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Abstract

We generalize Bhat’s construction of product systems of Hilbert spaces from
E0–semigroups on B(H) for some Hilbert space H to the construction of product
systems of Hilbert modules from E0–semigroups on Ba(E) for some Hilbert module
E. As a byproduct we find the representation theory for Ba(E), if E has a unit
vector. We proof a necessary and sufficient criterion when the conditional expecation
generated by the unit vector defines a weak dilation of a CP-semigroup in the sense
of [BS00]. Finally, we show that also white noises on general von Neumann algebras
in the sense of [Küm85] can be extended to white noises on a Hilbert module.

1 Introduction

Let B be a unital C∗–algebra. Product systems of Hilbert B–B–modules appeared nat-

urally in Bhat and Skeide [BS00] in the dilation theory of completely positive (CP-)

semigroups T on B. A product system is a family E¯ =
(
Et

)
t∈T (where T is R+ or N0) of

Hilbert B–B–modules with an identification

Es ¯ Et = Es+t (1.1)

such that

(Er ¯ Es)¯ Et = Er ¯ (Es ¯ Et), (1.2)

∗This work is supported by a PPP-project by DAAD and DST.
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and E0 = B (where B ¯ Et = Et = Et ¯ B in the canonical way). By the trivial product

system we mean Et = B for all t ∈ T. Recall that an A–B–module (A another C∗–algebra)

is a Hilbert B–module (right, of course) with a non-degenerate (∗–)representation of A
by elements in the (C∗–algebra) Ba(E) of adjointable (and, therefore, bounded and right

linear) mappings on E. By Ba,bil(E) we denote the subspace of bilinear or two-sided

mappings. In particular, an isomorphism of two-sided Hilbert modules is a two-sided

unitary. The inner product on the tensor product is 〈x ¯ y, x′ ¯ y′〉 =
〈
y, 〈x, x′〉y′〉. For

a detailed introduction to Hilbert modules (adapted to our needs) we refer to Skeide

[Ske01a], for a quick reference (without proofs) to Bhat and Skeide [BS00].

Formally, product systems appear as a generalization of Arveson’s product systems of

Hilbert spaces [Arv89] (Arveson systems for short), however, the construction of Arveson

systems starting from an E0–semigroup (i.e. a semigroup of unital endomorphisms) on

B(H) for some Hilbert space is very much different from the construction in [BS00] (which

starts from a CP-semigroup and yields almost trivialities for E0–semigroups).

In [Bha96] Bhat discovered another possibility to construct the Arveson system of

a (normal, strongly continuous) E0–semigroup ϑ on B(H) (H an infinite-dimensional

separable Hilbert space). Our first result (Section 2) shows that, contrary to Arveson’s

original approach [Arv89] via intertwiner spaces of ϑt, Bhat’s approach generalizes directly

to strict E0–semigroups on Ba(E) for some Hilbert B–module E, at least, if E has a

unit vector ξ (i.e. 〈ξ, ξ〉 = 1). We show that the constructed product system does not

depend (up to isomorphism) on the choice of the unit vector, and that product systems

classify strict E0–semigroups ϑ on the same Ba(E) up to outer conjugacy. En passant

we obtain the general form of strict representations of Ba(E) on another Hilbert module

(not necessarily over B). The strict topology of Ba(E) arises by the observation due to

Kasparov [Kas80] that Ba(E) is the multiplier algebra of the C∗–subalgebra of compact

operators K(E) which is generated by the rank-one operators xy∗ : z 7→ x〈y, z〉. In other

words, Ba(E) is the completion of K(E) in the topology generated by the two families

a 7→ ‖ak‖ and a 7→ ‖ka‖ (k ∈ K(E)) of seminorms. Here we follow Lance’ convention

[Lan95] and by the strict topology we mean always the restriction to the unit-ball of Ba(E).

One can show that on the ball the strict topology coincides with the ∗–strong topology. In

the case of Hilbert spaces the strict topology is the ∗–σ–strong topology. It is well-known

that normal representations of B(H) are also ∗–σ–strong, so for Hilbert modules the strict

topology on the ball is, indeed, an appropriate substitute of the normal topology.

Dilations are among the most important objects in the theory of open systems. Sup-

pose i : B → Ba(E) is a (homomorphic) embedding such that 〈ξ, i(b)ξ〉 = b. (In other

words, a 7→ i(〈ξ, aξ〉) is a conditional expectation from Ba(E) onto i(B).) Then we may

ask, whether the mappings Tt : b 7→ 〈ξ, ϑt ◦ i(b)ξ〉 form a semigroup T (of course, com-
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pletely positive and unital). In this case, we say (E, ϑ, i, ξ) is a dilation of T on E. (If

Tt = id is the trivial semigroup, then we speak of a white noise.) A dilation may be unital

or not, depending on whether i is unital or not. Since ξ is a unit vector we have always

the particular (usually non-unital) embedding j0(b) = ξbξ∗. If for this embedding ϑ de-

fines a dilation, then we say (E, ϑ, ξ) is a weak dilation of T on E. In this case one can

show that j =
(
jt

)
t∈T with jt = ϑt ◦ j0 defines a weak Markov flow of T in the sense of

Bhat and Parthasarathy [BP94, BP95] (i.e. ptjs+t(b)pt = jt ◦ Ts(b) where pt = jt(1)); see

[BS00, Ske01a] for details.

In Section 3 we provide some results which allow to decide, if a triple (E, ϑ, ξ) is a

weak dilation or a even a white noise. To have a weak dilation (of a necessarily unital CP-

semigroup) it it is necessary and sufficient that the family of projections pt is increasing,

and for a white noise we must have jt(b)ξ = ξb for all t.

Many dilations are obtained by a cocycle perturbation of a white noise and in Section

2 we see that the product system is invariant under cocycle perturbation (i.e. outer con-

jugacy). The question arises, whether there are white noises on algebras A different from

Ba(E), which do not extend to some Ba(E). In Section 4 we show that at least in the

case of automorphism white noises we may embed A into a suitable Ba(E) to which the

semigroup ϑ extend and is implemented unitarily. Unfortunately, the associated product

system is the trivial one.

We close with two technical remarks. We replace normality in the case of Hilbert spaces

by strictness. The only place we need strictness is in the proof of Theorem 2.1 where an

endomorphism should send an approximate unit for K(E) to a net converging strictly to

1. Passing to von Neumann modules E (whence, Ba(E) is a von Neumann algebra on

a naturally associated Hilbert space) we may again weaken to normal endomorphisms of

Ba(E); see Skeide [Ske01a, BS00, Ske00b] for details about von Neumann modules.

Our methods work provided there exists a unit vector. In Hilbert spaces this is a

triviality. The following example shows that here it is a restriction even for von Neumann

modules. Nevertheless, we are mainly interested in dilations and in the case of dilations

existence of a unit vector is automatic.

1.1 Example. For a projection p ∈ B let E = pB be some right ideal in a von Neumann

algebra B. Then E is a Hilbert B–module (even a von Neumann module). Let q ∈ B be

the central projection generating the strong closure of the ideal qB of BE = span(BpB).

Of course, if q 6= 1, then E cannot have a unit vector. However, also if q = 1, the question

for a possible unit vector pb ∈ E has different answers, depending on the choice of B and

p.

Let p =
(
1
0

0
0

) ∈ M2. Then q = 1 (because M2 does not contain non-trivial ideals) and
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E consists of all matrices B =
(

b
0

b′
0

)
(b, b′ ∈ C). Consequently, 〈B,B〉 = B∗B =

(
bb
b′b

bb′
b′b′

)
.

If this is 1 then b′b = 0 from which b′ = 0 or b = 0 so that b′b′ = 0 or bb = 0. Hence,

〈B, B〉 6= 1.

Conversely, by definition in a purely infinite unital C∗–algebra B for any a ≥ 0 (in

particular, for the projection p) there exists b ∈ B such that b∗ab = 1. Instead of

exploiting this systematically, we give an example. Consider the elements b = `∗
(
1
0

)
and

b′ = `∗
(
0
1

)
in B = B(F(C2)) where F(C2) is the full Fock space over C2 and `∗(x) denotes

the usual creator to x ∈ C2. (Observe that the von Neumann algebra generated by b, b′ is

B. The C∗–algebra generated by b, b′ is the Cuntz algebra O2 [Cun77].) Now the matrix

B ∈ M2(B) defined as before is a unit vector in pM2(B) (where p acts in the obvious

way).

2 E0–Semigroups and products systems

Let (E, ϑ, ξ) be a triple consisting of a Hilbert B–module, a strict E0–semigroup ϑ on

Ba(E), and a unit vector ξ ∈ E. To begin with, we do not assume that (E, ϑ, ξ) is a weak

dilation of a CP-semigroup on B.

By j0(b) = ξbξ∗ we define a faithful representation of B on E. We define the repre-

sentations jt = ϑt ◦ j0 and set pt = jt(1). On the Hilbert submodule Et = ptE of E we

define a left multiplication by bxt = jt(b)xt, thus, turning Et into a Hilbert B–B–module.

(Clearly, 1xt = xt and E0
∼= B via ξ 7→ 1.)

2.1 Theorem. The mapping

ut : x¯ xt 7−→ ϑt(xξ∗)xt

extends as an isomorphism E ¯ Et → E. Moreover, the restrictions ust = ut ¹ (Es ¯ Et)

are two-sided isomorphisms Es ¯ Et → Es+t, fulfilling (1.2) in the identification (1.1) so

that E¯ =
(
Et

)
t∈T is a product system. Using the identifications

E ¯ Et = E (2.1)

and (1.1), we find

(E ¯ Es)¯ Et = E ¯ (Es ¯ Et) (2.2)

and ϑt(a) = a¯ idEt.

Proof. From

〈x¯ xt, x
′ ¯ x′t〉 =

〈
xt, 〈x, x′〉x′t

〉
=

〈
xt, ϑt(ξ〈x, x′〉ξ∗)x′t

〉
=

〈
ϑt(xξ∗)xt, ϑt(x

′ξ∗)x′t
〉
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we see that ut is isometric. Let uλ =
nλ∑

k=1

vλ
kwλ

k
∗

(vλ
k , wλ

k ∈ E) be a bounded approximate

unit for K(E) which, therefore, converges strictly to 1 ∈ Ba(E). We find

x = lim
λ

ϑt(u
λ)x = lim

λ

∑

k

ϑt(v
λ
kwλ

k

∗
)x

= lim
λ

∑

k

ϑt(v
λ
kξ∗)ϑt(ξw

λ
k

∗
)x = lim

λ

∑

k

vλ
k ¯ ϑt(ξw

λ
k

∗
)x, (2.3)

where ϑt(ξw
λ
k
∗
)x = ptϑt(ξw

λ
k
∗
)x is in Et. In other words, ut is surjective, hence, unitary.

Clearly, in the identification (2.1) we find

ϑt(a)(x¯ xt) = ϑt(a)ϑt(xξ∗)xt = ϑt(axξ∗)xt = ax¯ xt.

Suppose psx = x. Then ps+tut(x¯xt) = ϑs+t(ξξ
∗)ϑt(xξ∗)xt = ϑt(psxξ∗)xt = ut(x¯xt)

so that ust maps into Es+t. Obviously, js+t(b)ut(x¯xt) = ut(js(b)x¯xt) so that ut is two-

sided on Es¯Et. Suppose ps+tx = x and apply ps+t to (2.3). Then a similar computation

shows that we may replace vλ
k with psv

λ
k without changing the value. Therefore, x ∈

ut(Es¯Et). In other words, ut restricts to a two-sided unitary ust : Es¯Et → Es+t. The

associativity conditions (1.2) and (2.2) follow by similar computations.

2.2 Remark. If E = H is a Hilbert space with a unit vector h, we recover Bhat’s

construction [Bha96] resulting in a tensor product system H⊗ =
(
Ht

)
t∈T of Hilbert spaces.

It can be shown that it coincides with the corresponding Arveson system; see [Bha96] for a

proof in terms of Hilbert spaces or [Ske01a, Example 14.1.3] for a poof using the techniques

from [BS00]. See also [Ske01a, Example 14.1.4] where we apply the construction to find

the product systems associated with the time shift on the time ordered and on the full

Fock module.

2.3 Proposition. The product system E¯ does not depend on the choice of the unit

vector ξ. More precisely, if ξ′ ∈ E is another unit vector, then wtxt = ϑt(ξ
′ξ∗)xt defines

an isomorphism w¯ =
(
wt

)
t∈T from the product system E¯ to the product system E ′¯ =(

E ′
t

)
t∈T constructed from ξ′ (i.e. wt are two-sided unitaries Et → E ′

t fulfilling ws ¯ wt =

ws+t and w0 = 1).

Proof. p′tϑt(ξ
′ξ∗) = ϑt(ξ

′ξ∗) so that wt maps into E ′
t, and ϑt(ξ

′ξ∗)∗ϑt(ξ
′ξ∗) = pt so that

wt is an isometry. As ϑt(ξ
′ξ∗)ϑt(ξ

′ξ∗)∗ = p′t, it follows that wt is surjective, hence, unitary.

For b ∈ B we find

wtjt(b) = ϑt(ξ
′ξ∗)ϑt(ξbξ

∗) = ϑt(ξ
′bξ∗) = ϑt(ξ

′bξ′∗)ϑt(ξ
′ξ∗) = j′t(b)wt
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so that wt is two-sided. In the identification (1.1) (applied to E¯ and E ′¯) we find

wsxs ¯ wtyt = ϑt(wsxsξ
′∗)wtxt = ϑt(ϑs(ξ

′ξ∗)xsξ
′∗)ϑt(ξ

′ξ∗)yt

= ϑs+t(ξ
′ξ∗)ϑt(xsξ

∗)yt = ws+t(xs ¯ yt),

and w0 = ξ′ξ∗ = 11∗ = 1. In other words, the wt form a morphism.

In how far E0–semigroups on Ba(E) are classified by their product systems? Of course,

we expect as answer that they are classified up to outer conjugacy. First, however, we

must clarify in which way we have to ask this question. In Arveson’s set-up all Hilbert

spaces on which he considers E0–semigroups are isomorphic. It is this hidden assumption

which makes the question for outer conjugacy possible. Nothing gets lost (up to unitary

isomorphism), if we restrict Arveson’s set-up to a single infinite-dimensional separable

Hilbert space. Now we can ask the above question in a reasonable way.

2.4 Theorem. Let (E, ξ) be a Hilbert B–module E with a unit vector ξ. Furthermore, let

ϑ and ϑ′ be two strict E0–semigroups on Ba(E). Then the product systems E¯ and E ′¯

associated with ϑ and ϑ′, respectively, are isomorphic, if and only if ϑ and ϑ′ are outer

conjugate (i.e. ϑ′ = ϑu with ϑu
t (a) = utϑt(a)u∗t for some unitary left cocycle u =

(
ut

)
t∈T

for ϑ in Ba(E), i.e. us+t = utϑt(us) and u0 = 1).

Proof. Let u be a unitary left cocycle for ϑ such that ϑ′ = ϑu. Then utpt = p′tut.

Therefore, ut restricts to a unitary ut : Et → E ′
t (with inverse u∗t = u∗t ¹ E ′

t, of course).

Moreover, identifying E ¯ Et = E = E ¯ E ′
t, we find

ut(x¯ xt) = utϑt(xξ∗)xt = ϑ′t(xξ∗)utxt = x¯ utxt.

It follows that (a ¯ idE′t)ut = ut(a ¯ idEt) for all a ∈ Ba(E). Specializing to a = j0(b)

so that a ¯ idEt = jt(b) and a ¯ idE′t = j′t(b), we see that ut is the (unique) element in

Ba,bil(Et, E
′
t) such that ut = id¯ut. From

id¯us+t = us+t = utϑt(us) = (id¯ idE′s ¯ut)(id¯us ¯ idEt) = id¯us ¯ ut

we see that u¯ =
(
ut

)
t∈T is a morphism.

Conversely, suppose u¯ is an isomorphism from E¯ to E ′¯. Then ut = id¯ut : E =

E ¯ Et → E ¯ E ′
t = E defines a unitary on E. We find

utϑt(a)u∗t = (id¯ut)(a¯ idEt)(id¯u∗t ) = (a¯ idE′t)(id¯utu
∗
t ) = a¯ idE′t = ϑ′(a)

and as above

us+t = id¯us ¯ ut = (id¯ idE′s ¯ut)(id¯us ¯ idEt) = utϑt(us)
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In other words, u =
(
ut

)
t∈T is a unitary left cocycle and ϑ′ = ϑu.

Notice that by a slight extension of the proof of Theorem 2.1 we settle completely

the theory of strict representations of Ba(E). The uniqueness statements in the following

corollary are restrictions from Proposition 2.3 and Theorem 2.4.

2.5 Corollary. Let E be a Hilbert B–module with a unit vector ξ, and let ϑ : Ba(E) →
Ba(F ) be a strict unital representation on a Hilbert C–module F (C some unital C∗–alge-

bra). Then the submodule Fϑ = ϑ(ξξ∗)F of F with the left action by = ϑ(ξbξ∗) of b ∈ B
is a Hilbert B–C–module such that F = E ¯ Fϑ via x¯ y 7→ ϑ(xξ∗)y and

ϑ(a) = a¯ idFϑ
.

Fϑ does not depend (up to two-sided isomorpism) on the choice of ξ. Moreover, if

ϑ′ : Ba(E) → Ba(F ′) is another strict unital representation such that there exists a two-

sided isomorphism u : Fϑ → F ′
ϑ′, then u = idE ¯u : F = E ¯Fϑ → E ¯F ′

ϑ′ = F ′ defines a

unitary in Ba(F, F ′) such that ϑ′(a) = uϑ(a)u∗.

3 Weak dilation and white noise

Now we want to know under which circumstances (E, ϑ, ξ) is a weak dilation, or even a

white noise.

Recall that a unit for a product system E¯ is a family ξ¯ =
(
ξt

)
t∈T of elements ξt ∈ Et

such that ξs ¯ ξt = ξs+t and ξ0 = 1. For all units Tt(b) = 〈ξt, bξt〉 defines a CP-semigroup

T which is unital, if and only if ξ¯ is unital (i.e. all ξt are unit vectors). A unit is central,

if bξt = ξtb for all t ∈ T, b ∈ B.

A result from [BS00] asserts that for a unital unit γ(s+t)t : xt 7→ ξs ¯ xt establishes an

inductive system of isometric (in general not two-sided, but cf. Proposition 3.2) embed-

dings Et → Es+t. The corresponding inductive limit has a distinguished unit vector and

carries a strict E0–semigroup which alltogether form a weak dilation of T .

3.1 Proposition. For the triple (E, ϑ, ξ) the following conditions are equivalent.

1. The family pt of projections is increasing, i.e. pt ≥ p0 for all t ∈ T.

2. The mappings Tt(b) = 〈ξ, jt(b)ξ〉 define a unital CP-semigroup T , i.e. (E, ϑ, ξ) is a

weak dilation.

3. Tt(1) = 1 for all t ∈ T.
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Under any of these conditions the elements ξt = ξ ∈ Et form a unital unit ξ¯ such that

Tt(b) = 〈ξt, bξt〉, and the jt form a weak Markov flow of T on E. The inductive limit for

ξ¯ coincides with the submodule E∞ = lim
t→∞

ptE of E.

Proof. 1 ⇒ 2. If pt is increasing, then ptξ = ptp0ξ = p0ξ = ξ so that Tt(1) = 〈ξ, ptξ〉 = 1

and

Tt ◦ Ts(b) =
〈
ξ, jt

(〈ξ, js(b)ξ〉
)
ξ
〉

=
〈
ξ, ϑt

(
ξ〈ξ, ϑs(ξbξ

∗)ξ〉ξ∗)ξ
〉

=
〈
ξ, ptϑt ◦ ϑs(ξbξ

∗)ptξ
〉

=
〈
ξ, ϑs+t(ξbξ

∗)ξ
〉

= Ts+t(b).

2 ⇒ 3 is clear. For 3 ⇒ 1 assume that Tt is unital. We find p0 = ξξ∗ = ξTt(1)ξ∗ =

ξξ∗ϑt(ξξ
∗)ξξ∗ = p0ptp0, hence, pt ≥ p0 for all t ∈ T.

If pt is increasing then ptξ = ξ so that ξ is, indeed, contained in all Et. Obviously,

ξs ¯ ξt = ϑt(ξsξ
∗)ξt = ϑt(ξξ

∗)ξ = ξ = ξt so that ξ¯ is a unital unit. However, the

identification of ξ as an element ξt ∈ Et changes left multiplication, namely, bξt = jt(b)ξ,

i.e. Tt(b) = 〈ξt, bξt〉. The Markov property follows as that for the inductive limit in [BS00].

As above, we have ξs ¯ xt = ptxt = xt. In other words, γ(s+t)t is the canonical embedding

of the subspace Et into Es+t. This identifies E∞ as the inductive limit for ξ¯.

3.2 Proposition. On E∞ there exists a (unital!) left multiplication of B such that all Et

are embedded into E∞ as two-sided submodules, if and only if the unit ξ¯ is central, i.e.

if (E∞, ϑ, i, ξ) with i being the canonical left multiplication of B on E is a (unital) white

noise.

Proof. Existence of a left multiplication on E∞ implies (in particular) that bξ = j0(b)ξ =

ξb. The converse direction is obvious.

This shows importance of existence of a central unit which was also crucial in Bar-

reto, Bhat, Liebscher and Skeide [BBLS00] in the analysis of so-called type I product

systems. Without central unit we may not even hope to understand a dilation as a co-

cycle perturbation of a white noise, because by Theorem 2.4 a cocycle perturbation does

not change the product system. Meanwhile, in [Ske01b] we introduced an index theory

for product systems with a central unital unit (called spatial product systems) paralelling

that of Arveson.

4 Unital dilations and automorphism white noises

Is our set-up of dilation to Ba(E) very special? This section is devoted to demonstrate

that the answer is a clear ‘no’. First of all, let us mention that so far the large majority of
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concrete dilations was constructed on B(H), so our case Ba(E) is certainly more general

than all these cases. The explicit construction of dilations of uniformly continuous CP-

semigroups on a symmetric or full Fock module ([GS99] or [Ske00a]) shows that our set-up

is not too special to obtain interesting results.

There is few literature on dilations to more general C∗–algebras or von Neumann

algebras A. Sauvageot [Sau86] constructs a unital dilation fulfilling all conditions required

by other authors except that even starting from a σ–weakly continuous CP-semigroup,

the dilating E0–semigroup is not σ–weakly continuous. This is a serious obstacle which,

for instance, our weak dilation from [BS00] does not have.

Another approach to (unital) dilation, to which we concentrate our attention, is that

by Kümmerer [Küm85] (being the basis for the abstract quantum stochastic calculus

developed by Hellmich, Köstler and Kümmerer[HKK98, Hel01, Kös00]). As these dilations

are cocycle perturbations of white noises and cocycle perturbations do not change product

systems, we describe only the white noise. The E0–semigroup ϑ =
(
ϑt

)
t∈R+

consists of

normal automorphisms on a von Neumann algebra A ([Küm85]) and, therefore, may

be extended to an automorphism group. A comes along with a future subalgebra A+

invariant for ϑt (t ≥ 0) and a past subalgebra A− invariant for ϑt (t ≤ 0), such that

A+ ∩ A− = A0 = i(B). As we want a white noise, ϑ must leave invariant the expectation

p, i.e. p◦ϑt = p. In [Küm85] p should also be faithful (i.e. p(a∗a) = 0 implies a = 0), but we

need only (occasionally) the weaker requirement that the following GNS-representation

of A is faithful.

The GNS-module E of p is the completion of the A–B–module Aξ with left multipli-

cation a(a′ξ) = (aa′)ξ, with right multiplication aξb = (ai(b))ξ and with inner product

〈aξ, a′ξ〉 = p(a∗a′). (If p is not faithful, then length-zero elements must be divided out.)

Then ξ is a unit vector and p(a) = 〈ξ, aξ〉. The canonical mapping A → Ba(E) is the

GNS-representation of A.

Any automorphism α of A which leaves invariant p gives rise to an isometry u : aξ 7→
α(a)ξ. (Indeed, 〈α(a)ξ, α(a′)ξ〉 = p ◦ α(a∗a′) = p(a∗a′) = 〈aξ, a′ξ〉.) Doing the same for

α−1 we find that u is invertible, whence, unitary. Moreover, we find

α(a)a′ξ = α(aα−1(a′))ξ = uaα−1(a′)ξ = uau∗a′ξ

for all a′ ∈ A so that the action of α(a) on E is uau∗. If the GNS-representation is

faithful, then A ⊂ Ba(E) and α(a) = uau∗. If the GNS-representation is not faithful, we

see that α respects the kernel of the GNS-representation. Hereafter, we assume that this

kernel has been divided out and, therefore, that A ⊂ Ba(E).

Applying this to all ϑt, we find a unitary group
(
ut

)
t∈R in Ba(E) implementing ϑt as

ut • u∗t . Clearly, this group extends from A to an automorphism group (also denoted by
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ϑ) on all of Ba(E). Of course, ϑ is strict. We see that automorphism white noises may

be extended (possibly after having divided out the kernel of the GNS-representation) to

a unitarily implemented (and, therefore, strict) automorphism white noise on Ba(E).

Restricting to t ≥ 0 we are in the setting of Section 2. Unfortunately, we have

uξ = ξ so that ϑ leaves invariant p0 = ξξ∗. Consequently, the product system of Hilbert

B–B–modules as constructed in Theorem 2.1 is the trivial one.

Can we also obtain a non-trivial product system? The answer to this question depends

on whether we are able or not to extend also the restriction of the automorphism group α

on A to a proper E0–semigroup ϑ on A+ to all of Ba(E+) where E+ = A+ξ is the closure

of what A+ generates from the cyclic vector ξ. (Then we may consider the product system

associated with the extension of ϑ.) This is possible, for instance, if E factorizes in the

form E = E+¯E ′ for some suitable Hilbert B–B–module E ′ in such a way that an element

a ∈ A+ acts as a+ ¯ idE′ . Notice that in this case the extension of α to Ba(E) leaves

invariant the subalgebra Ba(E+) ¯ idE′
∼= Ba(E ′) which contains A+ as a subalgebra.

We know from [Ske01a] that, for instance, the white noises constructed on the full or

the time ordered Fock module have this factorization property (and we know also the

corresponding product systems). The fact that presently there do apparently not exist

other explicit examples of white noises (over B!) in the sense of [Küm85] supports the

belief that this might remain true for all such white noises. Presently, we cannot prove

it, but we think it is an interesting question.
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