ¢’ vanishes on K5 as well as it does on 1. Hence

8 (a) = 026’(’15?*) = ca.

Therefore, the numbers ¢y, co are determined by a, and so is ¢ by (1.7). m

We conclude this paragraph by writing down the canonical projection onto Ks.
Corollary 1.5 The mapping P
P:A, — A,

a—a

a — a—26(a)l—¥§(a) 5

is a projection onto K. ILe. ’P(.Aq) =K,y and P?>="7P.
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1.5 A fundamental lemma on the representations

As a preparation for the next chapters, we formulate a lemma concerning the representations of A,.
It replaces the spectral theorem applied to the representing operator of « (which is normal due to
Relation (c)). We will use this lemma to prove the properties of the cocycles (Chapter 2) and to
establish the representation theory (Chapter 3) without using the spectral theorem.

We mention that due to Relation (e) all representation operators are bounded. Therefore, we can
assume the pre-HILBERT space D (on which the representation acts) to be a HILBERT space.

Lemma 1.6 Let H be a HILBERT space and w : A, — B(H) a x-representation of A, acting on it.
Then we have

7(v) injective = lim mw(a¥) =0

k—o0

in the strong operator topology.

PRroOF It is easy to see, that the range of an injective normal operator is dense. Therefore, if 7(7) is
injective, we have that 7(y)H is dense in H.

Let f be any element of H. We can find a sequence { f,, }nen with f,, € m(v)H which approximates
f. In other words, for any € > 0 we can find N € N such that for any bounded operator B € B(H)

|Bf — Bfal|l < ||B||§ for all n > N

holds. From Relation (e) we obtain ||7(c)|| < 1, |7 (7)]| < 1 and immediately
(@) < 1, [lm(y")]] < 1
for all £k € N. Thus, we have
(k) f — m(a®) full < % for all n > N (1.8)

independent of k£ € N. X )
We associate with {f,}nen the sequence {f,}nen defined by 7(v)f, = f.. By Relation (a) we
obtain

I () full = Im(@*y) full = ¢*lIw(va®) full < ¢ full (1.9)

Thus, choosing n > N and K such that ¢*|| f,|| < § we obtain, by combining estimates (1.8) and
(1.9) that

I (@®) £l < llm(@*) f = m(@®) full + [l (@) full < € for all k > K.

This concludes the proof. m

1.6 Topologies on A,

The algebra A, is usually equipped with a C*-norm | e || given by
la]l = sup [|=(a)||
™

where the supremum is taken over all x—representations. Clearly, this is a semi—~C*—norm. On the
other hand, the existence of a faithful representation (see Section 4.1) yields that it is positive definite,
hence indeed a norm.

Let A be the C*—algebra which we obtain by completion of A, with respect to this norm. Then
by the above definition it is clear that any representation 7 : A, — B(H) is continuous. Thus, it can

11



be extended to A and, in this manner, we obtain all representations of A because representations of
C*—algebras are continuous.

The C*—completion is already introduced here because we will be concerned with geometric series.
However, we want to emphasize that all our results on 4, can be expressed and proved in terms of
the algebra 4, without using the C*-language; see our discussion in Section 2.4.

The range of any irreducible representation contains the subset of all compact operators on the
underlying HILBERT space. (1 —a*« = v*~ is mapped to a compact operator. On the other hand, it is
well-known that the range of any C'*—algebra under a x—representation contains all compact operators
if it contains at least one.) Henceforth, A is a type I C*—algebra.

Now let w be a x—representation of A which is also an isomorphism between C*-algebras (i.e. an
isometry) such that w(7y) is injective. (Such a representation exists; cf. WORONOWICZ [35] and Section
4.1 of these notes.) Then w induces a notion of strong (weak) convergence in A by

lim a, = a strongly (weakly)
n—oo
if and only if
lim w(a,) = w(a) strongly (weakly)

for a,,a € A. (In general, these topologies will depend on the special choice of w, but this does not
affect our results.) Now Lemma 1.6 reads lim o = 0 in the strong topology.

k—o0

In Section 4.4 we will introduce two other norms, in order to make all cocycles and all conditionally
positive functionals continuous.

12



Chapter 2

Cocycles and conditionally positive
functionals

In this chapter we classify all cocycles and conditionally positive functionals on 4,. This is done by
establishing two linear mappings O, 7 : A, — A which satisfy the following conditions analogous to
Equations (1.1) and (1.2):

O(ab) = aO(b) + O(a)é(b) for all a,b € A, (2.1)
and
7 (ab) = O(a™)*O(b) for all a,b € K;. (2.2)
Assume for the moment that O and 7 have already been constructed. Then we obtain that
b = (nlwln) o T
is a conditionally positive functional and
(mn) 0 O

is a cocycle such that Equation (1.2) is fulfilled. Notice that the mappings (n|r|n) and 77 defined by
(1.3) are continuous.
The continuous projection Id — 61 onto K is the simplest possible choice for O and 7. We return
to this case in Section 4.3 where we are concerned with continuous conditionally positive functionals.
In the following, O will show to be fixed by the additional requirement that O(a*) = 1.

2.1 The mappings O and 7
The key of establishing these two mappings is

Lemma 2.1 We have

. 1-aof
hn} 1 - =
pIE[O»l) —ba

in the strong topology.

PRrROOF Notice that for |p| < 1 the left hand side is well-defined since ||a*|| < 1. The first step is to
compute

*

1-aof «

1 =(1-p)

- 1-pa* 1 — pa*’

13



We make the substitution

and we will show that (1 —p)J, converges to 0. First we show that we have at least weak convergence

Indeed, given any two unit vectors e, ¢’ € H,, (the representation space of w) we obtain by expanding
into a VON NEUMANN series

(I-p) <e

As can be seen by standard proof technique (cf. e.g. the proof of ABEL’s limit theorem), this power
series in p is already known to converge to 0 as p tends to 1, if its coefficients converge to 0. But this
is true due to Lemma 1.6.

To show strong convergence of (1 — p)J, we have to show weak convergence of (1 —p)>J;J,. We
have

1
1 — pw(a*)

> — (1> P TR@e). (2.3)

k=0

(=9 = 20 =)

pa pa*
* = 1 14+ £
5 = () (1 55)

* *

pa po po po

and

Thus, we obtain

1—p po po
1—p)2T; = —X (1
( ) Tp T 1—|—p( +1—poz+1—pa*
1—-pa 1 — pa*
17 *
_ 1-p 14 pa pa
1+p 1—-pa 1-pa*
¢ Yy
1—pa 1—pg2a*

where we made use of 1 — aa* = ¢>y*~. From our foregoing considerations we see that the first three
summands multiplied by the factor in front of the brackets converge to 0 weakly. In the last summand
the factor

_r
1 — pg2a*
converges in norm to a bounded operator. The factor

I-p p
1+p1—pa

converges to 0 weakly. Therefore, the last summand converges also to 0 at least weakly. m
For p € [0,1) let O, be the mapping O, : A; — A defined by
Opla) = (Id—61)(a)(pa” —1)~".
Then we have the following
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Theorem 2.2 For all a € A, the elements Oy(a) of A converge strongly for p — 1 to an element of
A. The mapping O : A, — A defined by

Ofa) = ;Lrlllop(a)

fulfills Equation (2.1) and the additional condition O(a*) = 1.

ProOF First we show that the limit exists. This is obvious for a = 1 (since O,(1) = 0). Therefore,
it suffices to show it on the set G of generators. (Cf. our argument leading to Equation (1.7).)

For f3* our work is already done by Lemma 2.1. Moreover, we find that the condition O(a*) =
O(B*) = 1 is fulfilled.

For v and v* we obtain, by using the VON NEUMANN series and Relations (b)* and (a)* respectively,
Y pat —1)7" = (pga” — 1)1y
Thus, we find that O(y*)) exists and
O(y") = (ga* = 1)~y
Using the relation
1-2)'=14+2(1-2)"", (2.4)
which holds for any = € A if ||z|| < 1, we obtain after straightforward calculations that

Op(B) = (a=1)(pa* —1)7"
= 1-p)A—-pa) ' +p(1-aa*)(1—pa*)"' —a.

From Relations (d) and (e) we see that 1 — aa* = ¢*>y*y. We insert this and obtain by repeated use
of Relations (a) and (b):

Op(B) = (1 = p)(1 — pa™) ™" + pg®(1 — pg®a*) """y — .

In this expression the limit p to 1 can be performed without any problems. The first summand
disappears (see the proof of Lemma 2.1). In the second summand p is just replaced by 1. The third
one does not depend on p at all. Substituting 7"y = 1 — a*«, we obtain

0B) = FA-¢ ) 1-a%a)—a
= ¢ 1) (¢ Pa—1)
where we again made use of (2.4).

Notice that we did not only show the existence of O, but also listed its values on the generators.
Clearly, the limit fulfills Equation (2.1), because O,, does for any p. m

N.B.: In Section 2.3 we will see (cf. Corollary 2.7) that O is already determined by the properties
stated in the theorem.

EXAMPLE 2.1 Consider the restriction of O to the subspace C1® A,3*. An element of this subspace
is given by c1+af* with c and a being unique elements of C and A, respectively. Obviously O maps
such an element to a. In Section 4.4 we will see that the above subspace of A, is dense in A. Thus,
it actually suffices to know the values of O on this subspace.

Now we define for p € [0,1) the mapping 7, : A, — A by

Tp(a) = (pa—1)""P(a)(pa* —1)~".
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Theorem 2.3 For all a € Ay, the elements T,(a) of A converge strongly for p — 1 to an element of
A. The mapping T : Ay — A defined by

T(a) = lim7,(a)

p—1
fulfills Equation (2.2).

PROOF The projection P projects onto K5 and a typical element of K5 is given by ab with a,b € K;.
Inserting this in 7,, we obtain

T, (ab) = O, (a*)* O, (b).

From this it is immediate that the weak limit exists and fulfills Equation (2.2). Let us for the moment
identify the elements of A with their images under the isomorphism w. In order to see that the limit
is indeed a strong limit, we observe that

1(O(a*)"O(b) — Op(a”)* Op(b)) f|
= [[(0(a") )JO0)f + Op(a®)*(O(b) — Op (b)) ||
< [(O(a”) gl + 10 (@) [ [(O(b) — Op (b)) f1]
for any given but fixed vector f € H, and g = O(b)f. Thus, the proof is complete if we show that

[|Op(a*)*|| or equivalently ||O,(a)] is bounded uniformly in p for any fixed a.
Consider J, as introduced in the proof of Lemma 2.1. One easily checks that

* _Op(a*)*
"= Op(a’)

pla

Opla) = O(a)(1 = (1 =p)a*Ty).
This yields
10p(a)| < [10(a)[[(1 +[[(1 = p)Tpl)-

From Equation (2.3) it is clear that the norm of (1 — p)J, cannot be greater than 1. m

ExaMPLE 2.2 Consider the restriction of 7 to the subspace C1 & Cagf‘* @ BA,B*. An element of
this subspace is given by c11 + ¢ o‘gf‘ + faB* with ¢; and a being unique elements of C and A,
respectively. Obviously T maps such an element to a. In Section 4.4 we will see that the above

subspace of A, is dense in A. Thus, it actually suffices to know the values of T on this subspace.

2.2 General remarks on the x—representations
In view of Lemma 1.6 we are interested in separating the injective part from an arbitrary representation.

Proposition 2.4 Let 7 be a x—representations of Ay on a HILBERT space H. Then there is a unique
decomposition into a direct sum

T=m ®my on H=H; ® Hy (2.5)
where w;,1 = 1,2 are representations on H;,i = 1,2 respectively with
e 11 maps ¥y to 0 and « to a unitary operator on Hi.
e Ty maps y to an injective operator on Hs.

ProoOF We show that ker(w(7)) is an invariant subspace of H. Indeed, given any f € H with w(y)f =0
we immediately see from Relations (a), (b)* and (c) that m(c)f, m(a*)f and w(v*)f respectively are
in ker(7(y)). (E.g. m(y)7(a)f = ¢ 'w(a)w(y)f = 0.) Henceforth, ker(w (7)) is invariant under the
action of m(a) for any a € A,.
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We denote ker(n(vy)) by Hy and its orthogonal complement by Hs. Since we are concerned with
s—representations, Hs is an invariant subspace as well. Clearly, if we denote by m; the restriction of 7
to H; respectively, the operator () is 0 and the operator mo(7) is injective. m

N.B.: Since the subspaces H; remain invariant under 7 the components 7; of a given cocycle
n = n1 D 12 with respect to 7 are cocycles with respect to m; respectively.

In order to indicate that the representations of type m; are already determined by fixing the unitary
operator v on H; to which « is mapped, we denote m; also by p,. Another type of representations to
be separated are those behaving like § which lead to the so-called GAUSSian parts of the functionals
(see [23]).

Proposition 2.5 The subspace Hs = ker(w(3)) of H is an invariant subspace, and the restriction of
w to Hy is given by

ms(e) = 0(e)1p;.

PROOF « is mapped to 1 on Hs. According to Relation (e), we have 7(y)f = 0 for f € Hs. On the
other hand, we see from Relation (d) that m(aa™)f = n(a*a)f = w(a*)f for any f € Hs, hence Hy is
invariant under 7(a*). m

2.3 Classification of cocycles and conditionally positive func-
tionals

Now we describe all 1-cocycles and all conditionally positive functionals associated with a cocycle
via (1.2). We classify them by all pairs (m,n) consisting of a representation and a vector in the
representation space H (actually the functional is determined in this way only up to two real constants).
It turns out that for any given cocycle there is a conditionally positive functional such that (1.2) holds.
Let us give a simple counter example to make clear that this is not always the case, but depends on
the algebra under consideration (cf. also the cases ¢ = 1 and ¢ = —1 in Sections 5.4 and 5.5).

EXAMPLE 2.3 Consider the free unital commutative x—algebra generated by the symbol x. (This
*—algebra can be turned into a HOPF %-algebra; cf. SWEEDLER [31].) We define a *—algebra homo-
morphism 6, by 6,(1) = 1 and é,(x) = 0, with respect to which a functional can be conditionally
positive or not. On the other hand, §, is a representation. Given any two numbers n,,n,~ € C, the
mapping n defined by

n(@) =
n@") = 1
n(y) = 0,y any monomial with degree not equal to 1

and linear extension is a cocycle with respect to §,. However, if we have |n,| # |n.+| and try to define

a conditionally positive functional v by (1.2), we obtain

Y(x*r) =Mpn.  and  P(xx”) = ey
which contradicts the commutativity of the underlying algebra.

Let us proceed in our main stream. We remind the reader of the fact that for any cocycle n we
must have (1) = 0, because our representations are non—degenerate by convention. Thus, we have
n(a™) = n(p*). Clearly, the cocycle property (1.1) reads on K;

n(ab) = w(a)n(b) for all a,b € K;. (2.6)

Thus, n is determined by its values on the generators. We will see that any cocycle is already deter-
mined by its value on o*.
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Lemma 2.6 Letn andn be two 1—cocycles with respect to w. They coincide if and only if they coincide
on a*, i.e.

n@*) =n(a’) <= n=71.
Proor Clearly, two cocycles do not coincide if they assume different values on o*. Thus, we have
to show the other direction. We split the proof into the two cases w(v) = 0 (i.e. Hy = {0}) and 7 (y)
injective (i.e. H; = {0}) which can be treated separately.

Let n be a cocycle with respect to m = p,, and 7.+ a vector in H = Hy with n(a*) = 1. We apply
7 to Relation (&), use the cocycle property (2.6) and obtain, taking also into account that 7 (y) = 0,

m(B)n(y) = -1 —g)n(y) or  w(a)n(y) =un(y) = qn(v). (2.7)
We take the norm of both sides and arrive at
n(y) =0.

(Otherwise, we would have |g| = 1.) Similarly, starting from Relation (b) we obtain
n(v*) = 0.
Using Relation (€) in the same manner, we obtain
0 = m(8%)n(B) +n(B) +n(6") = wn(B)+n(")
or
n(B) = —un(f*) = una-.

Now let 1 be a cocycle with respect to m = w3 and 74+ a vector in H = Hy with n(a*) = ne-. We
write

e =n(y")-
Relation (€) yields

e=n(y)ny) = 7(y)n(r")- (2.8)

m(7) is injective and so is w(y*) (notice that ||7(y)f|| = |7 (v*)f| for all f due to Relation (¢)).
Therefore, n(+) and n(y*) are determined by e. Applying 7 and (2.6), Relation (&) reads

m(B)n(y) = gr(v)n(B) — (L — a)n(v)-

Now we multiply by 7(v*). Using Relation (b) in order to eliminate v*3, we obtain after some short
calculations

T(vy)n(B) = (¢ *m(a) — De. (2.9)

Notice that w(v*v) is injective. Therefore, n(3) is determined by e as well.
The same procedure, now starting from Relation (b)* and using (2)*, yields

(Y )n(B*) = (¢°m(a*) = Ve (2.10)

Since ||w(a*)|| < 1 the operator ¢?m(a*) — 1 is invertible on H. Thus, € is expressible in terms of

7](5*) = Na~

We see that in both cases the values of 1 on the generators are determined by 74+, and clearly this
extends to the whole algebra. m

Now we can prove
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Corollary 2.7 O is the unique linear mapping satisfying Equation (2.1) and O(a*) = 1.

Proor By the foregoing lemma we see that any cocycle is already determined by its value 74+ on o*.
If we had two mappings O, O satisfying the claimed conditions, their difference AO = O — O must
vanish on a*. Thus, the cocycle (71) o AO must vanish for any 7 and 7. By the existence of a faithful
representation we see that AO must vanish itself. m

Together with the introductory remarks of this section and Theorems 1.1, 2.2 and 2.3 we obtain
the classification theorem as a simple corollary.

Theorem 2.8 Let 7 be a x—representation of Ay. For a vector ne~ in the representation space H of
7w the mapping

n = (Ma)0O

is a 1—cocycle with respect to 7 fulfilling n(a*) = no~. Moreover, all 1—cocycles with respect to m are
of this form, so that there is a one-to-one correspondence between elements of the representation space
of m and 1—cocycles with respect to .

For all numbers r1,r2 in R the mapping

1,[) = 7’15+7’25’+<7}a*

T[Nax) o T

is a conditionally positive functional fulfilling Equation (1.2). Moreover, for any conditionally positive
functional v satisfying (1.2) there are unique numbers r1,79 in R such that ¢ is of the above form.

PROOF By the equation 1 = (714+) 0 O we assign to any pair (7, 74+) a cocycle with respect to 7
assuming the value 75+ on o*. By Lemma 2.6 these cocycles must be all.

By the equation ¥’ = (nu+|7|na+) o T we define indeed a conditonally positive functional which
fulfills Equation (1.2). An arbitrary functional, fulfilling Equation (1.2), can differ from ¢’ only on the
two basis vectors 1 and agf‘* . In order to take this into account we have to add a linear combination
r10 + r20’. The constants rq, 79 have to be chosen real, because our functionals are supposed to be

hermitian. By Theorem 1.1 the functionals of the stated form must indeed be all. m

Corollary 2.9 Let ¢ be a conditionally positive functional on Aq. Then there are unique numbers
r1,72 i R and a unique positive functional ¢ on A, such that

w = T15+T25/+@0T

ExAMPLE 2.4 For the GAUSSian part of a representation, i.e. representations proportional to &, we
obtain by Proposition 1.2

Corollary 2.10 Let s, be a vector in Hs. Then
N5 = 10" N5 o
is the cocycle ns which assumes the value ns,~ on o*. Moreover,

"
0 2

% = ?Hnﬁa*

defines a conditionally positive functional fulfilling Equation (1.2).
Corollary 2.11 All GAUSSian conditionally positive functionals are of the form
d)(; = 7‘15 + 7’26/ + ’/’5”,

where r1,7m2 are in R, and r is in R4
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EXAMPLE 2.5 In Appendix A we introduce the q—exponential function e;. By the properties stated
there the following becomes obvious. Let p be in (0,1). Firstly,

. —1
1 .
1— pa* 7 7 '

o =1 o -1
Secondly, <6Z§2a ) converges in norm to (egza ) for p — 1.

In Appendix B we define the q—coherent states e,z (\) € ho, A € U1(0), where hyg is the representa-
tion space of the irreducible representation py. Notice that e,2(\) = 625 (@Y ey For the conditionally

positive functional (e, (q?)|poles2(¢*)) o T we, thus, obtain
(eq2(@*)lpoleqz(a)) o T

1 1
= lim <eq2 (¢%)

- s o P
p—1 1 ppo(@)” " 71 = ppola”)

o)) = e lmo Plep).

By Relations (1.4) it is sufficient to know a linear mapping on the vectors a‘y*™"y™, £ € Z,m,n € Ny.
Since our functional is hermitian and py does not distinguish between -y and ~*, it is even sufficient
to restrict ourselves to monomials v"a"™, m,n € Ng. First let m > 0 which makes the projection P
dissapear. Using the formulae of Appendix B we obtain

2 m m

lim(eqz(p)loo(v™a)leq2(p)) = limpTeq® = g
In the remaining cases the projection yields
Pla™) = o"— n< —2a* -1
We obtain
limeg (p)loo o P(a™)leq2(p)) = lm" — D = — Zeb.

It is not difficult to check the equality on simple monomials, for instance 83* and Bvy3*.

2.4 Remarks on motivation

If we apply a given cocycle n to Relations (&) — (€) and their adjoints we get a new set of relations
for the values of 1 on the generators. This set of relations enables us to express these values in terms
of n(a*). Clearly, we could have tried to extend these four vectors by means of Property (2.6) to the
whole algebra. (This is partly done in the course of the proof of Proposition 2.6.) The main problem
was to examine if this procedure is well-defined.

To avoid this complication we followed another path. First we restrict ourselves to the orthogonal
complement of Hs. By construction the operator 7(5*) is injective on H. Thus, if it was invertible,
the function given by

a +— (m(a) = 8(a))m(5) " n(a”)

would define a cocycle assuming the correct value on 8*. Thus, we had to find a way of inverting the
operator 7(3*). Our way to do this was to approximate ‘w7 (3*)~1n(a*)’ (which does not always exist
in H; cf. Section 4.5) by the vectors n, = (pr(a*) — 1)~'n(a*). In other words, we approximate the
given cocycle by cocycles of the form

(m(a) = d(a)L)mp

which are coboundaries. The case of Hy is easily treated separately.
We remark that, assuming formally the existence of the VON NEUMANN series of (a* — 1)~ it
is easy to ‘derive’ the values of O on the generators. We just have to compute the commutation
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rules for this formal element of A by simple applications of Relations (a) — (e). Thus, omitting the
approximation of O by O,, we can omit the use of a notion of strong convergence. Investigating the
mappings m o O(e) instead of O itself, we can omit the use of the C*—completion of A,, because only
geometric series of operators appear. Thus, the contents of Theorem 2.8 can indeed be expressed in
terms of Aq.

Furthermore, we remark that due to the construction of 7, any conditionally positive functional
corresponding to the cocycle n can be approximated on Ks by functionals of type

Vp(®) = (mp|m(e)|np)

with n, € H (cf. Example 2.5). For the time being, this statement is clear only for cocycles with
respect to representations of type my. However, by the remark following Proposition 5.15 we see that
also cocycles with respect to representations of type m; are strong limits of coboundaries. In other
words, the cone, spanned by the restrictions to K of all states, is dense in the cone, consisting of the
restrictions to K5 of all conditionally positive functionals, with respect to pointwise convergence. It
is this fact which is crucial to obtain the LEVY-KHINTCHINE formula in Section 4.5.
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Chapter 3

Representation theory

In this section we give a new treatment of the representation theory of A,. Our treatment is almost
completely algebraic and we do not refer to the C*-algebra structure at any time. As a corollary
we obtain the irreducible representations and realize that a general representation decomposes into a
direct integral over irreducible ones.

VAKSMAN and SOIBELMAN proceed in the converse direction. They find the irreducible represen-
tations (cf. Theorem 1.3) without stating an explicit form for the general representation. From the
irreducible representations and the norm introduced on A, it is clear that the C*-completion is a
type I C*—algebra, having the same representations. Thus, the general representation must be given
by a direct integral over irreducible ones (cf. e.g. DIXMIER [8]).

We obtain the new result that the irreducible representations p, can be expressed in terms of pg
and a family I, of automorphisms of .4,. We express these automorphisms in terms of the convolution
product which arises from the coalgebra structure of SU,(2) (cf. also [16], where the convolution of
irreducible representations was investigated independently). As a consequence of this result we are
able to express any conditionally positive functional associated with a representation of type ms in
terms of functionals associated with pg.

3.1 Representations on H,

For any s-representation m of 4, on a HILBERT space H there is a unique decomposition into the
invariant subspaces Hy and Hs by Proposition 2.4. On H; the general representation is given by p,, as
defined at the end of Section 2.2 where u is any unitary operator on H;. Thus, in order to complete
the representation theory we have to consider the remaining part Hs.

In this section we assume that H = Hy and m = o, i.e. w(7) is injective and hence Lemma 1.6
is applicable. Furthermore, in order to simplify notation we write a for the image n(a) € B(H) of
a € A, under 7.

We introduce the following two sequences of operators:

P, = a*k(l—q27*7)_1---(l—qzkﬂy*y)_lak7 LeN

P, = 1, k=0

E, = Pk_Pk-i-h k € Npy.
We remark that

eq<z>=]}]01_qkz, 2€ C\{zlz =" k € No}

is a well-known meromorphic function (see Appendix A). By Theorem A.4 this function is different
from 0 everywhere, it is a strictly increasing function on the intervall [0,1) and for fixed z € [0,1) the
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product for £ — oo is also increasing. Thus, we see that
L@ =g®y )t (=) 7 < e ().
Due to Lemma 1.6 we have for any f € H
(1Pl f) < eqa(@®)|@FfI? = 0 for k — oo,

hence,
> By = Jim (1= Pry) =1 (3.1)
k=0 o

in the strong operator topology. For Ej, we obtain by Relation (a)

xk * N— .
By = « {(l_qz'Y'V) 1"'(1—q2k’y'y) 1
- Ol*(]_ — q2’y*f}/)71 Ce (]_ _ q2(k+1)7*7)710(}0[k
*k * N N L
= M1 -1 - @Ay ) a1 - @) (1 - ¢Foyry) Tak,

For the term in curly brackets we obtain, using Relations (a) and (e),

-1
Ey = 1-a"(1-¢*y7)'a = lim (1 - Zq%(7*7)ka>
{—o0 =0
-1
= Jim (1 -(1-9") (v*v)’“)
> k=0
= Jim )

where the limit is in the operator norm topology (cf. [18], where the convergence was only shown to
be strong). Inserting this we arrive at

By = lim (¢*"y*y) Py (3.2)

£— 00

Obviously, P, commutes with v*v and so does Ej. Of course, the operators P, and E}, are self-
adjoint. We show the following

Proposition 3.1 Py is an orthogonal projection.

PROOF It remains to show that P,? = P, which we will prove by induction.
Clearly, the statement holds for £ = 0. Now let us assume that it holds for k. We have

Pipr =Py — By = lim (1= (¢~ *9"9)") Py
If we square this expression and perform the ¢-limits simultaneously, we obtain
Pipr? = lim (1 (g 27" P2
= Jim (1-2(¢7*" ") + (7)) P
This yields the desired result. m

Now we have the following crucial

Lemma 3.2 The operators (Ex)ren, form a complete set of orthogonal projections.
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PrROOF By Property (3.1) (i.e. actually Lemma 1.6) the Ej are complete. Therefore, it remains to
show that

EvEy = Eidpge.

From Equation (3.2) and the foregoing Proposition it is immediate that E.% = Ej,. We assume without
loss of generality that k > £. Performing the limits simultaneously, we obtain

(g~ * Oy y)*m Py P,

EkEg = lim
= lim ((¢"*v")*"P) lim ("0 Py)
— Ep-0=0

which is the desired result. m

For all k € Ny let Hy, = E,H be the range of the projection Ey. From Equation (3.2) we see that
the H;, are eigenspaces of v*~ to eigenvalues ¢2* respectively. Clearly, since v and Ej, commute, the
restriction of g%+ to Hj must be given by an operator U, which is unitary on Hy, (ie. U, : H — H
with Up*Uy = UxUy* = E%). Thus, we can write

o0
Y= Z ¢"Uy.

k=0

Next we obtain, using
wk+1 xk k
aa™ T = (1 - ¢*y'y)at = a1 - ¢y
for k € Ny, that
aPyi1 = Pya and clearly aPy = Pya.

This yields

aby1 = Epa, aby = 0
Ek+1a* = a*Ek, an* = 0.

and

If we introduce the mappings pr+1, ¢} : H — H, k € Ny, by setting

o Dy a*Ey

Phtl = p— 20D and ¢} = 1— @2t

we can write
e o0
a:Z 1— @26+ g, 1 and o :Z [ 20
k=0 P

Notice that the series for v, a and o converge at least strongly. Now we show

Lemma 3.3 For any k € N the restriction of ¢}, to Hy, is an isomorphism onto Hyy1 and @rp41 s
its inverse.

PRrOOF From Properties (3.3) we see that the mappings ¢j41 and ¢} map to Hj, and Hy1 respectively.
By the same properties we find

a*EkOéEk;Jrl = Oé*OéEk+1 = (1 — ’7*’7)Ek+1
(1= ** ) By
and similarly

OéEkJ,_lOé*Ek = (1 — q2<k+1))Ek.
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Thus, the restrictions of ¢r11 and ¢}, to Hyy1 and Hj, are inverse mappings. The isometry conditions
are also proved by an application of the above relations. m

Now using Uy, = ¢~ ¥yE} we calculate

" (kD)
OrUkrr1 = ma*’YaEk—i-l = mV(l—V*V)Ekﬂ
—(k+1)

= q YEk+1 = U+,

i.e. all the Hy can be regarded as copies of the same Hj carrying the same unitary operator U = U.
For making this explicit, we identify H with hy ® Ho by the following isomorphism (recall that hg
is the HILBERT space with ONB {ej }ren, which carries the irreducible representation pg): First we
identify Ho with eg ® Hg in the natural way

fEHy— ey ® f.
Then for k € N we identify H; with e ® Hg such that
orler ® f) = (ex—1 @ f) for f € Ho.
Now it is clear that w(«) and 7(7) are given by
7(a) = po(a) @ 1 and m(7) = pol) @ U, (3.4)

On the other hand, if we are given any HILBERT space Hy with a unitary operator U acting on it, it is
easy to check that a pair of operators on hg ® Hy defined by (3.4) can be extended to a representation
of A,. Therefore, we have the following

Theorem 3.4 Fquations (3.4) establish a one-to-one correspondence between x—representations of
type mo and unitary operators.

We again denote 7y also by 7y to indicate the classification by unitary operators.
Corollary 3.5 The irreducible x—representations of Ay are given by the two families d,, p,, .

PROOF In both cases m = p, and m = 7y the representations are classified by unitary operators,
and in both cases the representations decompose into a direct sum on invariant subspaces if the
corresponding unitary operators do. In other words, in both cases the unitary operators have to act
on a one-dimensional HILBERT space. Thus, the irreducible representations must be of the stated
form.

On the other hand, hy does not contain any invariant subspace, because a projection to any basis
vector of hg can be approximated by representation operators, i.e. the given representations are indeed
irreducible. m

N.B.: Notice that Lemma 1.6 is the only result of the foregoing chapters used in this section. In
order to prove Lemma 1.6 we did not need to know the irreducible representations.

3.2 Coalgebra structure of A,

We equip A, with the coalgebra structure of SU,(2) by requiring the matrix (f; 753*) to be a corep-

resentation (cf. [35]). In other words, we have, written symbolically,

a—gy") _ (a—ag7" a —gy”
s(s)=(e)e ()
which means

Ale) = a®a—g¢y"®7y
Aly) = 7@a+a"®@7.
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We can summarize the structure imposed on 4, up to this point by considering A, as the %—
bialgebra having the matrix (: 7(;13*) as unitary corepresentation. Indeed, if we require this matrix

to be unitary we get all the Relations (a)-(e).

We remark that we are mainly interested in representations up to unitary equivalence (which we
shall denote by =), because the set of all conditionally positive functionals associated with a given
representation does not change under any equivalence transform. Keeping this in mind, we come back
to representations of the form given by (3.4) and show

Proposition 3.6 For any unitary operator V. on Hy the mapping
ar— po(@) @V and v+ po(y) ®@U

can be extended to a x-representation of A, which is unitarily equivalent to that defined by Equations
(8.4).

PrOOF Consider the unitary transform V on hy ® Ho which maps e, ® f to e ® VEf. If we apply
V=1 eV to the operators in (3.4) we get the desired equivalence. m

Now let 7 and 7 be two representations on H and H respectively. The convolution product defined
by

TAT=(MTRT)0A

is a representation on H ® H , since A is a homomorphism into 44 ® A, and 7 @ 7 is a representation
of A, ® A,. For the two possible convolution products of pg and py we find using (3.5)

po* pu(a) = po(a) @ U, po*pu(y)=po(y) ®U
and py x po(a) =U @ po(a),  pu*po(v) =U" @ po(7).
Thus, we obtain
Corollary 3.7 Ty X pPo*pu X Pus * Po-
Now consider the unitary transform U = €*? on C. Since pi» = d, and meie = p,, we have
Corollary 3.8 Po X Po*0y = O_yp*xpo.

We write p, for the family pg x d,. Thus, we expressed the infinite-dimensional irreducible represen-
tations p, in terms of py and d, up to unitary equivalence. Now we like to carry this over to the
mappings p, o O and p, o 7. However, it turns out that the above form is not yet suitable. (This
is mainly due to the fact that an element of K;(K3) is not necessarily mapped by A to the sum of
elementary tensors a ® b with a,b € K;(K>).)

We introduce the family

I<P1 w2 — 6@1 *Id*(st,%

of automorphisms of A,. Then we obtain for the generators

ey eilp2te1) o
oy ~ - ei(<P2*<P1)")/ ’
The automorphisms I, ,, express the two fundamental invariances of 4,, namely multiplying o or
v, respectively, by e'¥. In particular, we are interested in the latter case which we obtain by setting
2 = —p1 = 5. We define

~
I
~

w6

w6

Thus, we can write
P = P00 Ly, pp=pooloy (and 6_yx po = pooI_y0).

The automorphisms I, have an additional property.
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Proposition 3.9 Pol,=1,0P and (Id—01)ol, =1I,0(Id—41).

ProOOF Clearly, I, leaves K; and Ky invariant (i.e. I,K; = K;). On the other hand, the elements 1

O‘;Z”‘ are not changed by I, at all. Now the statement is obvious. m

and

Notice that

1 1
R S S S
1 — pal*) M1 —pa(*))
for all ¢.
Corollary 3.10 I,00 = Ool, andl,oT = Tol,.

For any representation m we denote by O, and 7, the mappings 7o O and 1o 7.
Theorem 3.11 Op, =0p, 01, andT,, =Ty 0 I,.
ProoF Using the foregoing proposition and corollary, we obtain
Op, =ppoO0=pgol,00 =pyo0Qol, =0, 0l,
and, similarly, for Tpv. n
We conclude this section stating the obvious

Corollary 3.12 Opr * 0y = 0oy +0s-

Thus, the convolution turns the set of all §, into a convolution group of states with identity element
0 and 6_, the inverse of 6,. We will treat the remaining convolution of irreducible representations,
namely pg * pg, in Section 4.1.

Any unitary operator on a separable HILBERT space can be written as a direct integral over the
irreducible unitary operators €'?. This fact extends to representations of A, (see [8]). We will make
this explicit in the next section.

3.3 Representations as direct integrals and consequences for
conditionally positive functionals
Any unitary operator U on a HILBERT space H admits a spectral representation (cf. [9, X.5.3]), i.e.

there is a family v, of finite (positive) regular measures on S = [0, 27| indexed by + € 7 such that the
identification

H=L*(S )

1€T

can be made. Moreover, if f, : S — C is the component of f € H in L?(S,v,), the restriction of U
onto L2(S,v,) is given by

Uf.(s) = e f.(s).

In other words, H can be decomposed into a direct sum (of a possibly uncountable number) of L%~
function spaces where U is represented by multiplication with e?*.

We have at least two good reasons for assuming H to be separable, i.e. the set Z to be countable.
Firstly, our algebra A, is finitely generated. Hence for any vector n € H the invariant subspace
m(Agq)n is separable. Secondly, for calculating our conditionally positive functionals we only need
scalar products of the form (n|m(a)|n) with a fixed vector n € H. This vector has components only in
a countable number of subspaces L?(S,v,) whose direct sum is separable.
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Now we consider a mapping py : Ay — B(H). It maps a € A, to an operator which is represented
by multiplication with the function d5(a) of s, i.e.

pu(a)fi(s) = ds(a) fi(s).

Clearly, this is a well-defined mapping, the representation property holds and it coincides with py on
the generators. Therefore, we must have pyy = py. This is the decomposition of py; into irreducible
representations.

Now we apply similar considerations to my on H = hg®Hy. We decompose Hj in the same manner
and obtain

ho®Ho = ho® (@L2(5,u,)> = ProeL?S,n) = PLi, (5w
1€T 1€T €T

where we use the notation L,%O(S7 v,) = ho ® L*(S,v,). These spaces can be interpreted as spaces of
square integrable, hg—valued, v,—measurable functions on .S. The natural isomorphism is given by

fz - Z ek@fzk(s) [ — fz(s) = Z ekfzk(s)-

keNy k€No

From this correspondence we see that

WU(a)fz(s) = Ps (a)fl(s)

or shorter

T o= ps = pools.

This is the decomposition of 7y into irreducible representations. Obviously, the decomposition carries
over to O, and 7,. We obtain by Theorem 3.11

U
Ory =0p, =0p, 0 ls and Ty, =7,

The scalar product (e|e), on L7 (S,,) is given by

(Fulghs = /S (12(5)]62(5)) i (s).

In order to obtain the scalar product on H we just have to sum this expression over : € Z. Now we
arrive at the main result of this section.

Theorem 3.13 Let v be any conditionally positive functional associated (by Theorem 1.1) with a
representation of type wy . Then there is a family 1,5 of conditionally positive functionals, all associated
with pg and defined for all v € T and v,—almost all s € S, such that

Y = Uy 0 I dyl(s) = 5—% * Py *6% de(S)
x z

on Ksy.
Moreover, given any measurable family 1,5 of conditionally positive functionals associated with pg,
satisfying

Z/S%s(ﬁﬂ*)du,(s) < 00,

1€T

there is a conditionally positive functional 1 whose values on Ko are given by the above formula.
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Proor Let n,(s) € H be the vector which generates the corresponding cocycle 7,5 via n,s(a) =
O, (a)n,(s). Defining

P = <771(5)|7:70 |n1(8)>’

we obtain the desired family.

If, on the other hand, ¥, is a family, satisfying the claimed conditions, we can define a state by
©(®) = 3 cr [ (ms(B8)|po(®)|ms(5%)) dv(s). The conditionally positive functional ¢ o 7 is on Ky
given by the stated formula. m

In order to complete the decomposition of a general conditionally positive functional, we return to
representations of type py. They had been decomposed into the irreducible representations ds. One
easily checks that

e

for s > 0. On the other hand, for s — 0 these mappings converge precisely to the elementary GAussian
cocycle Os, = 18’ and the elementary GAaussian conditionally positive functional 75, = % associated
with 78’. The fact that all these mappings are scalar valued leads to the well-known LEVY-KHINTCHINE

formula for the one-dimensional torus.

Theorem 3.14 Let ¢ be any conditionally positive functional associated (by Theorem 1.1) with a
representation of type py. Then there is a finite (positive) regular measure v on S such that

b = /S Ty, du(s)

on K.

N.B.: Cf. also Example 4.3. It is not too surprising that we recover the results for the one-
dimensional torus which is contained as a subgroup in any of the SU,(2). However, it is absolutely
remarkable that the conditionally positive functionals on this one-parameter subgroup already contain
the general GAussian part of the quantization of the three-parameter group SU(2) (cf. Section 5.4).

PrROOF We start with the spectral decomposition as given in the beginning of this section. For the
moment, we identify Z with the natural numbers N. From the measures v, we construct the measure

- 1
v ZTQVZ(S)

1€Z

with respect to which all v, are absolutely continuous. Therefore, we can find U—integrable functions
X. such that

dv, = x,dv.

Now let 7 = n,(s) be the vector which generates the corresponding cocycle. For its norm we obtain

e = 3 /S ()m(s) d(s) = 3 /S ()l ()X (5) d(s)
- /S (Z(m(S)Im(s»xz(S)) di(s).

In the last step we used the theorem of monotone convergence. By setting

dv(s) = D (n(s)lm(s))x.(s) dv(s),

1€T
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we define the measure v which appears in the theorem. m

Notice that we could have obtained this result directly, if we started from the spectral decompostion
U = [ye* dE,. Clearly, the measure v is given by dv(s) = d(n|Es|n). But this derivation does not
show explicitly why the family of possibly infinitely many measures v, can be reduced to a single one
due to the fact that the d, are one-dimensional representations.

The result can be reformulated as follows: The unitary operator U and the vector 7, describing a
conditionally positive functional associated with a representation of type 71, can be chosen such that
the spectrum of U is simple and that in the spectral representation 7 is given by n(s) = 1.
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Chapter 4

Topology enters

4.1 The faithful representation pyx p

Now we investigate the remaining not yet treated convolution of irreducible representations, namely
po * po acting on hg ® hg (cf. also [16]). Let ex ® ey be a basis vector of hg ® hg. According to (3.5)
we have

poxpo(a)(er @er) = V1I—¢?*\V1—lep1@ery — ¢ e e
poxpo(V)er®er) = ¢"V1—qer®err + V1— g2k gler i @ ey
Any vector ¢ € hg ® hg can be written in the form
o0
c= Z cpeer X ep.
k,0=0

If we define c_14 = ¢ _1 = 0 we obtain

oo
poxpola)e = D (ersren1V1— @FDVT— @D — " T )e, @ e
k,0=0
o0
poxpo(Me = D (cken1d™V1— D + 1 0V/1 - g )er ® ey

k

~
I

0

Let us check if pg* po(y)c can be 0. One easily finds by setting k equal to 0,1, ... that copt1,C1o42, - - -
must be 0 for £ € Ny, i.e. cx¢ = 0 for k < £. On the other hand, for k& > ¢ we have |cgt1 41| > |ckel-
These cannot be components of a vector unless they vanish for all k,¢. Thus, py x pg must be of type
T, hence must be unitarily equivalent to 7y, for some Uy. We find

Theorem 4.1 Let {€,}necz be an ONB of a HILBERT space H and Uy be the unitary operator defined
by

Uogn = §n+1.
Then we have the following equivalence
po*po = Ty,-

PROOF In order to find Uy, we just have to identify the subspace Hy on which pg x po(«) is 0. Then
Uy is unitarily equivalent to the restriction of pg* pg(y) to this subspace. For a vector ¢ € Hy we must
have

k441
aadas

1— q2(k:+1)\/1 — g2+ ¢

Cht1041 = v Kt (4.1)
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We immediately see that any ci¢ on the coordinate lines, i.e. cio or coe, determines the corresponding
subdiagonal of (cg¢), i.e. the Cktjj Or cjeyj for all j € Ng. The elements of such a diagonal decrease

approximately like q%(%)z, hence are components of a vector.

For n € Z we require €], € Hy to be the vector whose components fulfill Equation (4.1) and are
such that cpg = cop = 0 unless k = n or £ = —n. For all n this vector is unique if we choose c,g
and ¢ _, respectively in R, such that e/, has unit length. Obviously, {e] },cz is an ONB of Hy.
Moreover, one easily checks that pg* po () maps any e, to e;, ;. Therefore, 7y, is unitarily equivalent
to po * po. M

In [35] WoroNowIczZ shows (for |g| € (0,1]) that the set of all
agfy*m'y” for ¢e€Z; m,ne N

is a basis for A,. (For the notation cf. the conventions). In order to prove the case |g| € (0,1) he
introduced precisely the representation my,. In the course of this proof it becomes clear that 7y, is a
faithful representation.

We easily see that any element a € A, can be written uniquely in the form

a= Y o' Pu(y"y) (4.2)
kl€Z

where Py are polynomials and different from 0 only for a finite number of pairs k,¢ € Z. Thus, A,,

as a vector space, has an obvious Z x Z-graduation. The homogeneous elements are a’}VZPM(’y*’y)
with their degree d given by

d(e*" Peoly™)) = (k. 0).
Checking that
d(ab) = d(a)d(b) and d(a*) = d(a)™*

for all homogeneous a,b € Ay, we see that A, is a Z x Z-graded *—algebra.

4.2 po*py as a C*—algebra isomorphism

Now we consider the x-algebra 7y, (Ay) C B(ho ® H) equipped with the operator norm. In the
sequel, we will see that the norms of 4, and this operator algebra coincide, hence the two algebras
are isomorphic as pre-C*-algebras. In this way, we obtain that pg * pg(A) is an operator C*—algebra
isomorphic to A.

The representations of A decompose into a direct integral over irreducible representations. Thus,

|l (a)|| cannot be greater than the supremum over all irreducible representations. We obtain

lall = sup |7 (a)|| = max (Sup 5s(a)|,Sup||ﬁs(a)> :
ses SES

7T IIT.

We show that we can forget about the first term in the maximum. Let a € A, be expanded
according to the graduation (4.2). We have

16,(a)| = ‘ Z(ss(a’?)mo(m\ - ) ZeiSkPko(O)’.

keZ keZ

Now let ¢, () € hg for A € (0,1) be a sequence of unit vectors defined by
en(N) = cnr(Nex
k=n
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with
/\k
()
VI—g /1= g%

and ¢,0(A) € R4 such that the unit condition is fulfilled. (The denominator of ¢, can be estimated
using the function e,2(z) introduced in Appendix A.) By an easy calculation we obtain for these
vectors

Cnk (A) = Cno

(en(N)]ps(@F)]en (X)) = Areisk
independent of n. On the other hand,

[Ps(MenMIF < g™

Thus, we have

tim T (e (V)]s (a)|en(A)] = | 3 e Pro(0)].
kEZ

In this manner, we obtain

|05 (a)| < [|ps(a)]]

or in other words
|al| = sup [|ps(a)]]-
seS

This result is closely related to that obtained by COBURN in [7]. He shows that the operator C*—
algebras generated by the one-sided shift operator and the direct sum of the one-sided shift and
a unitary operator are isomorphic and, therefore, have the same norm. Recently, we received a
preprint of NIcA [19] in which a family Tj, of C*~algebras the so-called quantized TOEPLITZ algebra
is investigated. We note that the operator C*-algebras p,(.A) are isomorphic to 7.

Returning to the foregoing formula, we can say that for all unitary operators U with spectrum e,

i.e. the whole unit circle, the operator norm on pg * py(Ay) and the norm on A, coincide. Clearly,
Uy fulfills this condition. (By considering the mapping ¢, +— e € L2?(S) we obtain the spectral
representation of Uy on L?(S). See the survey of KOORNWINDER [14] and [16].) Thus, we obtain

Theorem 4.2 The algebras A, and po * po(Aq) are isomorphic pre-C* -algebras and the algebras A
and po * po(A) are isomorphic C*—algebras. The isomorphism is given by po * po.

Using the vectors ¢, (\) we obtain the following

Corollary 4.3 Any state associated with a representation of type w1, and consequently any such con-
ditionally positive functional, can be approximated pointwise by states associated with a representation
of type mo. More precisely, we have

im lim (¢, () @ nlpo * plen(A) @ n).

1
A—1n—oo

(nlpuln) =

Now we easily see that the structure maps of the coalgebra structure of 4, are continuous. J
is a one-dimensional representation. A is an algebra homomorphism into A, ® A,. Since A is of
type I there is a unique C*-algebra A ® A which is the closure of A, ® A, with respect to the unique
norm (see [21, p.393]). We find the norm if we take the norm of the isomorphic operator algebra
po* po(A) ® po * po(A). Now we can interpret A as a representation mapping to B(hg ® ho ® ho ® ho).
Hence, both § and A are representations and therefore continuous.

By defining the antipode S by

o —a oF
s(3a) = ()
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and extending it as an anti-homomorphism, 4, is turned into a HOPF x—algebra (see [35]). From
k _
SO = (=g

we easily see that the antipode is not continuous. Now we close this section by giving the complete
definition of SU,(2) equivalent to that introduced by WorRONOwICZ [35, 36].

For ¢ € [—1,1] the matriz pseudo (quantum) group SU,(2) is given by a C*-bialgebra A and a
*—bialgebra A, for both of which the matrix

a—qy"

v oo
is a unitary corepresentation. For ¢ # 0 we can A, turn into a HOPF x-algebra. The norm on A is
given by the supremum on the operator norms of all representations.

4.3 Continuous cocycles and continuous conditionally positive
functionals

In this section we solve the problem of finding all continuous cocycles and all continuous conditionally
positive functionals on A,. Clearly, this means that we find all conditionally positive functionals on
A. This is because Id — 61 is a continuous mapping onto K, the completion of K7, which, therefore,
becomes a C*—subalgebra of A. Thus, since the restriction of any conditionally positive functional
on A to K is positive on K1, it must be a continuous mapping on K;. On the other hand, we have

Y =1o(Id—01)+(1)0
which is clearly a continuous mapping on A.

For any representation m we have to find all vectors n in the representation space H for which
the mappings Orn and (n|7T:|n) + 110 + r2d’ are continuous or, equivalently, we have to find all 7 for
which any bounded sequence (a,)nen € A, by these two mappings is mapped to a bounded sequence
in H and C, respectively. First we show that we do not loose any continuous conditionally positive
functional if we restrict ourselves to continuous cocycles.

Proposition 4.4 Let n be any cocycle. Then we have
7 s not continuous = 1 is not continuous
for any corresponding .

PROOF Let (a,) be a bounded sequence for which [|n(a,)||? is unbounded. Then for the sequence
(b,) with

b, = (Id — 01)(a,*)(Id — 61)(ay,),
¥(b,) = ||n(ay,)||? is unbounded although (b,,) is bounded. m

By the following lemma we reduce the problem of finding the continuous cocycles to that of
investigating the bounded sequence (a*"),eN-.

Lemma 4.5 Let m be any *-representation of Ay and n any vector in the representation space H.
Then the following two conditions are equivalent:

(i) nen(l —a*)H, i.e. there is a vector ¢ € H such that n = 7(1 — o*)(.

ii) There is a constant C > 0 such that ||O,(a*™)n||? < C for all n € N.
n
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PRrROOF Let ¢ be a vector such that the first condition is fulfilled. Then
(=mQ) o (Id—061) = Orn
is the cocycle generated by n which, therefore, is continuous. This yields the second condition.

Now let C' > 0 be a constant such that the second condition is fulfilled. We split the proof according
to the invariant subspaces Hy, and Hs.

We have id'(a*™) = n, i.e. ¢’ is not continuous. Therefore,  cannot have a component in Hy.

In the case of Hy, let u be given by its spectral decomposition

2 ) 2m—A\ )
u = / e?de, = lim e'? deg.
0 A0+ Sy

The (strong) limit is due to the fact that 1 is not in the discrete spectrum of u (otherwise Hs would
not be the trivial subspace). For O (a*") we obtain

27 —ing 2T—X —ing
e -1 e -1
k7N — 1 S
Or(a™") = — de, = lim - de.
o e w—1 A0y Jy v —1

Now the second condition reads

/27r—)\
A

2
du(p) < Cforall A €[0,7] and n € N,

e — 1

e~ —1

where we write
du(p) = d(nleg|n).
‘We have
le™ — 1] = 2(1 —cos ).

On the other hand, we find by summing the equation

ingp = o (sin(+ 3)e—siny 1)
cosvp singp = o | sin(v + 5)e —sin(v — o)y
for v =1,...,n the well-known formula
- Isin(n+3)p 1
Zcoswp =5 1. 3
= sin 5¢

Using the estimate

1
sin ¢ > ? for @ € [0, 7]
2 T

and a similar estimate for the interval [, 27], we obtain
1 ¢ 1 x .
EZCOSV@ < 3 for p € [T, 2m — 7.
v=1

Therefore, choosing n such that A > 7, we obtain

orex 1— = Zlcoswp
/ = du(p) =

1 n
n ; - le— — 12

2w —A 1
——d
A ‘6_7’80 _ 1‘2 /.t((p)
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for all A € (0,7]. This is nothing but the statement that

2m—A 1
= — 1 ——d
¢ ALI{)lJr A e—iv — 1 26
is a vector in H;. Clearly, ¢ fulfills condition (i), for H = Hj.

Now we come to the case of Ha. First we give O(a*™) in the explicit form

n—1

We introduce the renormed orthogonal basis {€j},cn, in the HILBERT space hgo by

& = V1—q* /1 —g*ey

in which pg(a*) is given by

Let n € hg ® Hp be given by the expansion

n = Zék@ck with ¢, € Hp.
0

b
Il

We obtain (by putting ¢, equal to 0 if £ < 0)

n—1 oo oo k
Or(a*")n = Zzék+e Qcr = Zék ® ( Z ce> .
£=1 k=0 k=0 t=k—n+1
Therefore, condition (ii) reads
K k 2
dDU=¢)--(1=¢*)| Y. @l <CforallnKeN.
k=0 t=k—n+1

If we set n = K + 1, the inner sum starts from 0:

K

d =g (1-¢*)

k=0

k

>

£=0

< (C for all K € N.

Thus, we see that

¢ = gem (Zk:ce>

£=0

is the claimed vector ¢ in Ho. m
We obtain as an immediate corollary

Theorem 4.6 Let ¢ be any continuous conditionally positive functional on Ag;. Then there are a
x—representation w, a vector n1 in the representation space H, and a number r € R such that

Y = 1rd+ (m|m|n) o (Id — 41).
The corresponding 1—cocycle n is given by

n = (mm)o (Id—81).
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PrOOF Let 1 be the cocycle associated with ¢ by Theorem 1.1. Since % is continuous, 7 must be
also continuous due to Proposition 4.4. Thus, choosing 1; = —( by the foregoing Lemma we obtain
that 7 is indeed of the claimed form.

On the other hand, one easily checks that (n|m|n) o (Id — §1) coincides with ¢ on Ks and is
continuous on A. According to Theorem 2.8, we can choose a real linear combination of § and ¢’ in
order to obtain 1 on the whole A. However, § is continuous and ¢’ is not. Therefore, the coeflicient
of & must be 0. m

Notice that we obtain the number 7 by evaluating the functional ¢ at the identity. The infinitesimal
generators of white noises are the conditionally positive functionals vanishing at 1. We obtain them
by setting r equal to 0.

By the above formulae we can associate with any given vector 1; precisely one continuous cocycle
and precisely one continuous infinitesimal generator.

Finally, we remark that the mappings O and 7 are not continuous (neither as mappings on A,
nor in the induced strong and weak topologies), i.e. there are cocycles which are not continuous.

ExAMPLE 4.1 For representations wy we find that any cocycle generated by a vector n of the form
n=er @ f with f € Hy is not continuous.

EXAMPLE 4.2 For the representations p, we find that the corresponding mappings O,, and 7, are
continuous if and only if there is a ‘gap’ around 1 in the spectrum of u.

4.4 Stronger norms on A,

In this section we equip A, with two further norms in which all cocycles and all conditionally positive
functionals, respectively, become continuous. To that goal we need some technical preparation.

Lemma 4.7 For p € (0,1) we have

1 1
1—pa*l1—pa

> -1

> =

PrOOF Since |1 — pa*|| < 2 for all p € (0,1) the element
A=1-X1-pa™)(1—pa)

is invertible in A for all A € [0, ). Therefore, we have

1 1 !
1-— A7Y1 —pa*) = — — =1 .
(1-p)ata-pat) = (ot o)

This means that A is not in the spectrum of our (positive) element of A. m

Now we can show the four fundamental inequalities.

Proposition 4.8

(1) llall < 2[|O(a)]] ,a € Ky
(i) 10(a)]| < 2/ 7(a)]| ,a € K
(i) 10(ab)|| < 2[O@)[[[O®)] a,be K
(i) 17 (ad)|| < 4T ()T @) ,a,be Ky.
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PrROOF We identify elements of A with their images under the faithful representation w. Because of
the lemma we have for all f € H,, p € (0,1), and a € K;
).

1
g—
1—pa*l—pa

*

(flaa’|f) < 4<

1

Since a converges to O(a) strongly for a € K;, we obtain (i) by performing the limit p — 1,

1-pa*
taking the supremum over ||f|| = 1, and taking the square root. (ii) follows similarly by using the
inequality
1 1 1 1
f 1 f) < f " s
lpa 1pa lpalpalpalpa
and taking into account that paal ; - converges to 7 (a) strongly for a € Ks. Since |7 (a)|| =

|7 (a*)]|, we obtain (iii) and (1v) directly from (2.1) and (2.2) together with (i) and (ii), respectively. m

Corollary 4.9 (i) The mapping a — |a||, = 2[|O(a)| is a norm on Ki. The completion Ko of
K1 with respect to this norm is a BANACH algebra.

(it) The mapping a — |la||l; = 4|7 (a)| is a norm on K. The completion K1 of Ko with respect to
this norm is an involutive BANACH algebra.

N.B.: The involution cannot be extended to a continuous mapping on Ko. Consider the sequence
{a*kEg}keNo. (Here we identify Ey with the unique element of K7 which is mapped to the projection
Ey by a faithful representation.) From

k
1
k k *\ 1
Eya T o Eya Eﬁo(pa)

we see that the elements a** Ey and their adjoints are elements of K. However, O(a*kEo) =a**E,
k .
is a bounded sequence and O(Eya*) = Ega* > a*" is not. One easily calculates in the irreducible

representation pg

k
(c0lOpy (Ea®)Op, (Boa*)*leg) = (1= %)= (1= ) D (1= ) (1 - 2+1) >
=0
1
> k—.
T e(¢?)?

Therefore, K» cannot be an involutive BANACH algebra. Furthermore, we see that if a*,b € Ko then
ab € K7. Thus, Ej is an element of K.

So far we obtained the non-unital BANACH algebras Ko and K. Now we show that we can extend
the norms || ® ||, and || e || to A4 such that (Aqg, || ®||,), and (Ag, || @ ||7) are a normed algebra and
an involutive normed algebra, respectively. Together with the original C*—norm the three norms show
to be increasing.

Theorem 4.10 The norms | ||, and || e || can be extended to norms on A,. More precisely, we
have:

(i) The mapping a — |lall, = |0(a)| + 2||O(a)|| is a norm on Aq. The completion Ao of Aq with
respect to this norm is a BANACH algebra with unit. Moreover, we have Ap = C1® Kp.

(i) The mapping a — |lal|; = |6(a)|[+2[|O(252 ) (a)|+4]|7 (a)| is @ norm on A,. The completion
A7 of Aq with respect to this norm is an involutive BANACH algebra with unit. Moreover, we
have A =Cl1 e C O‘Ef‘ o Kr.
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(iii) We have |la||; > |lallp = ||la]|, so that Az C Ao C A.
ProoF If we adjoin a unit to Ko in the usual way (see e.g. [8]), we obtain (i).

Next we show (iii). Let any a € A, be given in the canonical Expansion (1.7), i.e.

*

% +c

«
a=c1l+co

with ¢ € Ky and ¢1,ce € C. Using (ii) and (i) of Proposition 4.8, we obtain

a— o
lalz = les| + 2lex [O(==) + 4T ()]l =
(ii) o —af
z lal+2ef|0(=——)I+2[0@)l =
a— o
> el +2(0(c——+] = lalo =
Q) a—aof
> e+ e +cl = |lal,

27

5

In order to prove (ii) we first show that C 53~ @ K7 is an involutive BANACH algebra with the

norm described in (ii). The only property of an involutive BANACH algebra which still has to be shown
is the product inequality |lab|| < ||a|| ||b||- It suffices to prove it for a,b € K;. We obtain

lablly = 41T (ad)|| <
< 400 = ldlolble <
< llalizlol7

where we used (iii). To this algebra we can adjoin a unit as in (i). m

N.B.: Notice that {a**}zen, is a sequence which is bounded in .A but unbounded in Ao (cf.
Section 4.3), and that {(a* — 1)(a* — 1)}ren, is a sequence which is bounded in Ao but unbounded
in A7 (use (2.1) and (2.2) to reduce the latter case to the foregoing). Therefore, not any two of the
three unital BANACH algebras coincide. Furthermore, notice that the adjoint of the latter sequence is
bounded in Ap, too. Therefore, even Ap N Ap™ # Ar. If we equip this intersection with the norm
max(]| ® ||, [|(®)*]|»), we obtain another involutive BANACH algebra which itermediates A7 and Ap.
Notice further that (again using (2.1) and (2.2)) A, Ko A, = Ko and A, K7 A, = K7, and Ko is a
left ideal in A. But neither K» nor K7 are ideals in A. We mention also that the projection P is
continuous on Ap, because |§'(8)] = [ 0 O(e)| < ||O(e)]]. Of course, all cocycles and conditionally
positive functionals are continuous mappings on A and A7, respectively.

We further mention that the operations of O and 7 are in analogy to the operations of the first
and second derivative of the functions a(p) = 0, (a), respectively. In both cases we have that the
uniform convergence of the first (second) derivative of a sequence a,,, implies the convergence of the
sequence (the first derivative of the sequence), if only the convergence at one single basis vector, here

1 (O‘gf‘* ), is guaranteed.

4.5 Lévy-Khintchine formula for SU,(2)

At the end of Chapter 2 we mentioned that the problem of finding cocycles consists mainly in ‘inverting’
the element 5*. Of course, we cannot invert 8* as an element of an algebra, because it is not invertible.
But by looking carefully at the formulae, one realizes that we actually inverted the operations of
multiplication with G* from the right in the case of O, and conjugation with 3 in the case of 7.

Theorem 4.11 (i) The algebra A,3* C K is dense in Ko. Moreover, AG* = Ko and O : AB* —
A is a BANACH space isomorphism with the inverse given by a — af3*.
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(i) The x—algebra BA,B* C Ko is dense in Kr. Moreover, BAB* = Kz and T : BAB* — A is an
involutive BANACH space isomorphism with the inverse given by a — Baf*.

Proor Obviously, AB* is the closure of A,0* and, therefore, a subset of Kp. And, obiously, O is an
isometry from A(B* onto A and multiplication with §* from the right its inverse. On the other hand,
we also have O(Kp) = A and, therefore, Ko = AB*. This proves (i). The proof of (ii) is completely
anologous. m

Corollary 4.12 Ko*Ko = K.

We explained how to reverse the action of 5* on the algebraic level. Another possibility of giving
sense to 3* 7! is on the level of representations. It consists in either restricting the domain of m(B*)~1
such that the range coincides with H (this will be done rather for § than for 5*), or enlarging the
range such that 7(3*) ! f has a precise meaning for any f € H. Clearly, for this it is necessary that 3*
and ( are mapped to injective operators. Each of these two conditions is equivalent to the condition
that the invariant subpace Hy is given by the nullspace. Therefore, in the remainder of this section
we assume these conditions to be fulfilled, and we identify the elements of A with their images under
the representation m on H.

We introduce the triplet of HILBERT spaces

Hg« D H D Hg

as follows. Hg = BH and the scalar product (e|e)s on Hp is such that 8 : H — Hg becomes a
HILBERT space isomorphism, i.e.

(olo)s = (57" e|37e).
Hg- is the completion of H with respect to the scalar product
(o|0)g- = (8" e[B%).

Clearly, 8* can be extended continuously to a HILBERT space isomorphism 3* : Hg« — H. Moreover,
H is dense in Hg- by definition. By Lemma 2.1 and the remark following Proposition 5.15 we realize
that Hg is dense in H, too.

Now we can ask two questions. Firstly, what is the completion of the space consisting of all
continuous linear functionals on Hg of the form (f|e), f € H? Secondly, which of the functionals
(gle), g € H can be extended continuously to Hg«? The answer is given by

Proposition 4.13 The spaces Hg« and Hg are dual in a canonical way. More precisely, let { fn}neN
with f, € H be a representative of f € Hg-.

(i) By setting
F(g) = lim (falg),g € Hp,

we establish a one-to-one correspondence between continuous linear functionals F' on Hg and
elements f € Hg-. We have ||F| = | fll+-

(ii) By setting

we establish a one-to-one correspondence between continuous linear functionals G on Hg- and
elements g € Hg. We have |G| = ||g]|5-
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ProoF For any pair (f,g) of vectors f € Hg~ and g € Hg there is a (unique) pair (f’,g’) of vectors
f',q" € H such that f = 3*"'f" and g = 3¢/, and 8*f,, converges in H to f’. Therefore, we have

F(g) = (f'ld) = G(f),

i.e. the given linear functionals F'(g) and G(f) have the whole spaces Hg and Hg-, respectivly, as their
domain. For their norms we obtain

IFll = sup (f'lg') = sup (f'|lg') =|fll = /]

/[3*
llglls=1 llg’ll=1
and
|G|l = sup (¢'|f") = sup (g'|f") =gl = llglls
lfllg«=1 [Lf]=1

respectively. Therefore, F and G are indeed continuous.

On the other hand, given any two continuous linear functionals F' and G on Hg and Hg-, there
are vectors f” € Hg and ¢g"” € Hpg-~, such that F'(e) = (f”|e)s and G(e) = (g”|e)gs~, respectively.
Obviously, the vectors f = 3* '3 f" € Hg and g = B6*g"” € Hp generate F' and G in the stated
way. i

Corollary 4.14 For any representation @ of A with w(3*) injective we have

(i) For any a € AB* the mapping w(a) € B(H, H) can be extended (uniquely) to a mapping wa=(a) €
B(Hg+, H) with |mg~(a)|| = ||Ox(a)|. For any f € Hg~ we have

mg(a)f = Ox(a)B*f.

(i) If we interprete for a € BA the element w(a) € B(H, H) as an element of B(H, Hg), we indicate
this by writing wg(a). For any a € BAB* the mapping mg(a) € B(H,Hg) can be extended
(uniquely) to a mapping wap-(a) € B(Hg~, Hg) with ||mgg~(a)|| = |Zx(a)||. For any f,g € Ha-
we have

F(mpg-(a)g) = (5"fTx(a)|Bg).

PrROOF The statements are straightforward applications of the fact that an operator B : D; — Hy
from a pre-HILBERT space D; which is dense in H; to a HILBERT space Hy allows a continuous
extension to H; if and only if there is a constant C, such that

[{g1Bf)2| < Cligl2llfllx
for all f € Dy, g € Hy. The smallest of these constants is the norm || B|| of B € B(Hy, H2). m

We also write F(mss- (a)g) = (f|ms- (a)lg)-
As an immediate consequence we obtain a new formulation of Theorem 2.8, at least for the condi-
tional positive functionals without GAussian parts.

Proposition 4.15 Let 7 be a representation of A with w(5*) injective. Then
nla) = mg-o(Id—01)(a)m

establishes a one-to-one correspondence between cocycles n with respect to m and elements 1y in Hg-.
By choosing arbitrary real numbers r1,12, we obtain all conditionally positive functionals ¥ fulfilling

property (1.2) by
P(a) = rid(a) +r28'(a) + (mlmgs- o Pla)lm).

The connection between 11 and 1~ is given by n; = ﬁ*flna*.
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We ommit the subscript 83*, because no confusion about the domain and range of 7w can arise,
and give a formula for the conditionally positive functionals which may be considered as one of the
main results of these notes: the analogue of the classical LEVY-KHINTCHINE formula.

Theorem 4.16 Any conditionally positive functional Y can be written in the form

Pla) = s(a) + (mlm o Plm),

where T s a representation with w(3*) injective, m € Hg-, and s is a GAUSSian part according to
Corollary 2.11. The correspondence between conditionally positive functionals and triples (7,11, s)
is one-to-one up to unitary equivalence.

We explained already in the introduction, why this formula is in formal analogy to the classical
case (see also Section 5.4). However, we mention again that the GAussian part ¢s and the projection
P, written explicitly, are in formal anology rather to the one-parameter case than to the classical
SU(2).

Furthermore, we want to emphasize that the calculation of this simpler looking expressions is by
no means less difficult than the calculation of our original formulation in Theorem 2.8. The elements
of Hg- are given as sequences f, € H such that 8* f,, converges to an element of . That means that
in the latter formulation, in contrast to the first formulation, the limit has to be performed for any
classifying pair (7, 71) separately. Cf. Example 2.5.

ExampLE 4.3 Consider a representation py = fés dEs without GAUSSian part. For a vector 1o~ € H
we can define a conditionally positive functional

v = [T

where dv(s) = d{(ne«|Es|nax). On the other hand, our new formula reads

b = /5s07’du(5)7

where du(s) = d{n|Es|m) (which is to be understood as the extension of measures of the form
d(n|Es|n) to vectors in Hg- ). The two formulae coincide, because |e~* — 1|2 du(s) = dv(s). However,
notice that o P = 0. This shows that, in contrast to our first formulation, it is not possible to include
a GAuSSian part in the new formulation.
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Chapter 5

The exceptional cases ¢ = —1,0,1

In this chapter we investigate the remaining cases ¢ = 0, ¢ = 1, and ¢ = —1. The results for ¢ = 0
coincide completely with those for |¢| € (0,1) obtained in the preceeding chapters. Just the proofs
of some lemmas and propositions must be adapted carefully to this case. It is known that the C*—
completions A are isomorphic for all ¢ € (—1,1) (see [35]). We give a new algebraic proof of this fact.
It turns out that the algebras A, A1, Ko, K1, considered as subalgebras of A are also independent
of ¢ € (—1,1). However, notice that the norms || e ||, || ® ||, depend on q.

Although at least the classical case ¢ = 1 is known, we also investigate the cases ¢ = —1,1 with
our methods, to have a unified reference for the results of Chapter 6. The anti-classical case ¢ = —1
seems to be still unknown.

5.1 The case ¢ =0

The very first step in the main arguments of the preceeding chapters was to split up the representation
spaces into a part H;, where v is mapped to 0, and a part Hy, where v is mapped to an injective
operator. These subspaces showed to be invariant subspaces and on Hs we could apply Lemma 1.6.
However, we see from Relation (d) that in the case when ¢ = 0 either & or o* must be different from 0
if v is different from 0. On the other hand, by the adjoint of Relation (a) or (b) it follows that v cannot
be injective at all. Nevertheless, it is still possible to decompose a given representation into invariant
subspaces H; and Hy such that m1(y) = 0 and Lemma 1.6 holds for m(a). Since it is not possible to
give another simple characterization of these subspaces (such as mo () is injective), we postpone the
proof of this statement. In order to proceed as in Chapter 2 we only need to know the following

Proposition 5.1 By replacing in the expressions of my, the parameter q formally by 0 (with the
convention 0° = 1), a representation of Ay, again denoted by y,, is defined. This representation is
faithful and Lemma 1.6 holds.

PROOF It is easy to see that the expressions of any representation of type mo extended formally to
g = 0 define a representation of A4y. In the case of my, the element « is mapped to a multiple of the
one-sided shift operator and, therefore, Lemma 1.6 holds. The faithfulness of 7y, follows from the
proof of the next proposition. m

Proposition 5.2 The elements o*~y™al for k, ¢ € Ny and m € Z form a basis of Ay.

PROOF First we have to make clear that any monomial in 4y can be expressed as a (finite) linear
combination of the given vectors. Notice that due to the relations o* is an isometry, i.e. aa™ = 1,
and v*v is a projection with the additional property that 4*)~v*y = ). Thus, any factor in the
monomial consisting of an accumulation of 4’s and y*’s, reduces to either 4™, m # 0 or y*y. The
latter can be reduced by Relation (e) to the difference of two monomials with no «’s at this position.

The remaining accumulations of a’s and a*’s between the 4™’s can be brought into the form
a**al k¢ € Ngy by the isometry property. But, any such factor having k¥ # 0 and ¢ # 0 whose
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position is not on the extreme left and the extreme right, respectively, cancels with the neighbouring
~’s. Thus, the given set of vectors indeed spans Aj.

The linear independence is still to be shown. For this aim we introduce the following linear
functionals Ygme on Ag. Let

Xeme = (€rx @ €n|my,ler ® €p)
for m # 0 and
Xkoe = {(er ® eo|my,ler ® eg) — (ex—1 ® €o|my, ler—1 ® €o),

where we defined e_; = 0. The functionals fulfill
*k_m _(
Xerme (@Y a") = Sprbmrmdene

for all k,k’,¢,¢' € Ng and m,m’ € Z. This proves the linear independence. Moreover, it is now clear
that 7y, must be a faithful representation. m

If we combine this with the theorem of WORONOWICZ given in [35], we obtain
Corollary 5.3 The elements a**~y™al for k, ¢ € Ny and m € Z form a basis of Ay for any ¢ € [-1,1].
PROOF Let g be different from 0. We have

a'a(@ ) = (1—yTat Tt = @t = DT y)at =

— (1 _ qZ(k—l))a*kflak—l + a*kak.

Thus, we can show that (a*a)” and, henceforth, (v*4)™ is a linear combination of {a**a*}i—o .
by induction. By WORONOWICZ’s theorem we know that for all £ € N,n € Ng and m € Z any of
the sets Ven = {a* v (v*9)* k=0, n Voen = {3 (Y1) bh=o,.. ms and Vou = {3 (v*9)*}k=0,...n
is linearly independent. Clearly, this must hold for any of the sets V/ = {oz*“kfymozk}k:o,__’n,
Vi = {a*kvma“k}k:o,wn, and Vj, = {a*kﬁhak}kzo,m’n, because V;,, and Vj, span the same
n + 1-dimensional vector space for any ¢ € Z. Now the statement is obvious, because A, is spanned
by the union of all these sets which mutually linearly independent. m

Let us return to the case ¢ = 0. It is easy to check that decomposition (1.7), the formula for the
projection P onto K», and the proofs of Lemma 2.1, and Theorems 2.2 and 2.3 remain unchanged, if
q is replaced by 0. For the values of O on the generators we obtain O(y(*)) = —v*) O(a) = —a, and,
of course, O(a*) = 1. This means that in this case O is a mapping onto 4y. This corresponds to the
fact that the values of any cocycle i on the generators can be calculated from its value on 8* by direct
use of Relations (1.6), i.e. without arguments like injectivity or invertibility of operators. Therefore,
Lemma 2.6 remains true, too. Finally, we obtain the analgue of Theorem 2.8.

Now we come to the representations of Ag. As in Chapter 3 we introduce (for any representation)
the operators E}, with ¢ replaced by 0. This yields

k k+1
* k_a*-i-ak-‘,-l

k
E, = o™« = oy yak.

From the relations it is immediate that the Ej form again a set of orthogonal projections, and the

(o]
commutation relations with the generators do not change. Therefore, the subspace onto which Y Ej

k=
projects is an invariant subspace which we denote by Hs. Since vE; = ~dor, we obtain thatoﬂy is
mapped to 0 on the orthogonal complement of Hy which we denote by H;. By the same arguments
as used in Chapter 3 (actually the arguments are simpler because the formulae simplify) we obtain
again Theorem 3.4, where now py denotes the irreducible representation py extended to ¢ = 0. Also
the rest of the discussion in the last two sections of Chapter 3 does not change if g is replaced by 0.
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Investigating pg * po the main problem lies in proving that pg x pg is a representation of type .
However, we have

po* po(@)(er @ eg) = ep—1 ®eq—1.

We immediately see that there cannot be a vector f € H such that

llpo * po(a®)fIl = 11 ]

for all k € Ny. In other words, the invariant subspace H; is the nullspace. The further steps become
simpler and we obtain again that

Po*pPo = Ty,

is a C*—isomorphism.

In the remaining part of Chapter 4, ¢ appears only in some normalization factors which become
simply 1 if ¢ = 0. The proofs of all results contain only statements which have been proved to remain
valid for ¢ = 0 in this section. As we have seen the case ¢ = 0 is in many respects simpler than the
general case. In the next section we will see that all of the completions, considered in Section 4.4,
coincide for different ¢ and, henceforth, our results can be extended to ¢ € (—1,1).

5.2 The g—dependence of SU,(2)

In [35] WoroNOwICZ showed that for all ¢ € (—1,1) the C*—completions of A, are isomorphic. We
had this in mind when we denoted this C*—algebra by A. In this section we will give another proof
of WORONOWICZ’s result by establishing isometric embeddings of A, into A explicitly. If we want
to distinguish between different values ¢, ¢’, we indicate this by adding ’ to those symbols connected
with ¢’. E.g. A and A’ denote the completions A, and A/, respectively. We will see that most of our
results are independent of ¢ € (—1,1).

The operators Py, Ey, are identified via 7y, with elements of \A. Our aim is to find for any ¢’ €
(—1,1) pairs of elements a, 7y, of A which satisfy the ¢’-relations and span a dense subalgebra of A.
(To clarify notation: a pair of elements of A’ fulfilling the g-relations will be denoted by ay,7,.) We
obtain a first hint how to proceed by observing that according to our representation theory the series

e 1— q/2k
> \/ 1= g2F v, (aB)
k=1 1

I
) 1— q/2k- 1— q/2(k—1) 1— q/%
= 811)120 ’; \/1 —& \1o 20D U, (aPy) — T U, (@Pry1) (5.1)
where we set 11__‘3;;) = 0 converges strongly to the operator 7j; (a’). Since the convergence is only

strong, we cannot be sure that this operator is an element of 7y, (A). However, we see that the last
term under the limit converges strongly to 0, hence, can be neglected. In the sequel the remaining
series will indeed show to converge in norm. Similarly, we see that for ¢ different from 0 the series

3 <qq)mf (vE) 52)

k=0

converges to mp; (7') in norm. In other words, in terms of the representation 7y, we obtain an
isometric embedding of A, into A whose closure is onto A. We want to prove this more directly on
a purely algebraic level without reference to the general representation theory. We only mention that
any homomorphism 4, — A is continuous due to the fact that any C*-algebra has an isomorphic
representation as an operator algebra and the definition of the norm on Ay .
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It is not difficult to see that the coefficients appearing in (5.1) can be estimated by
1— /2(k+1 1— q/2k: ok
‘\/ PRV \/1 — g2k < max(lg|, ') Coq
for k sufficiently large, where Cyy is a positive constant depending on ¢ and ¢'. Therefore,

> 1— q/2(k+1) 1— g2k
/ —
Po = Z \/1_q2(k+1)_ 1 — g2k Py

k=0

converges in norm to an element of 4. Furthermore, we have for ¢ # 0

k Nk
q' q k _
<q> VEy = <q) Yo Eg(1 — >y y) 7t (1= P yy) TP
sk * — *
= "oy Ey(1 - ¢y )Tt (1 - gyt TP
Oé*k Oék
_ q/k i Ey.

=) 1=

In this form the series (5.2) is norm convergent even for ¢ = 0. Thus, we can define
(o)
1— q/Qk 1— q/2(k—1)
o —
Q' Poa = Z \/1_q2k_ 1— 20D by

o* 'ya
1—q - (1—¢%)

Mg

Ey.

Vg =

Proposition 5.4 The elements oy, vy of A fulfill the ¢’ —relations. We have ag = 0, and v4 = 7.

Proor First we show the latter statement. In the expression for a; only the summand for k£ = 1
does not vanish and, indeed, gives a. If ¢ # 0 then ~y, is given by the simpler expression

oo k
q/
Ve = E <> YEk.
k=0 q

Setting ¢’ = ¢ we obtain

Yq¢ = Z'VEIC

= hm Y(1 = Pey1) = 7,

k—o0

k+1

because ||yPri1|| < ¢"tt If ¢ = ¢’ = 0 only the summand for k£ = 0 is different from 0 and gives .

Notice that we have, in addition to the orthogonality relations EyFE; = Edye, the following prop-
erties

- E, fork>/¢
ExPe = { 0 otherwise
PkPg = Pk for k& > L.
They follow immediately from P, =1 — Ey—...— E;_1. The first relation which is obviously fulfilled

is Relation (c¢). We easily obtain
Vv = Vv = Y d**Ex.
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Let us write o in a different way.

0 1— q/2k 1— q/2(k—1)
Qq' Z \/1 —F 1= g6 abPy

k=1
) 1— q/2k 1 — q/%
= Jim | YTl + | T arelsn (53)
k=1
£ 1— q/2k
7 \k=1 q

120
(Since Py is a bounded sequence, the ¢-limit of 11:’;; — 1 can be performed first.) Now we want to
calculate a,ay and agay,. Both factors are given as norm limits in £. We perform these (-limits
simultaneously in both factors and obtain by repeated use of the relations (fulfilled by the projections

Ej and Py) which are written above and in Chapter 3

¢ 1— g%k
azlaq/ = Zli}rgo ZWQ*QE’“ + a*aPpy
k=1
V4
) 1— q12(k+1)
agoy = Jlim (Z 1=t @@ B+ aatPe ).
k=0

¢
We insert Ppy; =1 — 5. Ej, and obtain, taking into account that a*aEj, = (1 — ¢**)Ey,
k=0

oo
apay = o'a+ Y (- ¢"ME, = a'a+y"y -y
k=1
= 11—,
and similarly with aa*E), = (1 — ¢?**+D)Ey,
agal = 1—q?yhg.
This yields Relations (d) and (e).
«k ANk
v Was given as the sum over g = q’k %Ek- For g # 0 this simplifies to g = (%) ~vEy.

If ¢ = 0 we obtain g, = ¢’*a**~ya*. In both cases we have

aq/gl(:gl = q’g,(:)aq/ and aq/g(()*) = 0.

Therefore, we obtain Relations (a) and (b). m

Corollary 5.5 The mapping

a/ > aq/
’)// — ’yq/
can be extended (uniquely) to a homomorphism Iy : A — A.

In the opposite direction we write I;. Denote by E}, the projections as defined in Chapter 3, calculated
in terms of ayy and 4. In other words, we have

Ekq/ = Iq' (El,c)’

where E. denotes the projections in A’.
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Proposition 5.6 We have

PROOF From

a*kEoozk
(1—¢%)(1—¢*)

we see that the Ej fulfill the following recursion formula

E, =

o Era

Byt 1 — @2k+D)

We have

oo
o * 0 _ 12k¢ _
Eoy = Jim (yp7y)" = Jlim Y ¢*MEp = Ey.
k=0
Now assume that the statement is true for £, i.e. Fyy = Ej. We obtain
ay Erg oy 1—¢2k+)  o*Epa 1 — g2(k+1)
Bletne = 1— 20kt1) 2kt 1) 2kt 1) S0 — Dkl
—q 1-g¢g 1-g¢ l—g¢q
where we made use of Eray = \/%Eka. [

Corollary 5.7 We have

Iq/(a;) =
Iq’(’Y(/;) = 7

PrOOF According to (5.3), o, is given by

o | é 1— g% "B+ o/ P
4 = AN P 1—g2h @ ok T
I, maps this to
¢
1_q2l~c
/ _ .
L) = Jim | D \JT—gmeon B + arPin

£—o00

V4
= lim (ZaEk + O[Pg+1 + (aq/—a)PHl) = .
k=1

> ’
This is true because we can write, using (5.3), (ag — @) = > (4/ 11:’5122: — 1)aE) and, henceforth,

k=1
0 1— q/Qk
(ag — )Py = Z (| = — Dakx — 0.
k=(+1 1—q

For 7, we obtain in a similar manner

o0 k
q
Iq’(%/;) = Z(q’) Yo Bk = v

k=0
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for ¢’ # 0, and

o0 oo
* k * k
Iy(vg) = quaq, Yoagt = quaq, vEpay*
= k=0

1 . 1
- Zq\/ NN k”‘)‘k\/<1—q2>---<1—q%>E’“ -

ford =0.m
Now the following theorem is a simple corollary.
Theorem 5.8 The mapping I, is an isomorphism from A’ onto A and I(; is its inverse.

Proor Consider the endomorphism I} o I,» of A’. I, mapps o', to ag,7,. On the other hand,
changing the role of ¢ and ¢’ in the foregoing corollary, we see that «,7, are mapped back to o/,
by I(’I. Therefore, the restriction of I('] oIy to Ay is the identity. Clearly, this extends to A’. By
changing ¢ and ¢', we see that I,/ o I} is the identity on .A. Since ||I(e)|| < || @ || for any homomorphism
I between C*-algebras, I,» and I; must be isomorphisms. m

Notice that obviously pj; = py o Iy and 7}, = my o I for any unitary operator U (actually I,
was constructed such that the second condition is fulfilled). Therefore, even the strong and weak
topologies on A and A’ coincide. In the sequel we identify A" with A, i.e. By = Ep, ag = o/, oy = a,
and similarly for ~.

Now we investigate wether the completions Ao, A7, Ko, and K7 depend on ¢, and to which extend
the cocycles and the conditionally positive functionals change with ¢. (Since the representations do
not change, the latter question is equivalent to the question what happens to the mappings O and 7 .)
The key for an answer to these questions lies in the following

Lemma 5.9 There is a (unique) invertible element B’ € A (depending on q and ¢'), satisfying
B/ﬁ* — ﬁl*-

PrOOF The statement of the lemma is equivalent to the statement that 5"* is an element of Kp. In
this case B’ is given by

B' = 0(8"),
and, by symmetry in ¢ and ¢’, its inverse must be given by
Blfl — O/(ﬂ*)

Notice that " — 0* = o — a* = o*(P), — 1). Since * is an element of Kp and K is a left ideal in
A, it is sufficient to show that P, —1 € K. We obtain by calculations similar to (5.3)

14

1 — g/2(k+1)
P,-1 = elggo Z 1 k+1)Ek+P£+1 -1
k=0
© 1— q/2(k+1)
= ———— — 1| Ek.
Z 1— qz(k+1)

k=0

We have ||O(Ey)|| < (k + 1), the factors 1/% — 1 can again be estimated from above by a

multiple of max(|ql, |¢'|)?*, and Ej, € Ko. Therefore, the series converges in O-norm to an element

of K@. [ |
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We mention that P, — 1 is an element even of K7. This can be seen similarly by the estimate

IT(Ep)| < (k+ 1)2. Therefore, 0‘5?* and o‘/gf‘/* differ only by an element of K7, i.e.

o —a* a—a*

C—— Ky = C

25 ONT 2

(as subsets of A). Furthermore, we have A3 = AB’* = AS* and similarly for 5’ A8"*. Notice that
O’ can be uniqgely characterized by O’(e)5™* = Idk,(e) = O(e)3*, and similarly for 7’. Thus, we

obtain

© Kr

Theorem 5.10 We have

Ko = Ko
Ky = Kr
Aor = Ao
Ar = Ar,
and
OB = 0O
B*T'B' = T on Ky

| ® Ho/ ~ e ||o

[ellz ~ el

In other words, the extension of any conditionally positive functional ¢ on A, to Az coincides with
the extension of a conditionally positive functional 9" on A,. Clearly, the correspondence between
and 1)’ is one-to-one, and the sets containing the extensions of all conditionally positive fuctionals
and 1/, respectively, both coincide with the set of all conditionally positive functionals on Az. The
same holds for the extensions of cocycles from A, and Ay, respectively, to Ap.

Now we investigate how the classifications for ¢ and ¢’ are related to each other. First notice that
0 does not depend on ¢, and, consequently, so does the projection I'd — §1. Unfortunately, it is not
possible to find an element a, € Ko such that §'(a,) # 0 and ao € ()| Ay This means that

qe(—1,1

we are not able to define a projection from A, onto K in a qfindepen(dent) way. However, in all
our formulae for conditionally positive functionals the projection P appears. Therefore, whatever we
choose for m, 7+, T, e+, the functionals (Ne«|T|ne+) 0 T and (N« |7 |Na+) © T’ cannot coincide on
Ar, even, if they coincide on K7, unless both vanish on (o — o) — (a* — &/*) which is in general not
the case. One way to avoid this g—dependence lies in the restriction to 7. The projection simply
dissapears in the formulae. Another possibility is to fix the projection e.g. by choosing Py where ¢
is replaced by 0. The classification in Theorem 2.8 remains unchanged with the exception that the
parameter 7o is shifted by a (¢—dependend) constant c. We only have to keep in mind that in general
Po does not map A, to K but to Ky + Cw Cc Kr.

Now the following corollary is obvious.

Corollary 5.11 Let 7 be a representation of A and Nex,Nar= vectors in the representation space H.
We have

(777]@*)00 = (71'770/*)0(9/ on Ap
TNa)oT = (Na=|T[nar=) o T" on Kt

(Mo
if and only if
Nare = T(B)as.

So far we see that the classification by Theorem 2.8 depends on the choice of q. However, it follows
from the invertibility of 7(B’) that all the spaces Hg+ coincide as sets whatever ¢ is, because their
scalar products are equivalent. We denote this space by H* and its dual by H,. These two spaces
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are a g—independend pair of dual topological vector spaces whose topologies can be described by
scalar products. Consequently mgg~ becomes a g—independent mapping m. € Lo(H*, H.), the set of
all continuous linear operators from H* to H,. Clearly, the topology on Lo(H™*, H,) coincides for
any ¢ € (—1,1) with the topology induced by the norm on B(Hg-, Hg). If no confusion about the
domain and range of 7 can arise, we ommit the various subscripts. We immediately obtain a final,
g—independenent formulation of the LEVY-KHINTCHINE formula in Theorem 4.16.

Theorem 5.12 Any conditionally positive functional ¥ on Az can be written in the form

Y = s + (m|m o Po|m),

where m is a representation without GAUSSian part, 11 € H*, and 15 is a GAUSSian part according to
Corollary 2.11. The correspondence between conditionally positive functionals and triples (mw,m1,1s)
is one-to-one up to unitary equivalence. The restrictions of such functionals to A, form the set of all
conditionally positive functionals on A,.

5.3 Remarks

Let us summarize the results. (A,¢) is a pair consisting of a x—algebra and a homomorphism, and
we can investigate its conditionally positive functionals. However, by Section 4.3 we know that these
are given (more or less) by multiples of states. This is because the topology on A is too weak and,
henceforth, A is too big. The *-algebra A° generated by | A, is a dense subalgebra. On the one
q€(—1,1)

hand, A° does not depend on ¢q. On the other hand, A° is the smallest subalgebra of A4, containing
all the A,. (In other words, if it is possible to describe the conditionally positive functionals on A, in
a g-independent manner, it must be possible to extend such functionals at least to A°.) The set of all
conditionally positive functionals on A° induces a topology on A° which is equivalent to the topology
given by any of the norms || e ||+ and, henceforth, stronger than the topology on A. The closure with
respect to the new toplogy yields Ar.

Now the question arises where the g-dependence of SU,(2) actually lies. The answer is: in the
comultiplication. We know e.g. that a the representation py does not depend on ¢q. However, pg x4 po
does depend on q although pg does not. On the other hand, we know that pg*, pg is unitarily equivalent
to 7y, for any ¢. This implies that all results which are only up to unitary equivalence are essentially
independend of q.

EXAMPLE 5.1 In [35] the HAAR measure on A, was given as

1 > _ N
h = 1_q2;q2k<ek®€o|7%|€k®eo>.

It is not difficult to see (cf. also [18]) that this can be written as

h = <77q|7TU0®U0‘77q>7

where 14 is cyclic for ¢ # 0 and given by

oo

1 k ~ ~
Mg = —F—— g er ®er @ eo.
V1-¢ 5
(Notice that the GNS-representation my,gu, is unitarily equivalent to py *q po *q po as can be seen by
simple calculations, using our rules for convoluting representations.) Since h depends on q essentially,
we can be sure that there is no unitary equivalence transform on ho ® Ho ® Ho, mapping 14 to 1y and
leaving 7y, eu, invariant.

We should remind the reader of the fact that the comultiplication is a mapping into the algebraic
tensor product of a linear space with itself. However, it is not difficult to see that if g # ¢'.

Ay Ag) & ARA
Actually, there seems to be no subalgebra of A bigger than .4,, which still is a bialgebra with comul-
tiplication A,.
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5.4 The case ¢g=1

In this section we give, to some extend, an introduction to the classical theory of conditionally positive
functionals (i.e. infinitesimal generators of stochastic processes) on a compact LIE group (cf. [11, 13])
in the case of SU(2) (i.e. A;). We recover these results, using methods motivated by the techniques
of Chapter 2.

An element of U € SU(2) is given by a unitary matrix U = (u;;); j=1,2 with unit determinant.
Consider the unital x—algebra A¢, which is generated by the coefficient functions f;; : U — wu;; on
SU(2). In the usual parametrization of SU(2) which is non-singular at the identity, we have

_ V1 — 22 — g2 —(x —iy)
(fij(py2,y)i; = ( z + iy me,w )

with ¢ € [-7,7) and 22 + % < 1. On A; we have a natural HOPF #—algebra structure given by

AdNHOV) = fUV)
o(f) = f()
S(HW) = U,

for U,V € SU(2) and I being the identity of SU(2). Obviously (fi;)i j=1,2 is a unitary corepresentation
of As. Tt is easy to see that the irreducible representations of As are given by py(f) = f(U), where
U can be any point in SU(2), i.e. they are in one-to-one correspondence with the group elements. On
the other hand, the convolution of two irreducible representations oy, oy, associated with elements
U,V of SU(2), yields another irreducible representation oyv,

oov(fi;) = (v ®ov)oAi(fiy) = (ov @ ov)D_ fir ® fry)

k=1
= fi;(UV),

associated with UV. In other words, the convolution of irreducible representations gives us nothing
but the group structure of SU(2). (Obviously, we have gy-1 = gy o §¢.) We introduce the usual
supremum norm on A by

Il = sup [F(U)].
U

UesSU(2)

By an application of STONE-WEIERSTRASS theorem As is dense in C(SU(2)), the x—algebra of con-
tinuous functions on SU(2), which, therefore, is the completion of Ay.
The generators f;; of A satisfy fi11 = f35, fi2 = —f51, and f{ fi1 + f31f21 = 1. Thus, by

a —" i fiz
yooor Jo1  fa2
we define a x—algebra homomorphism from A; onto A;. It is easily checked that the irreducible

representations of A; are given by the three-parameter family 0,4,, with

5 a =" ~ S fiz ) L V1= a2 —y2et¥ —(z — iy)
ory X U\ fa fa T +iy VI— 22 —peiv )’

v«
where ¢, z,y describes U € SU(2). The general representation mg of A; is given by

T = / 5¢$y dEy,my,
SU(2)

where dFE is an arbitrary spectral measure on SU(2). Notice that 7g(a) = fSU(Z) f(U)dE zy, if f is
the funtion in A¢ corresponding to a € A;. Once again it follows from the proof of WORONOWICZS
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theorem that A4; has a faithful representation. Therefore, || o | = sup ||7(e)|| defines a C*—norm on A;.
™

Clearly, this norm coincides with the norm on A¢. Thus, Af and A; are isometrically isomorphic pre—
C*—algebras, and C(SU(2)) can be identified with the C*—completion of A;. This result follows also
from an immediate application of the results obtained by GLOCKNER and VON WALDENFELS in [10].
Notice that a representation is a C*—algebra isomorphism, if the spectrum of the spectral measure dF
is the whole SU(2). If we e.g. choose the HAAR measure H on SU(2), we obtain a representation mg
on L?(SU(2), H). We observe that for any U € SU(2) the representation my* g is unitarily equivalent
to mg and the unitary equivalence transform is the shift by U.

Now we come to the cocycles and conditionally positive functionals on .4;. One main difference
to the case ¢ € (—1,1) lies in the GAussian parts. Consider the three mappings 6’ = 0,d000,
0" = 00000, and ¢'Y = 0,,0000. These mappings are cocycles with respect to § = dggo. Since

o @ =" (1 0
0 ( vy oo ) ! ( 0o -1 )’
st @ —~* _ 0 -1
v oaf 1 0 ’
w o =" _ 0 1
o (5 F) =)
we see that the three cocycles are linearly independent. In particular, we see that any linear combina-

tion of §’* and ¢’ is a cocycle different from 0 but vanishing on «*, i.e. Lemma 2.6 is no longer valid.
Let r € R? be a vector with components (o, z,y). Setting

5 = W)t

= S , (5.4)

t=0

we define a three parameter family of cocycles with respect to § which consists of all real linear
combinations of ', §’*, and 6’Y. Setting

O 1 o) () (1)

2 2 dt?

t=0

we obtain a conditionally positive functional fulfilling (1.2).

Now we see by Relations (1.6) that any GAussian cocycle, i.e. a cocycle ns with respect to a
representation of the form §15, on a HILBERT space Hj, is defined by its values on a — a*, 7, and ~*
which, on the other hand, can be chosen arbitrarily. In other words, we obtain

Theorem 5.13 By
ns = 0%n,+08"n, +8"n,, (5.5)

we establish a one-to-one correspondence between GAUSSian cocycles ns and triplets (1y, N, 1ny) of
Vectors Ny, N, Ny € Hs.

Since 1y must vanish on Ky, we have a — o*,y,v* ¢ K, and any basis of K5 can be extended by

1, 453, "";7 , 157~ to a basis of A;. Setting

a—a* v+ v=7"
— Jd—61— 1o _ sz sy T
2 d—061-196 oF ) 5 ) 5

we obtain a projection onto K.

The form (5.5) of the GAUsSian cocycles is not yet suitable to see the form of the GAussian
conditionally positive functionals. In the following theorem we find a more practicable one. Moreover,
it turns out that, similar to our counter Example 2.3, not all cocycles determine the values of a
conditionally positive functional on K.

95



Theorem 5.14 For any GAUSSian cocycle ns which determines the values of a conditionally positive
functional on Ky there are three orthogonal vectors ni,m2,m3 € Hs, having length 1 or 0, and three
vectors r1,ra,173 € R® such that

776 — 6/7“1 ,,h + 6/7"2772 + 6/7"3,}73.

Choosing an arbitrary real number ro and an arbitrary vector r € R>® we obtain all conditionally
positive functionals s, fulfilling (1.2), in the form

171 52 §/'rs
2 + 2 + 2
PRrROOF If a cocycle ns has the stated form, the form of the conditionally positive functionals fol-
lows straightforwardly. Thus, it remains to show that a cocycle which determines the values of a
conditionally positive functional on K5 has to be of this form.

An arbitrary cocycle 75 given in the form (5.5) maps to the subspace of Hs spanned by 7y, 7z, 7y.-
This subspace is at most three-dimensional. Therefore, we can find three ortogonal vectors 1, 72,73
whose span contains the range of 75. The components (7;|1s) of 15 in the directions of the n;,i = 1,2,3
themselves are one-dimensional cocycles.

Now assume that 75 determines the values of a conditionally positive functional on K5. There is

nothing to prove, if all vectors 7, 7,7, are 0. Therefore, we assume, without loss of generality, that
£ a;q* ’ 7+2’v* , ’v;y*
3 X3

that the numbers (n1|n,), (n1|n,) are real numbers. In other words, we can find r; € R?, such that
the one-dimensional cocycle (n1]n,) = 8. We know that this cocycle defines a conditionally positive
functional. Therefore, also its ‘orthogonal complement’ defined by 7js = ns — 716" must define a
conditionally positive functional. Furthermore, there are vectors fj,, 7, orthogonal to 7, such that
My

M7y 11

vs = 70467+

7z # 0 and choose 171 = HZ—:H It is easy to conclude from the commutativity o

ns = 0'?f, + 6"V, If 7, # 0 , we continue our argument in the same manner, by setting 7, =
If this is not so, the proof is complete. m

We see that in the case ¢ = 1 there is a much bigger variety in the GAUSSian parts. This is due
to the fact that the counit § can be approached in essentially three ways, corresponding to the three
group parameters. The derivatives in the three directions of the parameter space SU(2) are linearly
independent linear functionals, corresponding to the existence of three linearly independent vectors in
K, /K5 on which in general a GAussian cocycle can assume arbitrary values. In the sequel, we will
restrict ourselves to representations without GAUSSian part.

Clearly, if the spectral measure of a general representation 7 has an atom at identity (i.e. the point
(0,0,0)) it decomposes into a subspace Hy, on which 7 is given by a multiple of §, and its orthogonal
complement, on which 7(8*) (and, of course, 7(3)) is given by an injective operator. Now we consider
the latter case, where Hs = {0}. Such a representation is given by

T = / Opay ABpzy = 1irr(1) Opzy ABpay,
SU(2) U JSU@)\UL(T)

where U,(I) denotes an e-neighbourhood of the identity and the limit is strong.
Notice that 7 is of this type. If we choose 7 to be the representation w which induces the strong
and weak topology, we see by the following proposition that Proposition 2.1 remains valid for ¢ = 1.

Proposition 5.15 For any representation © of Ay, with w(5*) injective, we have

1_ *
lim 1&“3 - 1
o L pm(a’)

in the strong operator topology.

PROOF Let z be a complex number on the closed unit disk and p € (0,1). We have

1-2 2|
1— = (1-—p—12
‘ 1—pz ( p)|1—pz|
2| 1
< (1- < (1- =1
< ( p)l_p|z| < ( p)l_pl
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Therefore, the strong e-limit

1—7(a* 1= /1= 22— 2e—i¢
o domed gy - TV ) iB,,,
1 —pr(a*) 0. Jsu@\v.(n) 1—py/1—a2 —y2eiv

is uniform in p. On the other hand, for fixed e the integral becomes small in norm, if p is sufficiently
close to 1. Thus, we can conclude that the integral converges to 0 strongly, if p goes to 1. m

N.B.: If we replace x and y by 0 we obtain the same statement for a representation of type m; of
Ay for ¢ € (—1,1). Therefore, it is justified to say that any cocycle on A,, even with respect to a
representation of type m; without GAUSSian part, can be approximated strongly by coboundaries.

By commutativity we can easily conclude that
Corollary 5.16 Lemma 2.6 remains valid for ¢ = 1 if and only if w(3*) is injective.

If we now try to find a mapping O we see the other main difference to the case ¢ € (—1,1). In the
picture of the function algebra As we should obtain

. 6tpwy(a> — (5(&) 6‘;05”?/ (a‘) — 6(@)
O(a = lim = :
[ ( )](U) Il’—>1p 1—x2—y26*“"—1 1_x2_y2efitp_]_

However, by setting ¢ = 0 and performing |z +1iy| — 0, we see that this function is unbounded around
the identity for any non-vanishing linear combination of v and v*. On the other hand, [O(«)](U) is a
continuous function on SU(2)\{I}. Therefore, by

0m>=émwwmwm

we define a possibly unbounded operator with dense domain. By the cocycle property of [O(a)](U)
we conclude that a maximal common dense domain D of all the operators O (A1) is given by

D = D, = D,

where D, (.) denote the domains of 7(7*)). Obviously, D consists of all vectors 7, for which

| o] dulan = [ — Al Byl < o0
SU(2) s

v [V1-a?—y’e i — 12
Clearly, for any vector 7.+ € D we can define a cocycle n by
n o= Oﬂna* (56)

for which n(a*) = 14~ holds. Now we generalize the notion of strong convergence. We say a sequence
{Bn}nen of bounded operators on H converges strongly to a possibly unbounded operator B on H
with domain Dp, if for any f € Dp the sequence B, f converges to Bf. It is not difficult to see, by
arguments as in the proof of Proposition 5.15, that

O, = lirrvr o(Id—61)(pr(a*) —1)7!
p—>

pointwise in this strong topology.
On the other hand, if n is a given cocycle assuming the value 7,+ on «*, it follows immediately
from Relations (1.6) that

n(y*) = lim (O N(U) dE gy
=0 Jsu@))\U.(1)

i.e. g+ € D. Thus, we obtain
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Theorem 5.17 Let w be a representation of A1 on a HILBERT space H with w(3*) injective, and D
the (dense) subspace of H as defined above. By (5.6) we establish a one-to-one corresondence between
cocycles with respect to m and vectors ny- € D.

Proceeding as in Chapter 2, we define

T.(a) = /S o TN By

where the function 7 (a) on SU(2)\{I} is given by

dpay © Pi(a)
|1 — 22 —y2e—iv — 1|2'

Clearly, 7, and O, fulfill Equation (2.2). Therefore, we obtain again that any cocycle (5.6) defines
via (1.2) the values of a conditionally positive functional ¢ on K5. (Notice that the domain of 7 is
smaller than D. However, it is obvious that this domain can be extended to D if we interprete 7, as
mapping into D* being the dual of D.) By

[T(a))(U) =

d(ne- Ewry|77a*>

d T = .
Heoay |V/1— a2 — y2e—ie — 12

we define a positive regular not necessarily finite measure on SU(2). We obtain HUNTs result for
SU(2).

Theorem 5.18 The LEVY-KHINTCHINE formula
'(/} = 7/}5 + / 5<pxy oPy dﬂmpmy
SU(2)

establishes a one-to-one correspondence between conditionally positive functionals on Ay, and pairs
(s, 1) consisting of a GAUSSian part s and a positive reqular measure p on SU(2)\I, fulfilling

/ (2% +y?) ditpey < 00 and / V1 —22 —y2e™ — 12 dupe, < 0.
SU(2) SU(2)

5.5 The case ¢ = —1

Now we investigate the anti-classical case, where ¢ = —1. We will obtain a result looking very similar
to Theorem 5.18. In addition to the GAussian part we find another part, the so-called anti-GAuUssian
part, which has to be written down separately. In the integral part of the classical case the term d,4y
runs over those states which have an irreducible GNS-representation. With some smaller exceptions
this result remains true also for the anti-classical case: We obtain that the irreducible representations
are more or less given by the family Swsy of two-dimensional representations. The family of states d,zy
has to be replaced by the family of states Tr m(¢p, z, y)gwy where m(p, z,y) is a measurable function
on SU(2) with values in the positive 2 x 2—-matrices of unit trace.

First let us agree on some notation. Let 7 be a representation of A,. By m we denote the
representation defined by

m@) = —nla) and x(y) = —7(y).

Notice that in the case of Ay; the roles of a and v are interchangeable. Therefore, we can define
another representation 7 by

() = w(y) and 7(y) = w(a).

Since the actions of _ and ~ commute, 7 has also unique meaning.
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As we have seen in the foregoing section the classical case was from a conceptual point of view
more complicated than the cases when ¢ € (—1,1). This was mainly due to the fact that in relations
(a) and (B) the term (1 — )y disappears for ¢ = 1. As a consequence of this, v and 4* are no longer
elements of K5, the GAUSSian parts of the cocycles are not classified by its values on o*, and, in the
remaining parts, the operator mapping n(a*) to n(y*)) is not a bounded operator. Almost all of these
difficulties arise also in the anti-classical case.

Clearly, we have again a one-parameter family d,, of homomorphisms, mapping « to €? and 7 to
0, and the derivatives ¢’ and ¢”. By the same arguments as for ¢ € (—1,1) it follows that K5 is of
codimension 1 in K; and the projection P, extended to ¢ = —1, is again a projection onto K5. We
denote this projection by P_; in order to emphasize that the domains of P and P_; are completely
different, whereas the domains Ay of P for different ¢,q¢' € (—1, 1) coincide.

The main difference compared to all the other cases becomes apparent if we have a look at § = 6.
A representation 01y, on a HILBERT space Hj, a cocycle with respect to such a representation,
and a conditionally positive functional associated with such a cocycle will be called anti-GAUSSian.
Obviously, for any choice of 14+,1y,7y+ € Hs we define an anti-GAussSian cocycle 7, by setting

Q) = a5 @) = —na 5 n(YY) = M0,

and n(a) = 0 for a € K. Therefore, Lemma 2.6 cannot be true for a representation containing an
anti-GAUSSian part.

Without any change in the proof of Proposition 2.4 we see that also in the case ¢ = —1 a decompo-
sition of any representation of A_; into invariant subspaces Hy and Hj is possible, such that 7(y) is 0
on H; and injective on Hs. Clearly, the eigenspaces Hj, and Hs to eigenvalues 1, and —1 of m(«) are
invariant subspaces and the restriction of 7 to these subspaces is purely GAUSSian, and anti-GAuUssian
respectively.

Proposition 5.19 Lemma 2.6 remains valid for those representations of A_1, which contain no anti-
GAUssian part.

PrOOF We proceed smilarly as in the proof of Lemma 2.6. In the case of H; « is mapped to a unitary
operator u. From Equation (2.7) we can conclude that u has eigenvalue —1 if 1(7(*)) is different from
0.

In the case of Hs nothing changes till we arrive at Equation (2.10). The right-hand side be-
comes 7(03*)e and 7(8*) is not neccesarily an invertible operator. However, 7(8*) is injective and,
nevertheless, € is determined by the left-hand side. m

As an immediate consequence we obtain again the form of the GAuUsSian parts as in Corollary 2.11.

We define a family of representations Scp:ry on C? which is labeled by elements of SU(2), by setting

Swy(a) =V 1_1;2—y26i“0( (1) Pl )

o) = @i (9 g ).

These representations are irreducible if and only if 22 + 42 # 0 and 22 +y? # 1 and it is easy to check
that in this case two different members Ssowyv &(,fg;fy/ of the family are unitarily equivalent if and only
if either ¢’ —p = (2n+ 1)w or &’ = —x,3y’ = —y or both. (A unitary equivalence transform leaves the
determinant invariant. Therefore, in two dimensions the factors in front of the matrices can only differ

by sign. On the other hand, choosing the unitary transforms u = ((1J _01) and u = (2 (1]) we indeed
obtain the sign changes of §,py(7) and .y (@), respectively.)

The representation belonging to the identity (of SU(2)) will be denoted by

5 = dooo-

The partial derivatives of &pmy at 0 are defined in the same manner as those of d,, in the preceeding
section. Notice that § = § @ §. We denote a basis of C? by é; = (1,0) and é; = (0,1). Clearly, we
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have Sél = ¢16 and Ség = é39. Therefore,
a (&0 (a)lér),
defines, for any r € R? with components (¢, ,y), a cocycle with respect to §. Clearly, <é1|(§”"|é1) is

a cocycle with respect to J, hence, must be given by a multiple of ¢’. By evaluating at o, we obtain
(é1]0'"|é1) = ', with ¢ being the first component of r. Furthermore, we have for a,b € K; that

(e1]8"" (ab)ler) = Z 11077 (a)es) (el (b)[éx) (5.7)

<62I5”"(a en) (@216 (B)|er) + *6" (ab).

In other words,

CILG YL
2 2

is a conditionally positive functional fulfilling (1.2).

In the classical case the cocycles corresponding to r = (1,0, 0), (0,1, 0), (0,0, 1) are linearly indepen-
dent. However, we immediately see that in the anti-classical case the cocycle (é3]6"¢|é1) is identically
0. We can obtain a third linearly independent one-dimensional cocycle with respect to § by

do(Id—01) = (&y)0]é2) o (Id—61) = §—0.

(Cf. the preliminaries. Both § o (Id — §1) or ¢ o P_; may serve as associated conditionally positive
functionals.) We obtain the analogue of (5.5).

Theorem 5.20 By
80 (Id— 1), + (6]8"[é1)na + (2[0™|é1)ny,

we establish a one-to-one correspondence between anti-GAUSSian cocycles ns and triplets (1,, Mz, 7y)
of vectors Ny, Mg, My € Hs.

s

In the case of a one-dimensional cocycle we again find by commutativity of v, ~* that the complex
numbers 7, and 7, must have the same phase factor if ns determines the values of a conditionally
positive functional on Ky. Now let 7 = (p,z,y) be an element of C x R?. By straightforward
verification on elements of K7 we see that

(el
as t > 0 tends to 0 where n, is the cocycle 15 having n, = ¢ € C and 7,,, = z/y € R. Notice that

(ol

for ¢ — 0. Therefore, we find by computations similar to (5.7) that

. é1 + tpés | » é1 + tpe
11H1<1 tS@Z 6O(tr)(ty)‘71 t¢2>o'P1

e
( 4@*;@@>oud_M) -

’ €1 + tpeés
t

>o(Id—61) — (&8O |e,) + p(é,|d]é2) o (Id — 61) = 0

=T t—0

defines a conditionally positive functional fulfilling (1.2). We obtain by a proof completely similar to
that of Theorem 5.14

Theorem 5.21 For any anti-GAUSSian cocycle ns which determines the values of a conditionally
positive functional on Ko there are three orthogonal vectors m1,m2,m3 € Hs, having lenth 1 or 0, and
three vectors ri,rs,173 € C x R? such that

Mo = M. Mm+n, n+tn ns.

60



Choosing arbitrary real numbers ro, 1, we obtain all conditionally positive functionals fulfilling (1.2)
in the form

Us = rodbrad O

Now we come to the representation theory. Notice that m(y?) is a normal operator, commuting
with 7(a) and w(y). Using its spectral measure, it is possible to define {/7(y2), also commuting

with everything, and such that "%/7(72) = {/7(72). If we define {/m(y*?) = {/7(72) , then also

Vm(y?) m(y?) = %\/ﬂ'(’}/*’y) where the right-hand side is the usual root of a positive operator.
Actually the following lemma does not depend on the special choice of this n—th root. To be explicit

we fix, on the scalar level, an n-th root by setting /z = {/re= for z = re'?, ¢ € [0, 27).

Lemma 5.22 Let m be a representation of the unital x—algebra generated by two normal anti-com-
muting indeterminants «, 7y (i.e. Relations (a)-(d)) as bounded operators on a HILBERT space H. Then
the representation m® on C2 @ H, defined by

@ = (o 5 )
e = (g )e Ve

s unitarily equivalent to ™ H x.

Morover, if m(a) and ©(y) are injective and (S1,S2) is any partition of Cy = C\{0} into BOREL
sets, such that z € Sy implies —z € So, then the restrictions of m® to the invariant orthogonal subspaces
H; onto which the projections 1p,,, ® E; with

E, = / dEZ
Si

project both are unitarily equivalent to . In particular,
T X .

The proof of this lemma can be found in Appendix C. We obtain the irreducible representations of
A_1 as a simple corollary.

Corollary 5.23 The irreducible representations of A_1 are given by the three families Swy with
0<z?+y*><1,d,, and d,.

PrOOF If 7 is irreducible, then we have necessarily that either w(y) = 0, or w(«) = 0, or both are
injective. (Otherwise m could be decomposed into non-trivial invariant subspaces.) Obviously, the
first case leads to a representation J, and the second, by exchanging the roles of o and v, to 5¢_

By Lemma 5.22 we know that in the remaining case 7 is unitarily equivalent to the restriction of
7@ to Hy. Therefore, 7 is irreducible if and only if F; projects to a one-dimensional subspace. From
Relation (e) we see that m = d,4, for some (¢, z,y) € SU(2) and 0 < 22 +3> < 1. m

Theorem 5.24 Let m be any x—representation of A_1 on a HILBERT space H. There is a spectral
measure dEgq,, on SU(2) with values in B(H), such that the representation T on C?* ® H defined by

7 = / bpay @ dE gy
SU(2)

is unitarily equivalent to ™ x.
On the subspace Hy, where w(a) and 7(7y) have no eigenvalue 0, we even have

=< and 7w < (1® Ep)7.
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On the subspace HS', where w(y) = 0, we have

e {3 3)ee

On the subspace Hy, where m(a)) = 0, we have

DR S T T W (N
7T/\211 .

PrROOF Let dE¢, and dEY"? be the spectral measures of 7(a), and /7 (7?) respectively. By dE,,, =

dE?Y clEu‘,/72 we denote the joined spectral measure of these two commuting operators. By Relation (e)
we see that dF.,, has to be concentrated on the subset

{(\/1 — 22 — 2"z +iy) (@, z,y) € SU(Q)} c C?.

On the subspace Hy @ H§ we define dE,, to be the spectral measure on SU(2), induced by dE.,,.
By Lemma 5.22 we obtain the statements concerning this subspace.

On H, the remaining subspace, 7(7) is a unitary operator with spectral measure dE,,. In this case
we define dE,,,, to be the measure concentrated on the sphere consisting of all points (0, cos ¢,sing) €
SU(2) and such that dEgcospsine = dE,. This representation is a direct sum of f&P dE, and
f§¢ dE,. Since 1 (1 1) is the projection onto the eigenspace to the eigenvalue 1 of the matrix (? (1)),

211
we obtain the last statement. m

In the sequel instead of the set S; C Cy we rather use the corresponding subset S; C SU(2) on
which the spectral measure dFE,,, on S; X C has to be concentrated. By restricting to elements of
SU(2)° = {(p,z,y) € SU(2)|0 < 22 + y* < 1}, we include a projection onto Hy. Notice that by our
choice of the square root the spectral measure dE,,, vanishes for arg(z +iy) > 7. It is convenient to
fix Sl by

$1 = {(pay) e U@ ¢ €(-3.3).0 <arg(e+iy) <.

Correspondingly By = |, s dE,yy. We mention that S provides a partition of SU(2)" into four
subsets, each containing any two-dimensional irreducible representation precisely once, by

SUER = S U {(pay) € SUP|(p+m2.0) € 51}
U {e e su@|e,—,—y) € 5}
U {(e.2.) e SUR|(p + 7.~z —y) € 51},

N.B.: Consider the C*-algebra C(SU(2), Max2) of continous functions on SU(2) with values
in Mayo, equipped with the supremum norm ||f|| = sup ||f(U)||. Clearly, the subalgebra A_¢ of
SU(2)

C(SU(2),M3x2) generated by fo(U) = Swy(a) and f,(U) = 0pzy(y) can be identified with A_;
equipped with the norm || e || = sup ||7(e)||. By

O / 5@“] dH
SU(2)

we define a faithful representation on C? ® L?(SU(2), H). Again the representation remains faithful
if the HAAR measure is replaced by any other measure, whose spectrum is SU(2). Notice that A_;
has an obvious Zs—graduation. An element of a € A_; is called even, i.e. a has degree 1, if my(a) is
diagonal, and a is called odd, i.e. a has degree —1, if the diagonal entries of my(a) are 0.
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If 7(a), 7w(y) are injective, the restriction fsl &pmy ® dE gy of 7 to the subspace Hy = C? @ E1H
of C?> @ H can be identified with the original representation 7. For € H denote the corresponding
vector in Hy by (n1,n2) with n; € E1H. We obtain for the diagonal element

2
ol = 3 (aen o)
ig—1

_ 3 0
= Tr/ Opay AV s
S1

/ 5<pfcy ® dEpqy
S1

where we introduced the measure valued, self-adjoint matrix (d2,,)i; = d(n;|dEpqy|n:). Notice that
the non-diagonal entries are complex. By CAUCHY-SCHWARTZ inequality we have

1
-0 S - -0 -0
(@012l S (@921 (d00, )20 < (A0, )10 + (dD,)20).
Therefore, the matrix entries (dﬁgm )i; are all absolutely continuous with respect to the (positive,
regular, finite) measure dvl,, = (d0g,,)11 + (dP2,,)22. By an application of the theorem of RADON-
NIKODYM we can write

di’ = a’d?,

0 0

where 1" is a v’—measurable function on S; with values in the positive 2 x 2—matrices of unit trace.
If w(a) or w(7y) are not injective, we have to take into account the contributions of the subspaces
HJ and H§. By Theorem 5.24 we easily see that this is done by adding a measure of the form

o 10 o
dv —<00)du,

where dv® is a (positive, regular, finite) measure concentrated on {(¢,x,y) € SU(2)|x? + y* = 0}, for
H§, and by adding a measure of the form

o7 = ;(1 i)dzﬂ,
W}’lyel"e dv7 is a (positive, regular, finite) measure concentrated on {(p,z,y) € SU(2)|z? +y? = 1}, for
B Clearly, also the sum
dv = db°® + di® +dp?

fulfills CAUCHY-SCHWARTZ inequality. Therefore, we can write

where
dv = (D)1 + (dD)ye = dv° + dv® + dv?

and 7 is a v—measurable function on SU(2) with values in the positive 2 x 2-matrices of unit trace.
We summarize.

Theorem 5.25 Any state ¢ on A_1 can be expressed as
o = [ )y iy, (5.8)
SU(2)

where v is a probability measure on SU(2) and 7 is a v—measurable function on SU(2) with values in
the positive 2 X 2—matrices of unit trace, fulfilling the following conditions.
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(i) The restriction of v to SU(2)° is concentrated on Si.

(ii) For 2% + 3% = 0 we have

(e, z,y) = (é 8)-

(iii) For 2% + y? =1 we have

. 1/1 1

This is the decomposition of an arbitrary state into its irreducible components. However, notice
that a state of the form Tr 7(¢, ,y)d,qy in general can be decomposed into two irreducible compo-
nents, because any positive matrix can be written as the sum of in general two dyadic products of the

form |c){c|.

We proceed now precisely as in the foregoing section. Assume that a given representation 7 has no
Gaussian and anti-GAussian part. We introduce the mapping O : SU(2)\{I, (7,0,0)} — Max2 by

O@IU) = (Bpayla) = 8(a)1ar,,,) [me_i“D( 0 ) - ( 0 1 )T

Opay(a) = 0(a) 1y, ( 14 /122 — e i 0 )
0 .

(1—22—y2)e 2w —1

and define the possibly unbounded operator
O:@) = [ (O@)V) & dEp.
SU(2)

Similar to the classical case, a vector 7o+ = (7a1,7a+s) € H defines a cocycle with respect to 7,
assuming this vector on a*, by setting

(1) - o)
2 N2

if and only if the corresponding vector 74+ is an element of ﬁ, the domain of O, (7). This condition
reads

22 + 12 X 22 4 12 )
/ Y (dywxy)11+/ Y (dDpy)22 < o0
S

v V1 -a? —yPemiv —1P2 su@) V1 —a2% —yPe i + 1|2

The integrands of both integrals are bounded on the substets of SU(2), for which 22 + y? = 0 and
2% 4 y? = 1, respectively, and that the integrand of the second integral is bounded on S;. Therefore,
the condition is actually a condition only on (di)q;.

Notice, that also the mapping O, can be obtained as a strong limit of the mappings

for p — 1. The proof is comletely analogous to that of the classical case.

By
_ Na* 1 Naxq
w N <(77a*2> (%*2 >>’

| @) .,
SU(2)
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where we defined
i L y/T—a? —y2et? 0
T — _
o) = ( k R
gWy oP_1(a) 1+ me—w 0
(1= o2 —yP)e2iv — 1P 0 1 T e

we find a conditionally positive functional satisfying (1.2).
We introduce the measure valued matrix dji ., by

. (dDpzy) 11
d . — prY
( Hep y)ll = 122 — 12 — e io]?
N (dﬁwﬂy)ﬂ
d -
( l‘@:cy)QQ T m@_wp
N (d’;@ry)u
d T = - -
(hpay 1 (I —+/1—=22—y2e )1+ /1 — a2 — y2et¥)
(dﬂtpwy)ﬂ = (dﬂtpwy)H'

Notice that the entries of dfi s, also fulfill the CAUCHY-SCHWARTZ inequality. Therefore, we obtain
again a (positive, regular) measure p and a p—measurable function m with values in the positive
2 x 2—matrices of unit trace, such that di = mdu, and by Equation (5.8)

1# = / Tr TATL(QO, xz, y)gtpzy oP_1 d;uf&pxy«
SU(2)

This yields the LEVY-KHINTCHINE formula.

Theorem 5.26 The formula
Y= s+ 1/)§+ / Tr ff\l(gﬁ,.’t, y)gapzy oP_y dlfftpzy
SU(2)

establishes a one-to-one correspondence between conditionally positive functionals on A_y and triples
(s + s, 1, M) consisting of the sum of a GAUSSian part 15 and an anti-GAUSSian part 15, a (not
necessarily finite) measure pu on SU(2)\{I, (7,0,0)}, and a p—measurable, positive 2 x 2—matriz valued
Sfunction m of unit trace, fulfilling the following conditions:

(i) The restriction of u to SU(2)° is concentrated on S;.

ateen) = (g 0)-

(ii) For x® + y? = 0 we have

(iii) For 2% + y? =1 we have

~ 1 11
m(go,m,y) = 5 1 1 :

(iv) The measure p fulfills

/ (@ + 92) (Pl 2, )11 ity < 50

SU(2)

/ | V 1- {,132 - y26_i¢ - 1‘2(7:’\7‘(507:5’1/))11 d,uépzry < o0
SU(2)

/ (Mm@, 2,y))22 ditpey < 0.
SU(2)
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N.B.: Since Tr m = 1, it is a necessary (but not sufficient) condition that p fulfills

/ (2% + y*) dptpey < oo and / [V1—22 —y2e™ — 12 dpgyy, < oo
5U(2)

SU(2)

We will need this in the next chapter.

5.6 Unifying description

In this section we want to point out that the three cases are more similar than they may look at first
sight. We will find as a further main result of these notes that for any ¢ € [—1, 1] the cone consisting of
all conditionally positive functionals on A, can be obtained by a simple completion of a cone consisting
of states on A, combined with an arbitrary projection Q onto K,. But first we give a list of what
coincides and what is different for the three cases |¢| <1, ¢ =1, and ¢ = —1.

In order to establish mappings O and 7, fulfilling (2.1), (2.2), and O(a*) = 1, we had in each of
the cases to enlarge the original algebra (with ¢ = 0 being the only exception). For |¢| < 1 it was
sufficient to consider the C*—completion which yielded automatically bounded representing operators
even for the enlarged algebra. In the cases ¢ = £1 it was necessary to allow elements of infinite norm.
In both cases the enlarging was performed most easily in the picture of the function algebras A; and
A_¢, respectively. The functions are C—valued for ¢ = 1 and Msyo—valued for ¢ = —1. In particular,
the functions O(y™*)) become essentially unbounded in both cases.

After having established the mappings O and 7, we obtain for any vector in the domain of all
operators Or(A,) a cocycle, mapping a* to this vector, and a corresponding conditionally positive
functional. For |¢| < 1 the domain is the complete HILBERT space. In the other two cases we only
obtained a dense pre-HILBERT space.

In all three cases for ‘most’ of the representations a cocycle is already determined by its value on
o*. For |g| < 1 this is true for all representations. In the cases ¢ = 1 and ¢ = —1 the GAussian and
the anti-GAuUssian part, respectively, have to be treated separately. Therefore, excluding these parts,
we obtain a classification of the cocycles by vectors in the respective domains of O (y(*)).

In the case |q| < 1 we found that for a given cocycle n there is a conditionally positive functional
¢ fulfilling (1.2). In the cases ¢ = +1 we found that this may be not so. The values of ¥ on Kj
are determined by 7. The classification of the restriction of the functionals to Ky is equivalent to
the classification of the states which have to be applied to 7 in order to obtain the functional. The
restriction to the dense subspace in the case of the cocycles for ¢ = 1 corresponds to the restriction
to those states which can be extended to all possibly unbounded functions in 7 (A41) in the case of
the conditionally positive functionals.

The codimension of K3 in A, is 2 for |¢| < 1 and ¢ = —1, and is 4 for ¢ = 1. This corresponds
to the fact that there are 2 and 4 linearly independent functionals, vanishing on Ks5. In the next
chapter this fact will cause a subtle limit procedure when we try to approximate conditionally positive
functionals on A; by conditionally positive functionals on A,.

In all three cases the results obtained can be reinterpreted in terms of a LEVY-KHINTCHINE formula.
On the level of the GNS-representation this description corresponds to introducing a new toplogy on
the space of cyclic vevtors. For |g| < 1 the resulting space is bigger than the original HILBERT space.
However, for ¢ = +1 the HILBERT space is neither a super- nor a subset of the new topological space.

Now we come to the claimed unification. It is the description in terms of LEVY-KHINTCHINE
formulae which allows us to define a procedure to find any conditionally positive functional on A, in
a unified way for all ¢ € [—1,1]. Let Q be an arbitrary projection onto Ks. Let

dg = {po Q| positive}

be the cone consisting of all positive functionals ¢ on A, combined with Q. Denote by ® the completion
of the cone | ¢ with respect to pointwise convergence. Clearly, any element ¢ of ® is a conditionally

Q
positive functional. We show that also the converse is true.
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Theorem 5.27 For any q € [—1,1] the cone ® consists of all conditionally positive functionals on

A,.

Proor Let ¥ be a conditionally positive functional on A,. First, we assume that ¢y oP = 4. If ¢ has
no GAussian part (and also no anti-GAuUssian part if ¢ = —1), then the LEVY-KHINTCHINE formula
tells us that ¢ € .

We obtained the restrictions of the GAUSSian parts ¥s of the functionals to K5 as second derivatives
of families of states ¢; with respect to t at t = 0 for which }LI% ¢ = 0 holds. Therefore, if 15 0P = 1)s,

we have

I proP
Vo= T

which means that also ¢s € ®. Clearly, the same holds for the anti-GAUSSian part of a functional on
A_1, because it was given as limit of the same form.

A general conditionally positive functional has the form
Y = YoP+rid+r,0
for ¢ # 1 and
Y = YoPr+rid+d"

for ¢ = 1 where r,7, € R and r € R3. We first consider the case ¢ # 1. Notice that the general
projection onto K5 has the form

*

Q = Id—(1+4¢1)d— (a;ia +ca> 5
= P—ci6—cyd
with ¢1, ¢, being arbitrary elements of K. There exist a state ¢ on A, and ¢ € K, such that ¢(c) = 1.
Therefore, by setting ¢; = —%-c and ¢, = — "¢, we obtain
%ii% tpoQ = 116+ 71,0,

i.e. 716 + rod’ € ®. The proof for ¢ = 1 is analogous. m

N.B.: It might be an interesting suggestion to ask for which pairs (A, §) consisting of a x—algebra
A and a homomorphism § the conditionally positive functionals can be described in that way.
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Chapter 6

The cases ¢ = &1 as limits ¢ — =*1

If we put ¢ = %1 formally in expressions of the general representation of 4,, we obtain representations
of A4;1 which map either a or v to 0, or to a direct sum of both. We use the notions of Appendices
A and B in order to define ¢—dependent families of states and conditionally positive functionals which
converge in some sense to states and conditionally positive functionals on A1, respectively, as ¢ tends
to £1.

First we give a precise meaning to ‘convergence of a family of mappings’ for different q. Let F
denote the free unital x—algebra generated by the non-commutative indeterminants o and . For any
g € [—1,1] the ideal generated by Relations (1.4) is denoted by Z,. By &, we denote the canonical
homomorphism from F onto A,. If now ¢, is a family of mappings from A, into the same topological
space, we can raise it to a family ®, of mappings on F by setting

b, = pg0&,.
We say that lim ¢4 = @4, (or, in other words, ¢, is continuous at ¢o) if and only if lim ®, = ®,
a—ao a—ao
pointwise on F. We also say that a sequence ¢, of mappings on A, converges to a mapping ¢ on
Ay, if lim g, = ¢ and lim &, = ® pointwise.
n—oo n—oo

6.1 States

Proposition 6.1 Let ¢, be a family of states on Ay for ¢ € (—1,1). If the limits @41 = hlill 2,
q—}
exist, there are states 41 on A4, such that o4 = 1115:11 ©q-
qﬂ
PrROOF A mapping g is a state on A, if and only if @, is a state on F. Therefore, the limits ®.;
are states on F.

It remains to show that &, vanishes on Z4;. Suppose that a4 is an element of Z,1. It can be
written as

where a;4+,bi+ € F and R;, denotes the i-relation of Relations (1.4) (e.g. Ryq = ay — ¢ya). By
replacing R;+1 with R;, we easily see that a4 differs from an element of Z, by A,+ which is of the
form

Agr = (F1-a) ) fix(@)ess,
j=1

where f;4(¢) are bounded (continuous) functions of ¢ and ¢4 are g-independent elements of F. Thus,
we obtain

ql_ig:llq)q(Aqﬂ:) =0
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and consequently our statement. m
Let A, 1 be complex numbers. From |\ — |2 > 0 if and only if A\ # i we can conclude that

I e etAr 1 forA=n
m ——— = .
t—oo etlA? gt|ul? 0 otherwise.

We prove a g—analogue (cf. Appendix A).

Proposition 6.2 For \,u € U1(0) the g—exponential fulfills

et {1 for A =T

lim ———— )
g—1 e\/\l2 \M\z 0 otherwise.

PROOF For A = [i the statement is clear. Thus, let A # f. By the product representation of e} we
obtain
o0

exfent 7 (L= A= ¢*ul®) "N =)A= p)
'”2 ""2 H — NI (L= gFAp) 11 (1_( gF ) (1 — ’“M)) (61)

k=0 k=0

All factors lie in [0,1). Therefore, so does the product. On the other hand, for ¢ — 1 the factors
converge to

e lex=yn)
(L= ND)(1 - )

which is less than 1. Since the product contains an arbitrary number of factors close to this limit, if
only ¢ is sufficiently close to 1, the product will be smaller than any given positive number. m

Roughly speaking, the unit vectors

‘become orthogonal’ if ¢ tends to +1. We use this property in order to approximate irreducible states
on Aj:l .

Proposition 6.3 Let (p,2,y) be a point in SU(2) such that 0 < 2% + y*> < 1. Furthermore, let
¢ = (c1,¢2) be a unit vector in C*. Denote by c ® é,2(\) the unitvector

Cléqz ()\) + Cgéqz (—>\)

o122
\/1+ (e1e2 + @) 2

q2

c@® éqz ()\) =

in ho where A\ = \/1 — 22 — y2e'?, x = arg(x + iy). Then we have
(i)

(e (Vlpalés () = Gy,
(ii)
lim (€0 e (Nlple @ (V) = (eldamle):

qg——1
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PROOF Assume, for the moment, that x = 0. Then, since py does not distinguish between v and v*

and by hermiticity, it follows that it is sufficient to prove the statement for v"a™ with n,m € Nj.
We have po(a)eqs2(A) = Aeg2(A) and po(y)eqz(X) = eq2(gA) (cf. Appendix B). Therefore, a™ gives

a factor (£X)™ and 4™ gives a factor ¢" in the argument of the g—coherent state. Thus, denoting the

normalization factor in the second case by \c|®, we have to compute the expressions
a" AP
. eq2(A)]es2(g" A . €2
hm)\m<q ( >‘/\q2( ) = lim \™ q)\2
q—1 6‘ 2| q—1 el 2‘

q
in the first case, and
1 m n —_ m n
m Mz(wx (e (Wleq(a" ) + Trea(—N)" (eg2(Wlega(—g"V) +

li
g——1 |c\éeq

+ @aA (e (=A)leg(¢"N) + Czlg(—A)m@q?(—A)Ieff(—q"A)))

no_q1yn|y(2 no_1yn+liy|2

L (aPAm 4 PNl TV - @e(-a)m - maxmel OV
- qlinl |C|26|)\\2
©q?

in the second case where we transformed the limit ¢ — —1 into a limit ¢ — 1. The recursion formula
for the g—exponential reads

iq"+2 A|2 2 iq"|)\ 2
eqz | = (1 + qn|/\‘ )eqz | .
In the first case we see that
A eqz’“’lP\I2 a|Al?
2
lim L = (1—-|A*)" and lim — = (1= " lim L,
q—1 el)\‘ q—1 ep\l qg—1 G‘M
q> q? q?

if the latter limit exists. For the second case we consider

_qnl)\‘2 < 6_q7L+1‘)\|2
a? a?

for ¢ € (0,1). Since |\| # 0, Proposition 6.2 yields

AP
a2
A

e
q2

— 0

as ¢ — 1. Therefore, |c|, converges to 1. It follows by (6.2) and the recursion formula that

GNP
L — 0 for & (=1)" =1
€2

For +(—1)" = 1 we obtain the same numbers as in the first case. Thus, it remains to calculate

q|Al?
2
. q
m 5
q—1 e’
q
We define
egf
q2
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By looking at the factors 11_7137:?1”96 of the infinite product we easily find that F} is a strongly decreasing
function of z € (0,1), i.e. Fy(z)F,(qx) < F,(qz)F,(qz) < F,(qx)F,(¢*x). Since F,(z)F,(qz) =1 — =,
we have

l—2 < Fy(gz)? < 1—gqa. (6.3)
Therefore,
;Lnlqu(:c) = h_}rq ;q@;c) = V1-—uz,
and, henceforth,
(TP .
lm ZIAZP = VI-RP
q

We insert this and obtain
;Lml(éqz(A)\po(vnam)léf(/\» = A"VI-[AP

and

n le1|? + |e2|?2(=1)™  for n even

Tim (c® e (Vlpm("a™)le® e(N) = A"VI= A2

c1ca(—1)™ + ¢3¢ otherwise

which is the claimed result for y = 0.
The general case can be obtained by multiplying with the factor e?X for each v and e~*X for each
..

The excluded cases |Ag| = 0,1 can be obtained as the limit A — A\ of the above expressions. In
our next step we include these cases by replacing A with a function A(¢) which converges to A\ as ¢
tends to +1.

Notice that the approximating expressions, in (i) and (ii) of the foregoing Proposition, are analytic

functions in the variable |[A|*> and can be continued analytically to |A[? < %_q. For a given \g =

e*?|Xo| € U1(0) we introduce the function

In2
1 T Ing?
Ao for <1 — |)\(]2> <1l-— q2
Ma) = 2
e (|Ao| +0A)  otherwise
on % < ¢% < 1, where ) is a non-negative real number such that
_In2
1 Ing
(1—2(|>\0+5)\)2> = 1-4~
We explain why this is well-defined. Notice that x = — llnnq% is a positive real number which tends to

infinity as ¢ tends to +1. Therefore, if the first case is not true, it is always possible to find a unique
S such that the second case is fulfilled. The lower boundary for ¢ guarantees that |A(¢q)| < 1. (If
¢® = %, we have k = 1 and 1 — ¢% = %, i.e. |Ag| + 6\ = 1.) Obviously, 6\ converges to 0 as ¢ — =*1.
The worst case for this convergence is Ay = 0, i.e. the convergence is uniformly in Ag. We collect the
properties of A(q).

Proposition 6.4 For the function X(q) on & < ¢* < 1 which is assigned to any Ao =€ U1(0) by the
above definition the following holds.
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() 0< Mg <1.

(i) Aq) is continuous.
(i) lirftl1 Aq) = Mo uniformly in Xo.
qﬁ
(iv) For any Ay # 0 we even have A(q) = Ao for q sufficiently close to +1.
_In2
1 9 Ing? 9
(v) 1 2 A(a) <1 ¢ for all Ao,

Having done these preparations, we can prove the following

Theorem 6.5 Let (o, x,%y) be a point in SU(2) and set \g = \/1 — 22 — y2ei?, x = arg(z+iy). Then
we have

(i)

giiq@zf (A9)) |px|éq2 (M) = dpuy-

(ii)

lim (¢ ® e (A(9)lpxle © 8 (M) = (cldpuylc).

q——1

uniformly in Ag and in the unit vector ¢ = (c1,¢2) € C2.

Proor Consider the proof of Proposition 6.3. The expressions to be calculated are the same except
that the fixed number X is replaced everywhere by A(q). The expressions are linear combinations
-2

, and ‘732 <z Where the coefficients are polynomials P(g?,\, 0. If we
(& ®€ 2

2
of the functions ﬁ7 Fo(IAID)
O]

|C|@
insert A(q), these coefficients assume their limits P(41, A\g, Ag) uniformly in \¢ because Ay does so. Of
e IA@?

course, |c[, assumes its limit 1 uniformly in A, if does so. Thus, our proof is complete if we

02 =

X (a)
qu
—IA(0)]?

show that linﬁ F,(IM@)]?) = /1 = [Xo|? and hni CMW = 0 uniformly in Ag.
q—?

Consider (6.3) which holds for 0 < x < 1. We obtain

1—x < Fz) < 1—x
. z
Vv1—qx a

This inequality also holds for x = 1, if we change the < signs to <. Therefore,

VIZe- Rl < (-0 (f=- o) = e (Vi - V)

I—z

Vi—z V1—-qz \/l—m\/
B 1—2 z(1—q)
l—gqz /T—qz++V1—2
x(l z)

We easily check that the function
l—x9g=vy1- il “q —4 and 1 — qzg = \/1 — gq. Therefore,

of z has a unique maximum on (0, 1) at zo = = Vqlfq. Thus,

z(1—x) < 1-y1—¢q

= X0.
l—gx — q 0
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We obtain

— 1-yT—q Vz(l—gq) vi-q
Vi—e-F@) < —— e <

This is the uniform convergence of F,(x) — /1 — .

Kk was given by k = ln . Obviously we have ¢** = 1. By [k] we denote the greatest integer less
than or equal to k. We have
2%k 1
q > 3 for k < [K]

From (6.1) we obtain

A 0 4g%|\]? T

q* q ) Qk )\

I 13( areppe) < HLa-ahe)

[x] ok ) 1 ) [k]+1 1 ) K
< Tla-ene < (1-308) < (1-508)

k=0

for all A\. We insert A(¢q) and obtain

o A@P

1 K
S L — _
PO \/(1 2IA(q)I> < Vi-¢ = Vi+q/T—¢
q2

2
oM@

q2
by 2
D@
q

for ¢% > % This is the uniform convergence of —0.m

Notice that <c|(§wy|c> can be written in the form

<C|Ss&$y|c> = Tr|c) <C|Ssawy = Tr éstpwy?
2 —_
where we introduced the matrix ¢ = < \Ccch |cclc‘22 ) If we assign to any matrix m of unit trace the
2C1 |2
operator
. 1 . . . .
My(@) = (T O man (s ()] + 12 O0) maa Gege (-] +
1+ (mag 4 ma1)
q2

+18g2 (=A)) ma1 (6q2 (N)| + [€g2(=A)) a2 <éq2(—>\)|>
in B(ho) which also has trace 1, then we obtain
T M@y = (O épNlpele® (V).

Since any positive 2 X 2-matrix can be decomposed into the sum of at most two dyadic products |c){c|
and the normalization factors converge to 1 (uniformly in Ag if A is replaced by A(q)), we see that for
any positive matrix m of unit trace we obtain a family Tr M) (7m)py of states on A, such that

lim Tr Myg)()py = Tr i Sy,
q——
uniformly in (@, z,y) and m.

Now let ¢+ be arbitrary states on Ayj. By the last two sections of the preceeding chapter we
know that there is a measure dvt on SU(2) in the first case, and a matrix measure d0~ = i dv~ on
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SU(2), where 7 is a v~ —integrable function with values in the positive matrices of unit trace, in the
second case, such that

oy = / 5wyd1/;rmy,
SU(2)

and

p_ = / Tr ’fl(gp$y)5<p£y dV;Ly
SU(2)

respectively. Obviously (€,2(A(q))|px|é42(A(q))) and Tr My (o) (R(zy))py are v -integrable functions
which converge uniformly in (¢, z,y) if ¢ tends to £1. Therefore, we obtain by an application of the
theorem of majorized convergence that the order of integration over SU(2) and the limit ¢ — +1 can
be exchanged. The following is a simple corollary.

Theorem 6.6 Arbitrary states o1+ on Axq can be approzimated by states on A,. We have

¢y = lim (€42 (M)l pxleq (N(a))) dvity,
=1 Jsu(2)
and
p- = lim Tr M) (0(pzy)) py dVeypry-
a—=1 Jsu(2)

The approximation is uniformly in oL .

So far, we know how to approximate arbitrary states (or more generally arbitrary positive func-
tionals on A4, by states (positive functionals of the same norm) on A,.

6.2 Conditionally positive functionals

First let us agree on some notation. If ¢, is any conditionally positive functional on A, we denote
by ¥, = 9, o & the corresponding raised functional on F. By K! C F,i = 1,2, we denote the sets
consisting of all a € F such that &,(a) € K; for the corresponding ¢ € [—1,1]. Notice that d, o &
does not depend on ¢. Consequently we can define the mappings dr = 6 0 &, and 0% = ¢ o &,.
Since no confusion can arise, we will omit the subscript F. The same will be done for the projections
(Id—671) = (Id—01) 0 &; and Pxr = P o &,. However, notice that indeed P_1 0&_1 =P o &,, but
Pro& < Poé&, and, of course, P; o & does not vanish on Z; unless ¢ = 1. Thus, we can omit the
superscript ¢ in K = Ky for all ¢ and in KI = Ky for g # 1.

Clearly, a hermitian functional v, is conditionally positive if and only if the raised functional ¥,
is positive on I;. Therefore, we obtain the analogue of Proposition 6.1.

Proposition 6.7 Let 1, be a family of conditionally positive functionals on A, for ¢ € (—1,1). If
the limits V4, = hnill W, exist, there are conditionally positive functionals 11 on Axi, such that
q%

=1 .
ver = lim 4
Notice that

F = KiocCl

]Cl = ICQEBCO[__Q
21
1 v+t v
Ky = KiacC 5 ®C oF
ki = krectl

(0]



where we defined K2 = lin(K; - Ky).
Recall Definition (1.5) of the set G. By G we denote the corresponding set of generators of F. We
denote by

for n > 2 the set of all monomials having length between 2 and n. In the sequel, we will approximate
general conditionally positive functionals on A4 by sequences v, of conditionally positive functionals
on Ay, where g, — £1. The approximaton will be such that the deviation of 1, to its limit is less
than C % for all ¢ € G,, where C' > 0 is an appropiate constant. Then 1, converges for all a € K2,
because a € lin(G,,,) for some ng. On the other hand, since the G,, are finite sets, a limit, which exists
for any a € K2, can be performed uniformly on G,, (for fixed n).

By @/}fox we denote the conditonally positive functionals

Viox = (€2(M(@))lpy © Plegz(M0)))
Vrox = Tr M) (m(Ao, x))px o P

on A,, where m is a function on SU(2) with values in the positive 2 x 2—matrices of unit trace. We
have

. + _ _ st
ng1 Vrox = OpayoP = 054y
ql_i>n_l1 w;ox = Trm(do,X)dpey o P = 5;'“’

uniformly on SU(2). Notice, however, that the first expression differs from 6,4, 0 P1 by the functional
20" + y6'Y. We will be concerned with this problem later.
Denote by M, the set

M, - {(cpxy)ESU(Q):cher;}.

Let 1+ be the conditionally positive functionals on A4, given by the LEVY-KHINTCHINE formulae

Yy = / Oy © P1 duzxy
SU(2)
) (6.4)
w_ = / Tr T/ﬁ(AQ, X)(SLp.Ly oP d:u;;vy’
SU(2)

where du®* are measures having no atom at identity and fulfilling the necessary conditions
M* = / (:c2+y2)d,u$ry < 0
SU(2)

and m is p~—integrable.

Proposition 6.8 There are monotone sequences {q }n>2 with —1 < ¢F < 1 and lim ¢F = 41, such
- n—oo

that

Ui(a) = lim wy (a)dpZ,,

n—oo Mn
for all sequences {qn }n>2 with ¢ < g, <1 and —1 < q,, < q;,, respectively, and all a € K.

N.B.: The dependence on ¢, is hidden in the raised conditionally positive functionals \I/fox which
vanish on Z,,, .
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PROOF Since on K? both the projections P and P; dissappear, the expressions converge by (6.4) to
the stated values, if we replace \I/i]x by their limits (%wy.
On the other hand, the limit of the integrands can be performed uniformly on G,, and SU(2). We

choose ¢ such that

+ +
|\I’)\0X(g) _5<p$y(g)| < ﬁ < n

for all (p,z,y) € M, g € G, and g, closer to 1 than ¢*. We obtain

+ + + Mi
[0 - sk @ldit, < S
My,
This is our claimed convergence. Of course, ¢ can be chosen monotone. m

*

Obviously, both the left- and right-hand side vanish on 1 and “5#~. And by Relation (e) we see

2
extend the foregoing Proposition to

that also W4 (M) is approximated properly by the right-hand side. Thus, we immediately can

RPN LAY

2 2
which is precisely the set, on which P and P; coincide.

In the case when ¢ — —1 we even obtain by Relations (&) and (a)* that WU_(y(*)) is approximated
by the right-hand side. Henceforth, the approximation is valid on the whole of the algebra F.

In the case when ¢ — 1 we have to add something which converges in a sufficiently uniform way

to the functional

(ipzy o,Pl . 6¢zy OP _ . <5/z($tpzy <’7';’Y > +5/y5¢my (q))

= —(@d"+yd") = "

Kp = K*aC

with » = (0, —z, —y). This functional will also be needed in order to write down the general GAUSssian
part.

Proposition 6.9 There are positive numbers €,, and a monotone function qo(t) on (0,1) with 0 <
qo(t) <1 and }in(l) qo(t) =1, such that

q/+ it 12 2 2 (g)
(eite/T=2(@2497) ) (x) )| < 1
2
t n

forallge GUG,, re SU(2), t < e, and all functions q(t) such that qo(t) < q(t) < 1.

N.B.: Actually, 7 is a vector in R3. By r € SU(2) we mean that the components (p,z,y) of r
describe an element of SU(2) where the parameter ¢ lies in [—m, 7).

ProoF First choose ¢,, such that

S (9) gl 1
t 2n2

for all g € GUG,, r € SU(2), and t < €,. This is possible, because G U G, is finite, g € Ky, i.e.
5(g) =0, and r € [-7,7]> C R3.
Then choose ¢o(t), such that

+ _
i N e T A

t 27'L2
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for all g € GU Gy, t € (0,1), and ¢ € (go(t),1). This is possible, because the approximation of d,z, is
uniform on SU(2). Of course, go(t) can be chosen monotone. m

EXAMPLE 6.1 Notice that U7 (9)
(eite/1=2(22+y?) ) (x)

respect to t is zero at t = 0. This is, why we cannot perform the t—limit first for fixed q and the limit
q — 1 afterwards. If this was possible, we could say immediately what we understand by a derivation
in the direction of 4*) for |q| < 1. (Just choose r = (0,1,41).) In general, we would expect such a
derivation to be different from 0 on v*) and to vanish at least on all monomials having more than
one factor v*). However, there cannot be such a functional on A, which is also conditionally positive.
(The functionals given in [35] which replace the usual derivations are not even hermitian.)

Consider a conditionally positive functional v, on A, which is 0 on ~*y = ~y*. For the corre-
sponding cocycle n, we obtain ||n,(v)||> = ¥,(v*y) = [In,(¥*)||> = 0. On the other hand, we have

() ()
) = W' Therefore, also

is analytical in t?. Thus, the derivative with

Q<777(ﬁ*)|777(’7(*))> - <777(’7(*)*)|777(5)>
1—¢

Py (’Y(*)) =
must be 0. This remains true also for ¢ = —1.

Now we use Proposition 6.9 in order to approximate W, (y(*)).

Corollary 6.10 We have

\I,+
V1-t2 (22 +y?) ) (=x)
U, = lim \If;\"Oer ( ! ) X dp;zy
n—oo M” t,n

for all sequences {t,}n>2, and {qn}n>2 with 0 < t,, < €,, and max(q,", qo(tn)) < gn < 1.

PrOOF On v the difference between the first summand in the integrand and its limit « + iy can
be estimated from above by # The difference between the second summand and its limit —(z + iy)
can also be estimated by n—lz Therefore, the integrals over these differenes converge to 0.

On Kp the second term converges to

[y
SU(2)

with » = (0, —z — y) which can be seen by the same estimates as for the first term. Since §" = 0 on
Kp, this limit is 0. m

We collect the results obtained so far.

Theorem 6.11 There are universal sequences {t, }n>2, and {g }n>2, such that any pair of condition-
ally positive functionals ¥y on Ayy with integral representation (6.4) can be approzimated as limits
of conditionally positive functionals on .Aq:t in the form

w+
. 1-t3 (22 4y2) ) (—x)
v = g [ L 20
M, tn
M,

Since 4, ¢, and 6” do not depent on ¢, the problem of approximating a GAUSSian part on A_;
is already solved. By Proposition 6.9 we also solved the problem of approximating the functional 4"
on A;. (The general case r € R? can be reduced to the case when r € SU(2).) Thus, up to this
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moment we are able to express conditionally positive functionals ¢, and ¥_ on A;, and A_; having
no GAUssian and anti-GAUSSian parts, respectively, by limits of conditionally positive functionals on
A,

Now we come to the last yet missing building blocks " and ¢_for 7 € R* and r € C x R? which
are needed to express the GAUSsSian and anti-GAUSSian part, respectively. On K2 we have

_ 5 Lwez‘ ‘M
¥, = }2%< T Yoty )| T
and, of course,
o . O(tp) (ta) (ty)
E -

1 Bt

~ 1
If we set m = T2 (W o262

) in order to express the state

< é1+:tpéz B é1+:gaé2 >

1+ |p|?t2
in the form Tr e m, we obtain by a proof completely analogous to that of Proposition 6.9

Proposition 6.12 There are positive numbers €,, and monotone functions q+(t) on (0,1) with q+(t)
between 0 and £1 and }iH(l) q+(t) = £1, such that

ot . Y] (g) '
(Vim0 (9| |1
2 2 "

and

v
(1 viEET) Y

t2

(1+]p[22)

T

1
_w < -,
- n

forall g€ G, re SU(2), t < e, and all functions q(t), such that q(t) between q+(t) and +1.

This means that the GAussian and anti-GAussian part can be approximated by U* at least on
K?2. Again the statement remains true on Kp and in the case when ¢ — —1 it is even true on the
whole algebra F. For ¢ — 1 consider the sequence of conditionally positive functionals

+ +
o - Y (cne BT 0 +¢(6”'“"“°\/1—S?L(Ty2))(—x)
" £2 tnsn

on A, . Choose t,, > t,, 11 — 0 such that

O(tne) (tar)(tap) (9) 0" (g) < 1
t2 2 n’
and then s,, > s,41 — 0 such that
dsnp)sna)=san)(9)| L
tnSn n’
for all g € G,,. We have
Ot @) (ta)(tnt) | Osn) (—5n2)(—sny) 5"
2 * tnsn 2
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on k3. On the other hand,

0 n nT)\tn (’7(*)) 6571. —5nx)(—8n (7(*)) T *
(tno)(t zét v) 4 2sne)( t); v) ~ 0 = &,

Thus, the convergence is also on Ko. Now we choose ¢, < gn4+1 — 1 such that

t2
+ _ ‘n
“I’(euw B T) (0 (9) = Ot (tne) (tar) (9)’ <
and
tnsS
vt ) nn
‘ (e'isngp 1fs§,(z2+y2))(x)(g) (sn9)(snz)(snY) < n

for all g € {B+ 0*,v,7"} UG,. Since \Il:\"ox and §"" are 0 on v — * and 1, we obtain the following

Proposition 6.13 We have

6//7‘

lim ¢° = .

n—oo 2
EXAMPLE 6.2 We mention that it is also not possible to find a conditionally positive functional 1).,>
on A, for |q| < 1, being different from 0 on v*v but vanishing on all monomials, having more than
three factors v*). (Such a functional would be the analogue of the GAUSsian functionals ¢"(0-1:+1)
in the classical case.) From th.2(v*y*yy) = 2 (y7*y7*) = 0 we conclude ||7(y)n,2 (YN = 0. On
the subspace where 7(7) = 0 we have n,2(y*)) = 0. On the subspace where w(v) is injective we also
obtain that 7,2 (fy(*)) must be 0. In other words, a mazximal quadratic component of a conditionally
positive functional on A, for |g| < 1 (cf. [13]) must be a GAUSSian part 15 of the form written down
in Corollary 2.11.

Up to this point we are able to split up a given conditionally positive functional on 4; or A_; into
several parts, and to approximate any of these parts by sequences of conditionally positive functionals
on Ag,, where g, converges to £1. We emphasized that all approximations also work if the sequence
¢r is replaced by a sequence ¢/, where ¢, is closer to its limit 1 than g,. Therefore, the sequences ¢,
belonging to different parts of the conditionally positive functional can be chosen to be the same. We
summarize.

Theorem 6.14 For any conditionally positive functional ¢ on Ay there is a sequence {qn} with
lim ¢, = £1 and a sequence {¢y} of conditionally positive functionals on Ay, , such that

n—oo

v = lim .
n—oo
Due to the last remark it is also always possible to find a family 1, of conditionally positive
functionals on Ay, such that

¢ = lim v,

q—=*1

6.3 Quantization and correspondence principle

In the previous chapters we considered the algebras A4,. We mentioned that for |¢g| < 1 all the C*~
completions are isomorphic. This is why we stressed the interpretation of these A, as subalgebras
of the same C*-algebra A. The theory of conditionally positive functionals on A, for any |¢| < 1
could be unified to the ¢g-independent theory of conditionally positive functionals on Az. The cases
g = %1 appeared as quite different exceptional cases. (Notice that the generators ¢y,v, € A depend
continiuously on q. However, their limit to a1, 7y+1 where ¢ is replaced formally by +1 is only strong
and the algebra generated by these operators is not isomorphic to A41, because ay; = 0. Actually, it
is not difficult to see that y_; is not even an element of A.)
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In this chapter we took on a complementary point of view. We considered the algebras A4, as
quotients of the same freely generated algebra F and the g-dependent ideals Z,. The description in
terms of the same finitlely generated algebra F enabled us to limit the topological problems of an
infinite dimensional vector space to those of the finite sets G,,. In this section we want to point out
that this framework provides a perfect understanding of A, as a quantization of SU(2) and that the
results of this chapter can be interpreted as a correspondence principle.

Suppose we investigate a classical (physical) system whose phase space is SU(2). In classical
physics the observabels of such a sytem are representeted as (continuous) functions on the phase
space. Therefore, we can identify the set of observables on SU(2) with the commutative C*—algebra
C(SU(2)) of continuous functions on SU(2). On the other hand, the dense subalgebra A; is generated
by the matrix entries f;; considered as functions on SU(2). Therefore, these four functions can be
interpreted as the basic observables of the system. All other observables can be derived as functions
of these basic observables (like the canonical pair of variables (g, p) in the description of a one-particle
system). The expectation value of an observable is obtained by evaluating the corresponding function
in A¢ in the state in which the system is.

The quantization procedure consists in replacing the commutative algebra of observables by a non-
commutative algebra A,, and again the expectation value of an observable is obtained by evaluating
a state on this observable. In order that the elements of A, can be associated with the original
observables in Ay it is postulated that f;; are associated with four elements fij of A, that A, is
generated by these four elements, and that there is a basis of A which is associated with a basis of
A,. Of course, there is a canonical homomorphism &; from the free unital *—algebra F generated by
the non-commuting indeterminants Fj; onto A,. In other words, A, can be considered as the qotient
of F by the ideal Z, = ker(&,) in F.

Here we do not want to investigate which quantizations are possible, i.e. which ideals of F can
be found, such that all the conditions are fulfilled. (We mention the further restriction that it is
not only an algebra which is to be quantized but also a HOPF algebra.) In the appendix of [35] an
exhausting investigation can be found of the motivation leading to the quantization by the ideals Z,
which are generated by Relations (1.4) and identification of the matrix entries with the corresponding
generators « and «. As usual the quantization depends on a parameter ¢ € [—1,1] and the classical
case is contained (¢ = 1). Furthermore, the ideals Z, are finitely generated and the generating relations
depend weakly continuous on ¢. (This weak continuity enabled us to prove Proposition 6.1.)

In quantum physics by the correspondence principle one means that the quantum description of
a system is close to its classical discription if only the quantization parameter is close to its classical
limit. In other words, for a given finite set of observables and a state on A; there should be a number
g close to 1 and a state on Ay, such that the difference between the expectation values of an observable
in the two states becomes arbitrarily small. But this is precisely what we did by investigating the
sets G,. Actually, we showed a correspondence principle not only for states but also for conditionally
positive functionals on both A; and A_;. The convolution exponential

Yt = eiwv
with the usual multiplication replaced by the convolution *, establishes a one-to-one correspondence
between conditionally positive functionals vanishing at identity and convolotion semi-groups of states
(cf. [27]). Therefore, one can say that we also proved a correspondence principle for convolution
semi-groups of states.
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Appendix

A ¢—Analysis

We present the well-known results on g—analysis in a slightly modified form which is more convinient
for our purposes. The proofs of formulae are omitted if they consist in simple computation.

A.1 ¢Derivative and g—integral

Definition A.1 Letq € (—1,1) be a real number and Sy C C a star shaped area having 0 as star point.
By C,,(So) we denote the space of analytic functions on Sy. We introduce the two linear mappings

dg. [+ Cu(S0) = Cu(So) by
flw) = flaw)

w

(i) dq(f):%, where j—f(w) =

q

(i) / (f) = / f, where ( / f) (w) = / " fe)dge = quwﬂqkw»

By expanding f into a power series, we easily see that d,f and fq f are indeed in C,,(Sp).
N.B.: In order to obtain the usual notions of g—derivative and g—integral we have to divide our
derivative by (1—¢) and to multiply our integral by (1—¢). By looking at the corresponding expressions

f(w) = flqw)

, and ¢"w — ¢ w) f(d*w
" > )7 (d*w)

we immediately see that they tend to the derivative and integral, respectively, of usual analysis as ¢
tends to 1.

Theorem A.1 (Main Theorem)

(i) / dof = f—f0)

(i) d, / =t

PrROOF By replacing the infinite sum in the definition of the integral by a finite sum and then
performing the limit, we see that

(/qdqf) (w) = f(w)—= lim f(¢""'w)

n—oo

and

n—oo

(a0 [£) ) = s~ Jin ™ s+ ),
q
From this the statements follow. m

By direct computation we obtain the following rules.
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Theorem A.2 For f, g € C,(Sy) we have

dg df

(i) déff)(Z) = f(= )d ~(2) + E;E(Z)g(qZ) (q-LEIBNITZ rule)

oAy e
" E;*” N E)iD)

(i) / e dz+/ et

= f(w)g(w)—f(0)g(0) (q-partial integration)

Theorem A.3 For the non-negative powers of z we obtain

() d() = (-
Zk-i—l
(i) I

N.B.: Of course, it is possible to extend the operation of g—derivation to functions which are
analytic on an area .S such that ¢S C S. In the next paragraph such functions will actually appear.
A.2 ¢—Exponential function and ¢—Eulerian integral
Theorem A.4 The g—exponential function.

(i) By setling

we define a meromorphic function on C\{q*|k € Ny}.

(i) On U1(0) we have

o0 ok
T =g (1)
(iii) € is different from O everywhere. By setting
)" = [Ja-d%)
k=0

we define a transcendent function.

ProoF Consider the power series in (ii). Clearly, its radius of convergence is 1. (We have 1|7Z(|],c <
1.) We find

for k > K and for any z € U1(0) we can find K € Ny, such that 5

z _ .9z _ z
€y €q z€y-

and consequently

n

|
2
n
|




Since lim e?""'* = 1, we have that egHIZ is different from zero for almost all k. Therefore, we find

koo 4

e? > 1
e = lim = H
a koo @12 1—qgkz
k=0

Now let z be with 2] > 1 and 2z # ¢ %,k € Ng. We can find K € N such that ¢/|z| < 1.
Therefore, we see by using

that e is analytic on the given domain.

Now suppose that e} is 0 for some 2. By the recursion formula we see that 0 must be an accumula-

tion point of zeros. Therefore, the function has to assume the value 0 at 0 in contradiction to 62 =1.
Thus, we can define the reciprocal of ef on the whole complex plain. Since this function assumes the
value 0 for z = ¢~*, this function cannot be a polynomial. It must be transcendent. m

Using the recursion formula and our derivation rule (ii), we obtain

Corollary A.5 The operation of q-derivation can be performed for e7 and its reciprocal at any point
of their domains. We obtain

de?
0) i = A
d(e? —1
(i) D)~ e

N.B.: Suppose that f and f are two (non-vanishing) solutions of the ¢-differential equation (i). It
is not difficult to see that their quotient must be a constant. Therefore, e is the only solution of (i),
fulfilling e = 1. A similar statement is true for (ii).

Notice that the usual form of the g—exponential is given by

00 k

i = eglfq)z.
== (=)

1—q

This function converges pointwise to the exponential for ¢ — 1.

Now we can describe the g—factorial [k],! = (1 —q)---(1 — ¢¥) by a ¢-EULERian integral. (To
obtain the usual definition one has to divide by (1 — ¢)*.)

Theorem A.6 We have

lzk; .
| Gt = -0 0=

q

PrROOF We prove the statement by induction. Since

! z
2 = - =1,
0

ed®
the statement is true for £ = 0.
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Now suppose that it is true for £ > 0. We obtain

bkt ! k+1 1
/ quz = _/ 2 (dq(eZ)_ )(2) dqz
o € 0

q
1
zy—171 2\ —
= [—zkH(eq) 1]0—|—/0 (dqzk“)(eg) Yd,z
Lk
0 e

q

This proves the statement for £+ 1. m
Now we show an estimate which will be useful in the next appendix.

Proposition A.7 For all w € [0,1] and k € N we have

warl warl /w Zk wk+1 wk:Jrl
0

< —d < < .
el = (=g h)el” e S N

ProOF By the power series representation we see that e is a strictly increasing function on [0, 1).

Notice also that ( fq o) (w) is a monotone functional for positive w. This yields immediately the two

inner estimates. The outer estimates are obvious. m

B The representation p) as a representation on a Hilbert space
of analytic functions

In this appendix we generalize the representation of the relation
aa* —qa*a = 1

given in [5] to a representation of Ag, unitarily equivalent to po (cf. also [6]). We will show that
the scalar product stated in [5] turns indeed out to be the scalar product of the underlying HILBERT
space. (The authors of [5] only showed that their scalar product yields the correct values on a special
orthonormal basis. The proof of the well-definedness was left out.) However, notice that @ and a*
fulfill the slightly modified commutation rule

ao* — g?ata B
—ioe b

Now consider the representation py on the HILBERT space hg with orthonormal basis {eg }ren,-
We introduce the g—coherent states as eigenvectors of pg(«). It is easy to check that they must be of
the form

k

eq2(N) Z O pr Ry q%ek with A <1,

where A is the eigenvalue. Under po(a*) these vectors behave like

V1= g* ey

degz (A
—qMex = il )'

AZ\/1—61 V1= Az

.

Z\/1—q \/1 q2*

po@)ep(A) =

The scalar product of two such vectors is given by
TA
e (lep(V)) = €.
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Now we ask how to build up the identity operator out of terms of the form |eg2(N))(eg2(N)].
We write A = |A|e’? in polar coordinates and intergate over ¢. For fixed |A| the double sum is
absolutely convergent and no problem can arise. We obtain

o i zgp |>‘|2k
/0 e (IN€)) (eq2 (|A|e™) Zu o Ee el o]

If we now could perform the ¢>~EULERian integral (see Appendix A) with respect to the variable
|A|? in order to eliminate ¢>factorial in the denominator, we would obtaine a representation of the
identity. However, in order to perform the g?-integral the integrand has to be evaluated at |A|? = 1
where the sum is no longer norm convergent. On the other hand, due to Proposition A.7 we have for

w e [0,1)
v
oo / “EN? d 2|)‘|2
6

o up ip (pd2|)“ _ 0 '
// e (M )eqa W) 5 St = lew) b=y el

€42 k=0

It is easy to see that

. am ; ; d<pd2|>\|
iy [ [ e (N e (N g

w—1

in the strong topology. Notice that the order of integrals does not matter. Using the notation

2
2 'L(p R
/f(A)dqu 1%// FUNE®) diodya A2,

|€q N _
/ I/\Iz deA = 1.

Obviously, this remains true if in the integrand X is replaced by \.
Consider the HILBERT space H; of analytic functions which is defined by assuming that

we obtain

{ - }
1 — o2k
1=0") heng
forms an orthonormal basis. Notice that the scalar products for different g € (—1, 1) induce the same

topology. Therefore, Hy consists of all power series with square summable coefficients. The scalar
product of two elements f,g € Hf can be obtained as

Fg(A)
/ P .
q2

fehy +— f(z) = (ep(@)|f) € Hy

we obviously define a HILBERT space isomorphism. For the representation operators in this image we
obtain

By

p@)f(2) = lea@ln@)f) = (po@es @)
= ()

p@)f(z) = (pola*)eg ()1
- Y

dqzz

po(YNf(z) = flaz).
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The g—coherent state belonging to the eigenvalue A is given by the g—exponential
(e2(Z)e2(N)) = 623.

Let ¢ = (f|po|f) be a state with GNS-representation py. (Notice that by irreducibilty any non-
vanishing vector in hq is cyclic for pg.) Since ¢ is hermitian and pg does not distinguish between ~
and v*, it is sufficient to know its values on a*™y™ for n,m € Ny. We obtain

pla™y™) = /%z"f(qmz)dgzz.

C Proof of Lemma 5.22

Let « and v be two bounded operators on H fulfilling Relations (a)-(d) both having 0 not as an eigen
value which determine the representation 7. There are two spectral measures dEY and dE7, on Cy
such that

a = /szg¥ and v = /wdE]U
For any polynomial P we have yP(«a, a*) = P(—a, —a*)y. Therefore, we must have
VdEZ = dE;%y = dE?.y, (C.1)

because dEY is the limit of polynomials in o and a*.
Since 7 is injective and normal, we can define the unitary operator

v

u, = —.
! Bl

For any BOREL set S C Cy we define the projection Eg = [ dEZ. Since |y| = /7%y commutes

with dEY, we see that the restriction U, : EsH — E_gH defines an isomorphism. Therefore, if

(51, S2) is any partition of Cy into BOREL sets, such that z € S; implies —z € Ss, with corresponding

projections Ey, Fo, we see that U, induces a unitary equivalence transform mapping dEY to dE,.

Let us summarize.

Proposition C.1 There is a HILBERT space Hy with a spectral measure dEY on Sy and a pair of
isomorphisms

‘I)iZEiH;H(), i:1,2,
such that
O dEY®, = dEY and ®;'dE°®, = dE°,.

The action of ®; is written multiplicatively.

We identify H = E1H® EyH, i.e. @ means just +. Obviously, we have Eitbj_l = 0;; ‘I>j_1. We define
an isomorphism ® : H = Hy @& Hy by ® = ®; @ ®5. A vector (n1,n2) € Ho & Hp with components
1; € Hp is the image of

n = ®'m+ @' = B+ Eame H.
We find
1 ad;! 0 1 0 1y,
Pad = ( 0 <I>2a<I>gl and PP = @27(1)1,1 0 .

We easily check, that ®;a®7! = —®pad; ! = fSl 2dE? = ag with ag € B(Hy).
In order to have @17@51 = <I>27<I>f1 we will now fix on a special choice for ®; and ®5. Notice

2
that gﬁ is a unitary operator, commuting with everything. By means of its spectral measure we can
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define its 4th root, also commuting with everything, such that the restriction of { % to F1H is a

unitary operator on F1H. By &g = & ¢ % we define another isomorphism F1H = Hy which also
fulfills <I>a1 dE%®y = dE¢, ie. ag = @00@61. It is easily checked that the pair

72
O, = Dyil Lo
|v]?
*2
2y
Py 0t —
V]2 |

has all the properties stated in the proposition. We find <I>w<1>2_1 = (1)2’)/(1)1_1 = <I>0\/’yQCI)51 = 7o with
Yo € B(Hy). We obtain

1 _ [ xw O 1 _ 0 7
dad _(O —a0> and PP —(% 0)'

Obviously oy and 7y commute, i.e. there is a spectral measure dESw on S; x Cp, such that
ay = fslxco 2dE?, and vo = fslxcg wdEY,.

Now we add another representation on Hy ® Hy, which coincides with the original one with the
exception that ag is replaced by —ag = | $5xCo 2zdE°_,,. (In other words, what we have done is
to extend the integration area from S; x Co to C3 in an anti-symmetric way.) Of course the two

summands are unitarily equivalent. The direct sum of both is given by

a 0 0 0 0 % 0 0
0 —ag 0 0 % 0 0 0
“T71 0 0 —ap 0 and v — 1 5 5 o
0 0 0 a 0 0 7% O

By exchanging the second and third component, we obtain a unititarily equivalent representation on
Hy® Hy ® Hy & Hp, defined by

a 0 0 0 0 0 % O
0 —ag 0 0 0 0 0
10 0 —ap O and y— | g g g
0 0 0 a 0 % 0 0

We recognize a block-diagonal form and, thus, obtain by the identification (Ho @ Ho) @ (Ho & Hy) =
(@@ ®)(H®H)=(1p,,, ® P)(C?® H) a representation 7@ by

1 0 0 1
@ = (g O )eap ad w0 = (] ),

with

® _ g-1( @ 0 _ o _ g-1( 0 O _ 2
oy = @ <O _a0><I>a and vy = @ (0 %)@\/7.

So far we obtained for injective o and v that 7% is a representation unitarily equivalent to the
direct sum of 7 and the representation arising from =« by changing the sign of a. Moreover, these two
summands themselves turned out to be unitarily equivalent to each other. By symmetry in a and ~,
also a sign change in v must be equal to a unitary equivalence transform. Therefore, we indeed obtain
r=xnmand @ <1 Pr.

So far we proved the statements when « and ~ are injective. If now v = 0, then obviously

is unitarily

1P (a) = a® —a extends to @ . The case when « = 0 is more difficult. Since ( (1) (1)
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equivalent to ( (1) _01 ), we again obtain 7 (vy) < /72 @& —/~2. Notice that

v = /wdE]v and /4% = /a(w)wdE]U,

where o(w) is an appropiate sign function, depending on wether w = vw? or not, i.e. o(re*?) =1 for
¢ € [0,7) and o(re*¥) = —1 for ¢ € [r,27). Now consider the operator \/72® —+/72. If o(w)w = —w
in the decomposition of y/72, then —c(w)w = w in the decomposition of —1/92, and conversely.

Therefore, \/72 @ —+/72 < v @ —v and again 7 () extends to 7 & w. This completes the proof of
Lemma 5.22.
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