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Almost every article about Arveson systems (that is, product systems of Hilbert spaces)
starts by recalling their basic classification assigning to every Arveson system a type and
an index. So it is natural to ask in how far an analogue classification can be proposed also
for product systems of Hilbert modules. However, while the definition of type is plain,
there are obstacles for the definition of index. But all obstacles can be removed when
restricting to the category which we introduce here as spatial product systems and that
matches the usual definition of spatial in the case of Arveson systems. This is not really
a loss because the definition of index for nonspatial Arveson systems is rather formal
and does not reflect the information the index carries for spatial Arveson systems.

E0–semigroups give rise to product systems. Our definition of spatial product sys-
tem, namely, existence of a unital unit that is central, matches Powers’ definition of
spatial in the sense that the E0–semigroup from which the product system is derived
admits a semigroup of intertwining isometries. We show that every spatial product sys-
tem contains a unique maximal completely spatial subsystem (generated by all units)
that is isomorphic to a product system of time ordered Fock modules. (There exist non-
spatial product system that are generated by their units. Consequently, these cannot be
Fock modules.) The index of a spatial product system we define as the (unique) Hilbert
bimodule that determins the Fock module. In order to show that the index merits the
name index we provide a product of product systems under which the index is additive
(direct sum). While for Arveson systems there is the tensor product, for general product
systems the tensor product does not make sense as a product system. Even for Arveson
systems our product is, in general, only a subsystem of the tensor product. Moreover, its
construction depends explicitly on the choice of the central reference units of its factors.

Spatiality of a product system means that it may be derived from an E0–semigroup
with an invariant vector expectation, that is, from a noise. We extend our product of
spatial product systems to a product of noises and study its properties.

Finally, we apply our techniques to show the module analogue of Fowler’s result that
free flows are comletely spatial, and we compute their indices.

1. Introduction

Arveson systems and E0–semigroups. In a series of papers (see in particu-
lar [2, 3]) Arveson worked out a close relationship between E0–semigroups (semi-
groups of unital endomorphisms of a C∗–algebra) on B(H) and product systems of
Hilbert spaces (Arveson systems for short). More precisely, he discovered (we do
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not repeat the precise technical conditions) a one-to-one correspondence between
E0–semigroups (up to cocycle conjugacy) and Arveson system (up to isomorphism).

An Arveson system is a family of H⊗ =
(
Ht

)
t∈R+

of Hilbert spaces Ht fulfilling

Hs+t = Hs ⊗̄ Ht

in an associative way. (Actually, there are also some measurability requirements
and the Ht should be infinite-dimensional and separable for t > 0, but we do
not speak about this.) Arveson introduced also the concept of units, i.e. a family
u⊗ =

(
ut

)
t∈R+

of nonzero elements ut ∈ Ht fulfilling

us+t = us ⊗ ut.

(Once again there is a measurability condition which we ignore.) The construc-
tion of the Arveson system associated with an E0–semigroup is plain and if an
Arveson system has a unit, then it is also easy to construct an E0–semigroup that
has associated with it the Arveson system we started with. (We discuss the more
general version for Hilbert modules detailed in Section 7.) The construction of an
E0–semigroup from a unitless Arveson system in [3] is among the most difficult
results about Arveson systems.

The simplest example of an Arveson system is the family Γ⊗(K) =
(
Γt(K)

)
t∈R+

of symmetric Fock spaces Γt(K) = Γ(L2([0, t],K)) with isomorphism

Γs+t(K) = Γ(L2([t, t + s],K)) ⊗̄ Γt(K) = Γs(K) ⊗̄ Γt(K).

The (measurable) units are precisely those given by ut = etcψ(II [0,t]f) where c ∈ C
and ψ(II [0,t]f) is the exponential vector to the funcion II [0,t]f with f ∈ K. (This
product system belongs, for instance, to the E0–semigroup on B

(
Γ(L2(R+, K))

)
induced by the time shift on Γ(L2(R+,K)).) Arveson showed that all product sys-
tems of Hilbert spaces which are spanned linearly by tensor products of their units
(so-called type I systems) are isomorphic to some Γ⊗(K) for a suitable Hilbert space
K.

Arveson systems which have a unit are called spatial. In general, any Arveson
system contains a maximal type I subsystem (namely, that which is generated be
the units). The Arveson index of an Arveson system is the dimension of the the
Hilbert spaces K for the maximal type I subsystem. It is put to ∞ by hand, if the
subsystem is {0}, i.e. for nonspatial Arveson systems. (We explain in Section 10.3
why we think the index should be defined only for spatial Arveson systems.) The
index of an E0–semigroup is that of its associated Arveson system.

Be it among E0–semigroups on B(H) be it among Arveson systems there is
a natural operation, the tensor product, making out of two of them a new one.
Obviously, Γ⊗(K) ⊗̄ Γ⊗(K ′) = Γ⊗(K ⊕ K ′) so that the index is additive under
tensor product and, thus, indeed merits to be named index.

The index is a complete isomorphism invariant for type I (or completely spatial)
Arveson systems. For other spatial Arveson systems this is not so (and for nonspatial
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systems the index has no good meaning). Appart from Powers’ examples (see, for
instance, [24]) it was Tsirelson who, using probabilistic ideas, provided us with larger
classes of examples (see [37] for spatial Arveson systems and [38] for nonspatial
examples).(a)

Product systems of Hilbert modules. General product systems of Hilbert
B–B–modules occured in Bhat and Skeide [8] in dilation theory of CP-semigroups
on a unital C∗–algebra B dilating the CP-semigroup to an E0–semigroup on Ba(E)
for some Hilbert B–module E.(b) The technical definition of product systems (conti-
nuity or measurability conditions) will depend on the purpose.(c) In fact, we prefer
to investigate always also the algebraic case, in order not to exclude interesting
product systems (that exist!) from the discussion just because we are not (yet) able
to show that they fulfill certain (possibly premature) technical conditions.

It is the goal of these notes to see in how far it is possible to obtain the basic
results about spatial Arveson system also for spatial product systems of Hilbert
modules. This requires, in the first place, to single out the correct notion of spatial
product system. In order to define an index we must specify completely spatial
product systems and see whether they are isomorphic to some sort of Fock module
that substitutes the symmetric Fock space. Finally, we must find a product of spatial
product systems that substitutes the tensor product of (spatial) Arveson systems,
because the tensor product of product systems does not make sense, in general, for
Hilbert modules.

For that goal we follow the theory of product systems as far as possible in
analogy with the theory of Arveson systems. We consider all product systems as
derived from E0–semigroups by the construction from Skeide [30] (a straightforward
generalization to Hilbert modules of Bhat’s approach to Arveson systems in [5]). It
is one of the big open questions, whether every product system can be obtained in
that way, but if the product system has a unit, like our spatial product systems,
then it is true; see Section 7 for a detailed explanation.

Powers [24] calls an E0–semigroup on B(H) spatial, if it admits an intertwining
semigroup of isometries. It is easy to give examples(d) that in the case of Hilbert
B–modules mere existence of a unit in a product system is not sufficient to achieve

(a)Liebscher [16] started to provide us with more (still incomplete) isomorphism invariants for
spatial Arveson systems based on substantial extensions of the ideas of [37], while Bhat and
Srinivasan [9] initiated a systematic study of nonspatial Arveson system using a more funcional
analytic approach to the ideas of [38]. In [26] Powers reduced the study of spatial E0–semigroups
and, therefore, of spatial Arveson systems to the study of so-called CP-flows.
(b)In the case of von Neumann algebras Muhly and Solel [20] have constructed the same dilation
with the help of a product system of von Neumann B′–B′–modules, where B′ is the commutant
of B. The duality between the two approaches (in fact, the construction of a commutant of von
Neumann bimodules as introduced in Skeide [31] and also in Muhly and Solel [21]) is explained in
Skeide [31].
(c)See for instance Skeide [32] or Hirshberg [13, 14].
(d)See Skeide [32]
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this. The unit must be central, i.e. its members must commute with the elements
of B, — and this is our definition (Definition 2.1) of spatial product systems.

The time ordered Fock module over a Hilbert B–B–module F (introduced in Bhat
and Skeide [8] and studied in detail in Liebscher and Skeide [17]) is the analogue
of the symmetric Fock space. A time ordered product system has a central unital
unit (the vacuum), so that it is spatial, and it is generated by its units, so that
it is even completely spatial. Using results from [17, 4] we show (Theorem 6.3)
that (in analogy with Arveson systems) every completely spatial product system is
isomorphic to a time ordered system. Also here it is easy to give counter examples
which show that existence of a cenral unit may not be dropped from the definition of
completely spatial product system. (A product system that is generated by its units
is a strongly dense subsystem of a time ordered product system of von Neumann
modules over the enveloping von Neumann algebra of B. In fact, it is the main
result of Barreto, Bhat, Liebscher and Skeide [4] that every product system of von
Neumann modules that has a unit is spatial. This result is equivalent to the results
by Christensen and Evans [10] on the form of the generator of uniformly continuous
normal CP-semigroups on a von Neumann algebra.)

Spatial product systems contain a unique maximal completely spatial subsystem
(Corollary 3.4). By Theorem 6.3 the completely spatial subsystem is isomorphic to
a time ordered system and this time ordered system is determined by the unique
Hilbert bimodule F that plays the role of the Hilbert space K for type I Arveson
systems. As F is no longer determined by a simple dimension we stick to the whole
space F as index of the spatial product system (Definition 6.4). We construct a
product of spatial product systems (Definition 5.2) under which the indices of the
factors add up as direct sums (Theorem 6.7). In the case of spatial Arveson systems
our product is a subsystem of the tensor product that may but need not coincide
with the tensor product. (In fact, by Theorem 5.1 our product is generated by its
factors, while the tensor product of Arveson systems need not be.)(e)

All spatial product systems can be derived from an E0–semigroup with an in-
variant conditional vector expectation, that is from noises. We extend our product
of spatial product systems to a product of noises in such a way that the associated
spatial product system is the product of the spatial product systems associated with
the factors (Theorem 8.1). We add the result (Theorem 8.6) that the product of
noises preserves strong continuity in time.(f)

As a concrete example we show that the time shift semigroup on the full Fock
module is completely spatial and we calculate its index (Theorem 9.3). Motivated

(e)In Section 10.4 we report an example of Powers (after publication of these notes) where our
product naturally occurs and is not the tensor product.
(f)Together with the results from Skeide [32] this implies also that the product of continuous (in
the sense of [32]) spatial product systems is continuous, that is our product is compatible with
technical definitions of product systems.



5

by the fact that these free flows have sitting inside also a free product system, we
suggest a couple of natural questions arround free product systems.

Contents. These notes are organized as follows. Sections 2 and 7 are quasi com-
pletely repetitive. In Section 2 we recall basic definitions concerning product systems
like units and morphisms. Then we define spatial product systems and their mor-
phisms. These definitions should suffice to understand the algebraic construction
of the product of spatial product systems in Section 5. In Section 7 we repeat the
relation between product systems and E0–semigroups and point at some specific
properties in the case of spatial product systems and noises. Sections 2, 5 and 7
should suffice to understand the algebraic construction of the product of noises in
Section 8.

In Section 3 we repeat some results about units, CPD-semigroup and their gener-
ators and show that every spatial product system has a unique maximal completely
spatial subsystem. In Section 4 we provide certain geometric operations and a Trot-
ter product among units, that help in Section 5 to understand the units in the
product of spatial product systems and in Section 6 to show that completely spatial
product systems are time ordered (allowing the definition of the index) and to show
that the index is additive under our product. In Section 8 we extend all results from
spatial product systems to noises in a compatible way.

Section 9 is dedicated to a detailed analysis of free flows, that is time shifts on
full Fock modules. We arrive at analogues to Fowler’s [11] results for the Hilbert
space case, but it seems that our description is more specific, the derivation of the
product system is more direct and the combinatorical problems of the time ordered
Fock module are much simpler than those of the symmetric Fock space. In Section
10 we pose a couple of open and, we think, interesting problems. A good deal of
them is motivated by the fact that the free flows in Section 9 can be described
conveniently also by free product systems.

Conventions. Throughout these notes we use a couple of results from [8, 17, 4,
30] which can also be found in [29]. We reference, usually, to [29] which is accessible
through the author’s homepage. [29] contains also a detailed introduction to Hilbert
modules. A less specific (for our purposes) reference for Hilbert modules is the book
of Lance [15]. A short introduction to Hilbert modules as we need them (only with
few proofs) and everything about inductive limits we will be using can be found in
[8].

Here we recall only that Hilbert B–modules are always right B–modules with a
B–valued inner product. Here the C∗–algebra B will always be unital. A Hilbert

B–B–module (or two-sided Hilbert module) is a Hilbert B–module with a unital

representation of B by adjointable (and, therefore, bounded and right linear) map-
pings.(g) The algebra of all bounded adjointable mappings on a Hilbert module E

(g)In more recent articles, instead of two-sided module, we switched to the more standard name
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is denoted by Ba(E). Whereas, Ba,bil(E) denotes the subalgebra of B–B–linear (or
two-sided) mappings. By xy∗ we denote the rank-one operator z 7→ x〈y, z〉. The
inner product on the tensor product E ¯ F of two Hilbert B–B–modules E, F is
defined by 〈x ¯ y, x′ ¯ y′〉 = 〈y, 〈x, x′〉y′〉. Often we use only pre-Hilbert modules
(a Hilbert module, except that it need not be complete). Constructions like tensor
products ¯,⊗ (where the latter is always that of vector spaces) and ⊕ are always
understood algebraic, whereas we indicate completions by ¯̄ , and so on.

A note on time lines. These notes have been published first as Volterra Preprint
458, Centro Vito Volterra, University of Rome II, in March 2001, containing all
definitions and results except Sections 9 and 10. (Section 9 has been added in the end
of 2001 and Section 10 in 2003.) As the inclusion of references to recent new results
has caused more than once misunderstandings regarding priority of publications, in
this revision we decided to put every reference to articles that have been written
after these notes into footnotes. (Only Section 10 that, othewise would result in a
single huge footnote, remains as it is.) These notes are the first place where spatial
product systems of Hilbert modules have been defined, and where their product has
been constructed. All other papers of which the author is (co-)author do refer to
the present notes as primary source for spatial product systems and their product.

Also, as compared with earlier versions, proofs preceding their theorem have
switched order with the theorem in order to underline that the paper contains
proofs, and statements hidden in remarks became theorems and propositions in
order to underline that the paper contains statements. Also some details left out in
proofs for the reader and, thus, leading to quite condensed proofs, have now been
filled in.

A note on terminology and title. When first published we used the term
white noise for what in Powers’ terminology would be a spatial E0–semigroup in
standard form. Following criticisms by L. Accardi and by C. Köstler we agree on that
the terminology white noise is highly missleading. Actually, what we are consider-
ing corresponds very well to what Tsirelson introduced as noise replacing classical
independence with amalgamated monotone independence; see Skeide [33]. (We do
not follow Hellmich, Köstler and Kümmerer [12] who would rather say Bernoulli
shift.) Throughout this revision white noise has been substituted with noise. An
exception is the title where we put white into parenthesis in order to not change the
title too much (obscuring the time lines and giving again rise to discussions about
priority).

2. Product systems, units and spatial product systems

In this section we do not much more than recalling a few definitions and results
from [8, 30, 4] (that all may be found also in [29]) and we define spatial product

correspondence.
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systems and their morphisms. This lays the basis for the product of spatial product
systems in Section 5.

Let B be a unital C∗–algebra. A tensor product system of pre-Hilbert

modules, or for short a product system , is a family E¯ =
(
Et

)
t∈R+

of pre-
Hilbert B–B–modules Et with a family of two-sided unitaries ust : Es ¯Et → Es+t

(s, t ∈ R+), fulfilling the associativity condition

Er ¯ Es ¯ Et

urs¯idEt

wwnnnnnnnnnnnn
idEr ¯ust

''PPPPPPPPPPPP

Er+s ¯ Et

u(r+s)t ''PPPPPPPPPPPP
Er ¯ Es+t

ur(s+t)wwnnnnnnnnnnnn

Er+s+t

(2.1)

where E0 = B and us0 and u0t are the canonical identifications xs ¯ b = xsb

and b ¯ xt = bxt, respectively. Once the choice of ust is fixed, we always use the
identification

Es ¯ Et = Es+t. (2.2)

We speak of a tensor product system of Hilbert modules E ¯̄ , if Es ¯̄ Et =
Es+t. We do not discuss the obvious generalizations to von Neumann modules.

A product subsystem is a family E′¯ =
(
E′

t

)
t∈R+

of B–B–submodules E′
t of

Et such that E′
s ¯ E′

t = E′
s+t by restriction of the identification (2.2).

By the trivial product system we mean
(B)

t∈R+
where B is equipped with its

natural B–B–module structure and inner product 〈b, b′〉 = b∗b′.
A morphism between product systems E¯ and F¯ is a family w¯ =

(
wt

)
t∈R+

of mappings wt ∈ Ba,bil(Et, Ft), fulfilling

ws+t = ws ¯ wt (2.3)

and w0 = idB. A morphism is unitary , contractive , and so on, if wt is for all t ∈
R+. An isomorphism of product systems is a unitary morphism. In rare occasions
when we do not require the wt to be bounded (but still adjointable and two-sided)
we speak of (possibly unbounded) morphisms (necessarily of product systems of
pre-Hilbert modules, because adjointable mappings between Hilbert modules are
bounded, automatically).

Observe that, in general, there need not exist a projection morphism onto a
subsystem.

A unit for a product system E¯ =
(
Et

)
t∈R+

is a family ξ¯ =
(
ξt

)
t∈R+

of
elements ξt ∈ Et such that

ξs ¯ ξt = ξs+t (2.4)

in the identification (2.2) and ξ0 = 1 ∈ B = E0. By U(E¯) we denote the set of all
units for E¯. A unit ξ¯ is unital and contractive , if 〈ξt, ξt〉 = 1 and 〈ξt, ξt〉 ≤ 1,
respectively. A unit is central , if bξt = ξtb for all t ∈ R+, b ∈ B.
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Obviously, a morphism w¯ : E¯ → F¯ sends units to units. For this the require-
ment w0 = idB is necessary. For a subset S ⊂ U(E¯) of units for E¯ we denote by
w¯S ⊂ U(F¯) the subset of units for F¯, consisting of the units wξ¯ =

(
wtξt

)
t∈R+

(ξ¯ ∈ S).
Now we are ready to define spatial product systems.

2.1 Definition. A spatial product system is a pair (E¯, ω¯) consisting of a prod-
uct system E¯ and a central unital unit ω¯, the reference unit . A spatial sub-

system of a spatial product system (E¯, ω¯) is a subsystem that contains ω¯ and
that is spatial with ω¯ as reference unit. A morphism w¯ between spatial product
systems is spatial , if both w¯ and w∗¯ preserve the reference units.

More loosely, we speak of a spatial product system E¯, if we can turn it into
a spatial one by choosing a central unital unit ω¯. But, we must be aware that
structures derived from that unit (as, for instance, the product of spatial systems in
Section 5) will depend on the choice of ω¯.(h) However, even for Arveson systems(i)

it was a long time unclear, in how far spatial Arveson systems are isomorphic spatial
product systems in our sense, if they are different only for the choice of a different
reference unit.(j)

We close this section with some remarks.
It is known that spatial Arveson systems are those that have units, and because

every unit of an Arveson system is central the definitions coincide. On the other
hand, it is easy to write down examples of product systems that have units but
none of these is central; see [4] (or [32]). So, why do we call spatial those product
systems that admit a central unital unit? The answer lies in the close relationship be-
tween Arveson systems and E0–semigroups (semigroups of unital endomorphisms)
on B(H) [2, 3] and Powers’ original definition of spatial E0–semigroups in [25]. To
every E0–semigroup there is an associated product system (we discuss the Hilbert
module version in Section 7) and it is easy to show that the so-called intertwining
semigroups of isometries for the E0–semigroup correspond (one-to-one if E is full)
to central unital units of the associated product system. (Notice that this fails, if B
is nonunital. This is one of the main reasons, why we stick to unital B.) And Powers’
definition says an E0–semigroup is spatial, if it admits an intertwining semigroup
of isometries.

(h)The reference unit can also be used to pose measurability or continuity conditions on the product
system and one can show that these do not depend on the choice of the reference unit (as long as
the two reference units are continuous among themselves in the sense of Lemma 3.3; see [32]). In
the case of Arveson systems, we obtain back Arveson’s measurability conditions.
(i)which are known to be isomorphic if they are algebraically isomorphic; see Liebscher [16]
(j)The related problem, open for a long time, is the question whether the automorphism group of
an Arveson system acts transitively on its set of units. Only recently Tsirelson [39] provided us
with a concrete counter example where the automorphism group of a type II1 Arvesons system
does not act transitively on the set of normalized units. So the spatial structure of a product
system, indeed, may depend on the choice of the reference unit.
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There are plenty of spatial product systems. In Section 6 we will see that the
subclass of completely spatial product systems of Hilbert modules consists precisely
of the time ordered product systems and by Corollary 3.4 below any spatial product
system contains a (unique) maximal completely spatial subsystem.(k) By a result
from [4] ([29, Corollary 13.2.13]) type I product systems of von Neumann modules
are (strong closures of) time ordered systems. Therefore, if a product system of von
Neumann modules contains a single continuous unit ξ¯, then the subsystem gener-
ated by ξ¯ is time ordered and, therefore, contains a central unital unit, namely, its
vacuum unit (see Section 6). In other words, in the context of von Neumann mod-
ules existence of a single continuous unit is sufficient to know that a product system
is spatial. One can show (see [4]) that this is equivalent to the result by Christensen
and Evans [10] that (rephrased suitably) bounded derivations with values in a von
Neumann module are inner.

3. Units and CPD-semigroups

The notions introduced so far, are sufficient to understand the constructions of the
products in Sections 5 and 8, and it is possible to read them now. These construc-
tions are completely algebraic and extend by well-known compatibility conditions
to any desired completion (or closure in the case of von Neumann modules). In this
section we recall the basic classification of product systems by units (mainly from
[4]) and we draw first consequences from existence of a central unital reference unit.
In particular, we define completely spatial product systems and show that every
spatial product system contains a unique maximal completely spatial subsystem.

A crucial role in the analysis of type I Arveson systems is played by a semigroup
of positive definite kernels on the set of units defined by (u⊗, u′⊗) 7→ 〈ut, u

′
t〉. In

[2], the generator of this semigroup is named the covariance function of an Arveson
system. Also for product systems of Hilbert modules the inner products of units
determine a semigroup of kernels, however, the more noncommutative structure of
B–B–modules (even, or actually, in particular, if B is commutative) where bx = xb

happens only rarely, forces us to consider the mappings b 7→ 〈ξt, bξ
′
t〉 rather than

the matrix elements 〈ξt, ξ
′
t〉.

For us a kernel on a set S is a mapping K : S × S → B(B) into the bounded
mappings on B. (This, clearly, contains the well-known notion of C–valued kernels,
if we consider an element w ∈ C as mapping z 7→ wz in B(C).) According to the
definition in [4] a kernel K is completely positive definite , if

∑

i,j

b∗i K
σi,σj (a∗i aj)bj ≥ 0

(k)A construction by Liebscher [16] allows to construct from every Arveson system loads of spatial
Arveson systems that are not completely spatial. We believe that this can be done for arbitrary
(continuous in the sense of [32]) spatial product systems of Hilbert modules, thus, providing us
with many examples of highly nontrivial spatial product systems.
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for all choices of finitely many σi ∈ S; ai, bi ∈ B. (Our definition in [4] was inspired
very much by that in Accardi and Kozyrev [1]. We emphasize, however, that the
definition in [1] is weaker, but due to additional structure present in their concrete
problem also their kernel is completely positive definte in our sense; see [29, Lem-
mata 5.2.7 and 5.3.5].) Clearly, any kernel K of the form Kσ,σ′(b) = 〈xσ, bxσ′〉 for
some elements xσ (σ ∈ S) in some pre–Hilbert B–B–module E is completely posi-
tive definite. Moreover, any completely positive definite kernel can be recovered in
that way by its Kolmogorov decomposition ; see [4] and [29, Theorem 5.2.3].

The family U =
(
Ut

)
t∈R+

of kernels Ut on U(E¯), defined by setting

Uξ,ξ′
t (b) = 〈ξt, bξ

′
t〉 (3.1)

is a semigroup under pointwise composition of kernels, as

Uξ,ξ′
s+t(b) = 〈ξs+t, bξ

′
s+t〉 = 〈ξs¯ ξt, bξ

′
s¯ ξ′t〉 =

〈
ξt, 〈ξs, bξ

′
s〉ξ′t

〉
= Uξ,ξ′

t ◦Uξ,ξ′
s (b),

and all Ut are comletely positive definite. We say U is the CPD-semigroup asso-
ciated with the product system E¯.

Every CPD-semigroup, i.e in particular, every CP-semigroup, can be recovered
in this way from its GNS-system ; see [4] and [29, Theorem 11.3.5]. In other words,
any CPD-semigroup is obtained from units of a product system as in (3.1). However,
the converse need not be true as follows from the existence of nonspatial Arveson
systems. Nevertheless, by [29, Proposition 11.2.4] any subset S ⊂ U(E¯) of units of
a product system E¯ generates a product subsystem ES¯ =

(
ES

t

)
t∈R+

consisting
of the spaces

ES
t = span

{
bnξn

tn
¯ . . .¯ b1ξ

1
t1b0 | n ∈ N, bi ∈ B, ξi¯ ∈ S, tn + . . . + t1 = t

}
. (3.2)

(Compare the definition of the lattice Jt in the beginning of Section 5.)
The CPD-semigroup U ¹ S is uniformly continuous, if the semigroups in (3.1)

are uniformly continuous for all ξ¯, ξ′¯ ∈ S. In this case we say S is a continuous

subset of units. In particular, a single unit is continuous, if the subset {ξ¯} is
continuous.

3.1 Observation. Obviously, every central unital unit is continuous. And if a cen-
tral unit ω¯ is continuous, then we may modify it to be unital by normalizing
it to ωt

√
〈ωt, ωt〉−1

, because 〈ωt, ωt〉 is a continuous semigroup of positive central
elements in B.

The type of a product sytem was defined in [4], in analogy with that of an
Arveson system, indicating in how far the product system is generated by its units.
The only difference is that Hilbert modules have several different topologies and
topology enters in two essentially different ways. Firstly, there are different closures
in which the product system might be generated by its units and, secondly, there
are different topologies in which a CPD-semigroup might be continuous. We repeat
here only the relevant part of the definitions from [4], that is we consider only sets
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of units that lead to uniformly continuous CPD-semigroups and we do not give the
version for von Neumann modules.

A product system E¯ =
(
Et

)
t∈R+

of pre-Hilbert modules is of type I, if it is

generated by some continuous set S ⊂ U(E¯) of units, i.e. if E¯ = ES¯. It is of
type I , if E¯ (or E ¯̄ in the case of Hilbert modules) is the norm closure of ES¯.
We say the set S is generating .

Now we are ready to define completely spatial product systems.

3.2 Definition. A spatial product system (E¯, ω¯) is completely spatial of type
I, and so on, if it is type I, and so on, such that the subset S ⊂ U(E¯) of units
making it type I, and so on, can be chosen such that ω¯ ∈ S. If we do not specify
the type of completely spatial, then we mean always type I.

The following is a (slightly weaker) reformulation of [4, Theorem 4.4.12] (or [29,
Lemma 11.6.6]).(l)

3.3 Lemma. Let S be a subset of units in a spatial product system (E ¯̄ , ω¯)
of Hilbert modules. Then U ¹ {ω¯} ∪ S is uniformly continuous, if and only U ¹
{ω¯, ξ¯} is uniformly continuous for all ξ¯ ∈ S.

3.4 Corollary. The set

Uω(E ¯̄ ) :=
{
ξ¯ ∈ U(E ¯̄ ) : U ¹ {ω¯, ξ¯} is uniformly continuous

}

is the maximal subset S of U(E ¯̄ ) containing ω¯ for which U ¹ S is uniformly con-
tinuous. Consequently, each spatial product system of Hilbert modules has a unique
maximal completely spatial subsystem (EUω

¯̄
, ω¯).

Proof. By Lemma 3.3 S is continuous. Moreover, every other continuous subset
S′ containing ω¯, clearly, fulfills the condition in Lemma 3.3 and, therefore, by
defintion is contained in S.

4. The Trotter product of units

In this section we provide some “geometric” operations among units. First, we
construct a sort of artithmetic mean for (continuous) units in arbitrary product
systems (although here we will prove only the simpler spatial case). Then, applying
results from [4] to the case of spatial product systems, we use the mean to construct
a Trotter product of units. The Trotter product of units will show us how to compose
units from different factors in the product of spatial product systems discussed in
Section 5. It will help us to show that the index is additive.

(l)It has a much stronger counterpart in the discussion of continuous product systems in [32] where
ω¯ may be an arbitrary continuous unit and S a set of general continuous sections of E

¯̄
.
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Many properties of the units and the operations among them have more concrete
interpretations, when applied to units in a time-ordered product system as discussed
in Section 6. For instance, what we define to be an exponential unit in a spatial
product system, really, corresponds to an exponential unit in a time-ordered product
system. However, in particular the arithmetic mean operation, which is defined for
units in not necessarily spatial product systems, would make it necessary to refer to
the deep embeddability result (into a time-ordered product system of von Neumann
modules only) in [4]. As we wish to avoid the discussion of von Neumann modules,
we have keep the discussion of these properties on an abstract level.

Let E ¯̄ be a product system of Hilbert modules with a continuous subset of
units S and dentote by LS = d

dtU
∣∣
t=0

¹ S the generator of the CPD-semigroup
U ¹ S.

4.1 Lemma. Let ξ`¯ ∈ S (` = 1, 2). Then for all κ1,κ2 ∈ C with κ1 +κ2 = 1 the
limit

ξt = lim
n→∞

(
κ1ξ1

t
n

+ κ2ξ2
t
n

)¯n (4.1)

exists in norm, ξ¯ =
(
ξt

)
t∈R+

is a unit, too, and the set S∪{ξ¯} is still continuous.

Moreover, for all ξ′¯ ∈ S ∪ {ξ¯} we have Lξ′,ξ = κ1Lξ′,ξ1
+ κ2Lξ′,ξ2

.

We will prove Lemma 4.1 and a generalization to nets, which we need in Section
5, in the appendix and only for spatial product systems. A full proof would require
to repeat a good deal more from [8, 4] will appear elswhere. (See Liebscher and
Skeide [18].)

Observe that there is at most one unit ξ¯ fulfilling Lξ′,ξ = κ1Lξ′,ξ1
+ κ2Lξ′,ξ2

for all ξ′¯ ∈ S, because ξ¯ is contained in the type I subsystem generated by
{ξ1¯, ξ2¯} and the inner products within this subsystem are determined completely
by the generator L.

The lemma has an obvious generalization to n units ξ1¯, . . . , ξn¯ with n complex
numbers κ1 + . . . + κn = 1. We use the notation

(
κ1ξ1 ¢ . . . ¢κnξn

)¯. Like the
arithmetic mean, the operation ¢ is commutative. It is associative in the sense that

(
(κ + κ′)

( κ
κ + κ′

ξ ¢
κ′

κ + κ′
ξ′

)
¢κ′′ξ′′

)¯

=
(
κξ ¢κ′ξ′ ¢κ′′ξ′′

)¯

=
(
κξ ¢ (κ′ + κ′′)

( κ′

κ′ + κ′′
ξ′ ¢

κ′′

κ′ + κ′′
ξ′′

))¯

(κ+κ′ 6= 0 6= κ′+κ′′). To see this, just look at the the generator and use uniqueness.

Now we pass to a spatial product system (E ¯̄ , ω¯) and put S = Uω(E ¯̄ ). So L

is now the generator of the CPD-semigroup U ¹ Uω(E ¯̄ ). Since Uω,ξ
t (b) = bUω,ξ

t (1),
the elements Uω,ξ

t (1) form a semigroup in B. For ξ¯ ∈ Uω(E ¯̄ ) we denote by
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βξ = Lω,ξ(1) the generator of this semigroup. The crucial result [4, Theorem 5.1.2]
(or [29, Theorem 13.1.2]) asserts that the kernel L0 defined by

Lξ,ξ′
0 (b) = Lξ,ξ′(b)− β∗ξ b− bβξ′ (4.2)

is completely positive definite. We say a kernel L allowing for a decomposition
Lξ,ξ′(b) = Lξ,ξ′

0 (b) + β∗ξ b + bβξ′ for a completely positive definite kernel L0 and
suitable βξ ∈ B has CE-form (Christensen-Evans form) or is a CE-generator .

Observe that βω = 0 and, therefore, Lω,ξ
0 = 0 = Lξ,ω

0 for all ξ¯. More generally,
if for β ∈ B we denote by ωβ¯ the unit

(
ωte

tβ
)
t∈R+

, then βωβ = β and Lωβ ,ξ
0 = 0 =

Lξ,ωβ

0 . Note that these two properties determine ωβ¯ uniquely.

4.2 Proposition. Let ξ¯ ∈ Uω(E ¯̄ ) and β ∈ B. Then ζ¯ =
(
ξ ¢ωβ ¢ − ω

)¯
is the unique unit in Uω(E ¯̄ ) satisfying βζ = βξ + β and Lξ′,ζ

0 = Lξ′,ξ
0 for all

ξ′¯ ∈ Uω(E ¯̄ ).

Proof. Uniqueness is clear as the stated properties determin the generator. By the
three term version of Lemma 4.1 and the preceding computations we find

βζ = Lω,ζ(1) = Lω,ξ(1) + Lω,ωβ

(1)− Lω,ω(1) = βξ + β − 0

and

Lξ′,ζ
0 (b)

= Lξ′,ζ(b)− β∗ξ′b− bβζ = Lξ′,ξ(b) + Lξ′,ωβ

(b)− Lξ′,ω(b)− β∗ξ′b− b(βξ + β)

= Lξ′,ξ(b) + (0 + β∗ξ′b + bβ)− (0 + β∗ξ′b + b0)− β∗ξ′b− b(βξ + β)

= Lξ′,ξ
0 (b).

Proposition 4.2 tells us that we may always pass from a continuous unit to a
unit with βξ = 0 without changing the CPD-part L0 of the generator. We call a
unit with βξ = 0 an exponential unit , because in Section 6 such units will show
to be precisely those that consist of exponential vectors.

4.3 Corollary. Let ξ¯ be a continuous unit. Then ζ¯ =
(
ξ ¢ω−βξ ¢ − ω

)¯ by
Proposition 4.2 is the unique exponential unit such that ξ¯ =

(
ζ ¢ωβξ ¢ − ω

)¯.

4.4 Definition. Let ξ`¯ (` = 1, 2) be continuous units in a spatial product system
(E ¯̄ , ω¯). By the Trotter product of ξ1¯ and ξ2¯ we mean the unit

(
ξ1 } ξ2

)¯ :=
(
ξ1 ¢ ξ2 ¢ − ω

)¯

In this notation Corollary 4.3 reads ξ¯ =
(
ζ } ωβξ

)¯ where ζ¯ =
(
ξ } ω−βξ

)¯
is the unique exponential unit not changing the CPD-part of the generator when
substituting ξ¯ with ζ¯.
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4.5 Proposition. The Trotter product is associative.

Proof. As may be checked by looking at the generators, both bracketings
(
(ξ1 }

ξ2)}ξ3
)¯ and

(
ξ1}(ξ2}ξ3)

)¯ lead to the same expression
(
ξ1 ¢ ξ2 ¢ ξ3 ¢−2ω

)¯.

4.6 Corollary. Let ξ`¯ (` = 1, 2) be continuous units and denote by ζ`¯ the
corresponding exponential units according to Corollary 4.2. Then

(
ξ1 } ξ2

)¯ =(
(ζ1 } ζ2) } (ωβξ1 } ωβξ2 )

)¯, where
(
ζ1 } ζ2

)¯ is the unique exponential unit ful-

filling Lξ′,ζ1}ζ2

0 = Lξ′,ξ1}ξ2

0 = Lξ′,ξ1

0 + Lξ′,ξ2

0 and where
(
ωβξ1 } ωβξ2

)¯ = ωβξ1+βξ2 .

A warning: Observe that Lξ′,ξ1}ξ2
= Lξ′,ξ1

+ Lξ′,ξ2 − Lξ′,ω 6= Lξ′,ξ1
+ Lξ′,ξ2

.

5. The product of spatial product systems

In this section we construct the product of spatial product systems. Unlike the tensor
product of Arveson systems, our product works for Hilbert modules over arbitrary
C∗–algebras. When applied to Arveson systems it coincides only occasionally with
the tensor product, but in general it is only a subsystem of the tensor product.
Using existence of projection morphisms onto the factors, we establish a universal
property of our product (in general not shared by the tensor product of Arveson
systems). We give a complete characterization of the continuous units of the product
in terms of the continuous units of the factors.

Set Jt =
{
t = (tn, . . . , t1) ∈ (0, t]n : n ∈ N, |t| = tn + . . . + t1 = t

}
. We consider

Jt as a lattice taking its order structure from the set of interval partitions It =
{s = (sn, . . . , s1) ∈ (0, t]n : n ∈ N, t = sn > . . . > s1 > s0 = 0} via the bijection
s 7→ (sn − sn−1, . . . , s1 − s0).

Let E`¯ (` = 1, 2) be two product systems of pre-Hilbert modules. The idea to
construct a product of E1¯ and E2¯ is to think of a space spanned by elements of
the form

xn
tn
¯ . . .¯ x1

t1 (5.1)

for t ∈ Jt and xi
ti

either in E1
ti

or in E2
ti

. There is no problem to provide such a
space as vector space by an inductive limit over Jt. (Every xi

ti
∈ E`i

ti
can be written

as an element in the tensor product of several E`i
s to smaller times s, thus, giving

rise to a refinement of t.) Since we want to have a two-sided pre-Hilbert module,
we have to face the problem to define an inner product of elements x1 ∈ E1

ti
and

x2 ∈ E2
ti

.
A first attempt could be to think about the direct sum, i.e. 〈x1, x2〉 = 0. This

is, indeed, possible and results into a product system. Even the units of each E`¯

embed as units into the new product system. However, Uξ1,ξ2

t is 0 for t > 0 and,
of course, idB for t = 0 so that the semigoup Uξ1,ξ2

will not be continuous in any
reasonable topology. Therefore, even if the factors are type I, a product constructed
in that way will never be type I. It is also not difficult to see that already in the
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Hilbert space case the new product system, in general, does not consist of separable
Hilbert spaces.

A solution of this difficulty is possible, if we restrict to spatial product systems
(E`¯, ω`¯) and require that the images of both reference units are no longer distin-
guished in the product and serve there as a reference unit ω¯. In other words, we
have to identify at least the vectors ω1

t and ω2
t in the new product systems, while

only the complements of ω1
t and ω2

t remain orthogonal. That is, we require that
inner products of elements x1 ∈ E1

t , x2 ∈ E2
t from different factors have the form

〈x1, x2〉 = 〈x1, ω1
t 〉〈ω2

t , x2〉. (5.2)

The follwoing theorem is proved by making these ideas precise in an inductive limit
construction.

5.1 Theorem. There exists a spatial product system (F¯, ω¯) fulfilling the follow-
ing properties.

(1) (F¯, ω¯) contains (E`¯, ω`¯) (` = 1, 2) as spatial subsystems and is generated
by them, that is, Ft is spanned by epressions like (5.1).

(2) The inner product of members x1 ∈ E1
t and x2 ∈ E2

t is given by (5.2).

Moreover, every spatial product system fulfilling these properties is canonically iso-
morphic to (F¯, ω¯).

5.2 Definition. We call (F¯, ω¯) the product of (E`¯, ω`¯) and we will denote
it by (

(
E1 } E2

)¯
, ω¯). By (

(
E1 } E2

) ¯̄
, ω¯) we denote its completion which is a

spatial product system of Hilbert modules.

Proof. [Proof of Theorem 5.1. ] Set Ê`
t = (1 − ω`

tω
`
t
∗)E`

t , so that E`
t = ω`

tB ⊕ Ê`
t ,

and define

F̆t = ωtB ⊕ Ê1
t ⊕ Ê2

t

(where ωtB ∼= B via ωt 7→ 1 is the one-dimensional two-sided B–module). The inner
product of elements x` ∈ E`

t is now defined by identifying them via E`
t = ω`

tB⊕Ê`
t
∼=

ωtB ⊕ Ê`
t ⊂ F̆t as elements of F̆t. (In other words, 〈x1, x2〉 = 〈x1, ω1

t 〉〈ω2
t , x2〉 for

elements from different factors, while the inner product of elements from the same
factor remains unchanged.)

Let us fix s, t ∈ R+. We have

E`
s+t = (ω`

sB⊕ Ê`
s)¯ (ω`

tB⊕ Ê`
t ) = ω`

s+tB ⊕ (ω`
s¯ Ê`

t ) ⊕ (Ê`
s¯ω`

t ) ⊕ (Ê`
s¯ Ê`

t )

so that Ê`
s+t = (ω`

s ¯ Ê`
t ) ⊕ (Ê`

s ¯ ω`
t ) ⊕ (Ê`

s ¯ Ê`
t ), whence

F̆s+t

= ωs+tB ⊕ (ω1
s¯Ê1

t )⊕ (Ê1
s¯ω1

t )⊕ (Ê1
s¯Ê1

t )⊕ (ω2
s¯Ê2

t )⊕ (Ê2
s¯ω2

t )⊕ (Ê2
s¯Ê2

t ).

(5.3)
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On the other hand,

F̆s ¯ F̆t = (ωsB ⊕ Ê1
s ⊕ Ê2

s )¯ (ωtB ⊕ Ê1
t ⊕ Ê2

t )

= ωs¯ωtB ⊕ (ωs¯Ê1
t )⊕ (Ê1

s¯ωt)⊕ (Ê1
s¯Ê1

t )⊕ (ωs¯Ê2
t )⊕ (Ê2

s¯ωt)⊕ (Ê2
s¯Ê2

t )

⊕ (Ê1
s ¯ Ê2

t ) ⊕ (Ê2
s ¯ Ê1

t ).

In other words, sending in (5.3) ωs+t to ωs ¯ ωt and ω`
s and ω`

t to ωs and
ωt, respectively, defines an embedding of F̆s+t into F̆s ¯ F̆t as a two-sided sub-
module. Clearly, for any t ∈ Jt we may define a two-sided isometric embedding
F̆t → F̆t := F̆tn

¯ . . . ¯ F̆t1 in a similar way. Finally, let t ≥ s ∈ Jt, i.e.
t = (sm

`m
, . . . , sm

1 , . . . , s1
`1

, . . . , s1
1) (denoted as sm ` . . . ` s1 in [8, 29]) where

sj = (sj
`j

, . . . , sj
1) ∈ Jsj

. By taking the tensor product of the mappings F̆sj
→ F̆sj

(j = m, . . . , 1) we end up with embeddings

βts : F̆s → F̆t.

Such embeddings have been considered very carefully in [8] in the construction
of product systems from CP-semigroups and in [4] in the construction of product
systems from CPD-semigroups so that here we can proceed quickly (see [29, Section
11.3]). See [8] or [29, Appendix A.10] for inductive limits.

Clearly, βtrβrs = βts for all t ≥ r ≥ s so that the F̆t with the βts form an
inductive system with an inductive limit Ft which is a pre-Hilbert B–B–module.
Indentifying F̆t with its image under the canonical embedding into Ft (as prectised
always in [8, 4, 29]), we see that Ft, indeed, is spanned by elements of the form
(5.1) and the inner product of elements xi

ti
, yi

ti
is that of elements in F̆ti . Setting

F0 = B, as in the proof of [8, Theorem 4.8] we show that the family F¯ =
(
Ft

)
t∈R+

is a product system under the identification

(xm
sm
¯ . . .¯ x1

s1
)¯ (yn

tn
¯ . . .¯ y1

t1) = xm
sm
¯ . . .¯ x1

s1
¯ yn

tn
¯ . . .¯ y1

t1 (5.4)

and ω¯ =
(
ωt

)
t∈R+

is a unital central unit for F¯.
Uniqueness is obvious.

5.3 Corollary. Every unit ξ`¯ for E`¯ gives rise to a unit for
(
E1 } E2

)¯
also denoted by ξ`¯. In particular, we have ω`¯ = ω¯. The CPD-semigroup
U ¹ Uω(E1¯) ∪ Uω(E2¯) is uniformly continuous.

Proof. The the embedded elements of a unit form again a unit follows from (5.4).
Continuity of the units follows by Lemma 3.3 because the new reference unit re-
stricted to the subsystem is just the old reference unit.

Now we wish to specify Uω(
(
E1 } E2

) ¯̄
) better. For that goal we construct

projection morphisms p`¯ onto the subsystems E`¯. The projection morphisms will,
then, decompose a given unit ξ¯ for

(
E1 } E2

) ¯̄
into components in E`

¯̄
whose

Trotter product gives back ξ¯. As a byproduct existence of projection morphisms
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onto the subsystems shows that the canonical injections E`¯ → (
E1}E2

)¯ have an
adjoint so that both the injections and the projections are proper spatial morphisms
in the sense of Definition 2.1.

5.4 Proposition. There exist projection morphisms p`¯ onto the subsystems E`¯.
These projection morphisms are spatial and continuous.

Proof. Let p̆`
t denote the projection in Ba,bil(F̆t) onto E`

t . One easily checks that
(p̆`

s¯ p̆`
t)(F̆s¯F̆t) = E`

s+t = p̆`
s+tF̆s+t. Therefore, the mappings p`

t defined by setting

p`
t(x

n
tn
¯ . . .¯ x1

t1) = p̆`
tn

xn
tn
¯ . . .¯ p̆`

t1x
1
t1

define a projection morphism p`¯ =
(
p`

t

)
t∈R+

onto E`¯ ⊂ (
E1 } E2

)¯. (If p`
t are

well-defined then they clearly form a morphism. We refer the reader to [8, Appendix
A] or [29, Appendix A.10] for details about how to well-define mappings on inductive
limits.) By [4, Lemma 5.3.1] (or [29, Lemma 13.2.6]) this morphism is continuous,
i.e. it sends units in Uω(

(
E1 } E2

) ¯̄
) to units in Uω(E`

¯̄
).

5.5 Lemma. The net

(p1
tn

+ p2
tn
− ωtnω∗tn

)¯ . . .¯ (p1
t1 + p2

t1 − ωt1ω
∗
t1)

converges strongly over t = (tn, . . . , t1) ∈ Jt to id(E1}E2)t
.

Proof. It is not difficult to check that (p1
t − ωtω

∗
t ), (p2

t − ωtω
∗
t ), ωtω

∗
t is a triple of

orthogonal projections. Therefore, p1
t +p2

t −ωtω
∗
t = (p1

t −ωtω
∗
t )+(p2

t −ωtω
∗
t )+ωtω

∗
t

is a projection so that also the net consists entirely of projections. In particular, the
net is bounded and it is sufficient to check strong convergence on the total subset of
vectors xt of the form (5.1). On these vectors convergence is clear, because as soon
as the partition t of the net is finer than the partition of xt the elements of the net
act as identity on xt.

5.6 Theorem. Uω(
(
E1 } E2

) ¯̄
) consists of all units ξ¯ =

(
ξ1 } ξ2 } ω−βξ

)¯
where ξ`¯ := p`ξ¯ (` = 1, 2). Moreover, when ξ¯ is exponential ξ`¯ are the unique
exponential units for E`

¯̄
fulfilling ξ¯ =

(
ξ1 } ξ2

)¯.

Proof. By Lemmata 5.5 and A.5 we have

ξt = lim
t

(
(p1

tn
+ p2

tn
− ωtnω∗tn

)¯ . . .¯ (p1
t1 + p2

t1 − ωt1ω
∗
t1)

)
ξt

= lim
t

(ξ1
tn

+ ξ2
tn
− ωtnetnβξ)¯ . . .¯ (ξ1

t1 + ξ2
t1 − ωt1e

t1βξ)

= (ξ1 ¢ ξ2 ¢ − ωβξ)t.

As short look at the generator shows that
(
ξ1 ¢ ξ2 ¢ −ωβξ

)¯ =
(
ξ1 } ξ2 } ω−βξ

)¯.
If ξ¯ is exponential so are ξ`¯ because p`¯ are spatial and, therefore, βξ` = βξ = 0.
As p`¯ gives ξ`¯ such exponential units are unique.
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5.7 Remark. It is clear that the construction of this section may be generalized
to an arbitrary number (finite or infinite) of spatial product systems and that it is
associative and commutative (up to canonical isomorphism).

We close this section by showing that our product is a coproduct rather than a
product in the cateogory of spatial product systems with possibly unbounded and
possibly not adjointable morphisms that respect the reference unit.

5.8 Theorem. Let (E`¯, ω`¯) (` = 1, 2) and (E¯, ω¯) denote spatial product sys-
tems and let w`¯ : E¯ → E`¯ be (possibly unbounded and possibly not adjointable)
spatial morphisms. Then with the canonical embeddings j`¯ : E`¯ → (

E1 } E2
)¯

there exists a unique (possibly unbounded and possibly not adjointable) spatial mor-
phism

w¯ :
(
E1 } E2

)¯ −→ E¯

such that wj`¯ = w`¯.

Proof. Obviously, w¯ is determined uniquely. Let w̆t denote the bilinear operator
from F̆t to Et that sends x ∈ E`

t ⊂ F̆t to w`
tx. On elements of the form (5.1) we put

wt(xn
tn
¯ . . .¯ x1

t1) = w̆tnxn
tn
¯ . . .¯ w̆t1x

1
t1 . That (well-)defines a bilinear operator

wt from
(
E1 }E2

)
t
to Et. Clearly, the wt form a (possibly unbounded and possibly

not adjointable) spatial morphism that fulfills the requirments.

5.9 Remark. Even if each w`¯ is bounded, then w¯ need not be bounded. (For
instance, if E`¯ = E¯ and w`¯ = id¯E¯ then w¯ is bounded only in rare occasions. A
sufficient criterion, that often is also necessary, is that every w̆t be a contraction.)
Therefore,

(
E1 } E2

) ¯̄
is not the coproduct in the category of spatial product

systems of Hilbert B–B–modules.

5.10 Remark. wt is the inductive limit of adjointable mappings, but inductive
limits of adjointable mappings need not be adjointable. This remains true even if
wt is bounded and extends, thus, to the norm completion of the inductive limit.
Only for von Neumann modules we know that every bounded operator has an
adjoint. But it remains the fact discussed in the preceding remark that wt need not
be bounded. However, if all wt have an adjoint then w∗t is the morphism that would
be required by the universal property of a product for the two morphisms w`∗¯

within the category of spatial product systems.

Knowing all this we will appreciate better the product and coproduct properties
of completely spatial product systems which we will discuss in Theorem 6.9

6. Time ordered Fock module

In this section we discuss the time ordered Fock module and show that every com-
pletely spatial product system is a time ordered system. Key ingredients are that
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the generator of the CPD-semigroup associated with a time ordered system has
CE-form and the Kolomogorov decomposition of the CPD-part L0 of the generator
of a completely spatial product systems in (4.2). This enables us to define the index
of a spatial product system. Then we use the results from Section 4 to show that
the index is additive under our product.

Let F be a Hilbert B–B–module. By L2(R+, F ) we denote the completion of
the exterior tensor product F ⊗ L2(R+) (and similarly for other measure spaces).
L2(R+, F ) is a Hilbert B–B–module with obvious structure; see [29] for details. As
usual, we have L2(R+, F ) ¯̄ n = L2(Rn

+, F ¯̄ n).
By ∆n we denote the indicator function of the subset

{
(tn, . . . , t1) : tn > . . . >

t1 > 0
}

of Rn
+. Clearly, ∆n acts as a projection on L2(R+, F ) ¯̄ n. The time ordered

Fock module is

IΓ(F ) =
⊕

n∈N0

∆nL2(R+, F ) ¯̄ n (6.1)

where L2(R+, F ) ¯̄ 0 = B and ω = 1 ∈ B = L2(R+, F ) ¯̄ 0 is the vacuum . Denote
by IΓt(F ) the restriction of IΓ(F ) to [0, t). By [8] IΓ¯(F ) =

(
IΓt(F )

)
t∈R+

is a
product system of Hilbert modules, the time ordered system . The isomorhpism
IΓs(F ) ¯̄ IΓt(F ) → IΓs+t(F ) is obtained by first shifting the interval [0, s) of the left
factor to [t, t + s) and then taking the pointwise tensor product of module-valued
functions; see [29, Theorem 7.1.3]:

[Fs ¯Gt](sm, . . . , s1, tn, . . . , t1) = Fs(sm − t, . . . , s1 − t)¯Gt(tn, . . . , t1).

6.1 Remark. Also the algebraic time ordered Fock module, where in (6.1) direct
sum and tensor products are algebraic, gives rise to an (algebraic) product system;
see [29]. However, in this product system there are usually (that is, unless E¯n = {0}
for some n) no units with components outside the vacuum. Later on we will see
another algebraic subsystem of IΓ¯(F ) consisting of the spaces IΓUc

t (F ) that are
generated algebraically by the continuous units.

IΓ¯(F ) has a central unital unit ω¯ =
(
ωt

)
t∈R+

with ωt = ω and we will think

always of the time ordered system as the spatial product system (IΓ¯(F ), ω¯).
But IΓ¯(F ) has lots of other units. Let β ∈ B and ζ ∈ F . Let ξ0

t = etβ ∈
B = L2(R+, F ) ¯̄ 0 be the semigroup in B with generator β ∈ B and define
ξn
t ∈ ∆nL2(R+, F ) ¯̄ n by setting

ξn
t (tn, . . . , t1) = ξ0

t−tn
ζ ¯ ξ0

tn−tn−1
ζ ¯ . . .¯ ξ0

t2−t1ζξ0
t1 .

By [17] ξ¯(β, ζ) =
(
ξt(β, ζ)

)
t∈R+

with ξn
t being the component of ξt(β, ζ) in the

n–particle sector, defines a unit for IΓ¯(F ). Other results from [17] can be rephrased
in the following way; see [29, Chapter 7].
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6.2 Theorem. Uc(F ) :=
{
ξ¯(β, ζ) : β ∈ B, ζ ∈ F

}
is equal to Uω(IΓ¯(F )). Identi-

fying this as the set B ×F , the generator of U ¹ Uc(F ) is the CE-generator L given
by

L(β,ζ),(β′,ζ′)(b) = 〈ζ, bζ ′〉+ β∗b + bβ′.

We find the form of the maximal completely spatial subsystem of a spatial
system and, in particular, of a completely spatial system.

6.3 Theorem. Let (E ¯̄ , ω¯) be a spatial product system of Hilbert modules. Then
there is a (unique up to two-sided isomorphism) Hilbert B–B–module F such that the
maximal completely spatial subsystem (EUω

¯̄
, ω¯) of E ¯̄ is isomorphic to IΓ¯(F ).

In particular, completely spatial product systems of Hilbert modules are time ordered.

6.4 Definition. We refer to the space F as the index of a spatial product system.

Proof. [Proof of Theorem 6.3.] Let L0 be the completely positive definite part of the
generator L of U ¹ Uω(E ¯̄ ) as in (4.2). Let (F,

(
ζξ

)
ξ∈Uω(E ¯̄ )

) be the (completion of

the) Kolmogorov decomposition for L0, i.e. Lξ,ξ′
0 (b) = 〈ζξ, bζξ′〉 and F = span bζξb

′.
Then

ξ¯ 7−→ ξ¯(βξ, ζξ)

defines an isometric morphism of the maximal completely spatial subsystem of
E ¯̄ onto a subsystem of IΓ¯(F ) (the generators of the associated CPD-semigroups
coincide and this determins inner products on the total subset of elements of the
form (3.2)) sending ω¯ to ω¯ (obviously, ζω = 0).

To see surjectivity, we observe that by Proposition 4.2 the subsystem generated
by ξ¯(β, ζ) and ω¯ contains the exponential unit ξ¯(0, ζ) and, more generally, by
Lemma 4.1 any unit ξ¯(0, λζ) (λ ∈ [0, 1]). Differentating the continuous function
λ 7→ ξt(0, λζ) with respect to λ and putting λ = 0, we obtain the function ζII [0,t)

(with t ∈ R+, ζ ∈ F arbitrary) in the one-particle sector. By taking tensor products
we obtain all functions

ζnII [0,tn) ¯ . . .¯ ζ1II [0,t1)

n ∈ N, t ∈ Jt, ζi ∈ F . In the proof of [29, Theorem 7.2.2] we showed that these
functions are total in IΓt(F ).

Now let w¯ : IΓ¯(F ) → IΓ¯(F ′) be a spatial isomorphism between two time
ordered product systems. It sends Uc(F ) to a continuous set of units containing
ω′¯. By Lemma 3.3 this subset is contained in Uc(F ′) so that w¯ is a (possibly
unbounded) continuous morphism. By [4, Theorem 5.2.1] (or [29, Theorem 13.2.1])
the (possibily unbounded) continuous morphisms (not necessarily spatial) are in
one-to-one correspondence with matrices Γ =

„
γ η∗
η′ a

«
∈ Ba,bil(B ⊕ F,B ⊕ F ′). (The

morphism w¯ with matrix Γ acts on units as wξ¯(β, ζ) = ξ¯
(
γ + β + 〈η, ζ〉 , η′ +

aζ
)
.) By [4, Corollary 5.2.4] (or [29, Corollary 13.2.4]) in order that w¯ be a (not
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necessarily spatial) isomorphism, a ∈ Ba,bil(F, F ′) must be a two-sided unitary, i.e.
an isomorphism F → F ′.

6.5 Remark. We check immediately that in order that w¯ be spatial, we must
have γ = 0, η = 0, η′ = 0.

We use the concrete form of the morphisms in order to show that the spatial
structure of IΓ¯(F ) does not depend on the choice of the reference unit.

6.6 Proposition. If ξ¯ = ξ¯(β, ζ) is another central unital unit then there is an
automorphism of IΓ¯(F ) sending ω¯ to ξ¯.

Proof. In order that ξ¯ be central, it is necessary and sufficient that β ∈ CB(B), ζ ∈
CB(F ). (This follows by investigating carefully the generator in Theorem 6.2 taking
into account that L(β′,ζ′),(β,ζ)(b) = L(β′,ζ′),(β,ζ)(1)b for all b, β′ ∈ B; ζ ′ ∈ F .) In
order that ξ¯ be unital it is necessary and sufficient that

0 = Lξ,ξ(1) = 〈ζ, ζ〉+ β∗ + β.

This means the real part of β is − 〈ζ,ζ〉
2 and the imaginary part is arbitrary. The

conditions in [4, Corollary 5.2.4] that the endomorphism w¯ determined by the
matrix Γ =

„
γ η∗
η′ a

«
∈ Ba,bil(B⊕F ) be an automorphism are that a be an arbitrary

automorphism of F and η′ be an arbitrary element of CB(F ) while η = −a∗η′ and
γ = ih− 〈η′,η′〉

2 for some arbitrary self-adjoint element h ∈ CB(B). Clearly, w¯ sends
ω¯ = ξ¯(0, 0) to ξ¯(γ, η′). Therefore, if we choose η′ = ζ and γ = β (a arbitrary
and η correspondingly), then we obtain an automorphism sending ω¯ to ξ¯.

Now we show that F merits to be called an index.

6.7 Theorem. Let (E`
¯̄

, ω`
¯̄

) (` = 1, 2) be two spatial product systems with
indices F `. Then the index of (

(
E1}E2

) ¯̄
, ω¯) is F 1⊕F 2. In particular, (

(
IΓ(F 1)}

IΓ(F 2)
) ¯̄

, ω¯) is isomorphic to (IΓ¯(F 1 ⊕ F 2), ω¯).

Proof. By Theorem 5.6 any continuous unit for
(
E1 } E2

) ¯̄
may be obtained

as a Trotter product of units in E`
¯̄ ⊂ (

E1 } E2
) ¯̄

, and by Theorem 6.3 the

units are even from the maximal completely spatial subsystems IΓ¯(F `) ⊂ E`
¯̄

.By
Corollary 4.3 we may restrict to exponential units. By looking at the generators of
the relevant CPD-semigroups we see that sending the Trotter product of exponential
units ξ¯(0, ζ`) for IΓ¯(F `) to the exponential unit ξ¯(0, ζ1 ⊕ ζ2) for IΓ¯(F 1 ⊕ F 2)
defines a surjective isometric morphism (i.e. an isomorphism) from the maximal
completely spatial subsystem

(
IΓ(F 1)}IΓ(F 2)

) ¯̄
of

(
E1}E2

) ¯̄
onto IΓ¯(F 1⊕F 2).

Clearly, the reference units are preserved.

In the case of type I systems of Hilbert spaces our product is nothing but the
tensor product. In the case of type II systems we obtain at least a subsystem of the



22

tensor product. (It may coincide with the tensor product, but it need not.) To see
this we use for xt ∈ E1

t ∪ E2
t ⊂ E1

t ⊕ E2
t the notation

(xt)` =

{
xt for xt ∈ E`

t

ω`
t otherwise.

6.8 Proposition. Let (H` ⊗̄ , ω`⊗) (` = 1, 2) be two spatial product systems of
Hilbert spaces and denote by (F ⊗̄ , ω⊗) their product. Then the mapping

ut : xn
tn
⊗ . . .⊗ x1

t1 7−→ ((xn
tn

)1 ⊗ . . .⊗ (x1
t1)

1)⊗ ((xn
tn

)2 ⊗ . . .⊗ (x1
t1)

2)

extends as an isometry Ft → H1
t ⊗̄ H2

t and the family u⊗ =
(
ut

)
t∈R+

is an isometric
morphism of product systems. In the case of type I systems it is an isomorphism,
i.e. the ut are unitary.(m)

Proof. The mapping is isometric, because the mapping xt 7→ (xt)1 ⊗ (xt)2 on F̆t

is isometric. In the case of type I systems IΓ⊗(K`) the range of ut contains all
exponential vectors in IΓt(K1) ⊗̄ IΓt(K2) = IΓt(K1 ⊕ K2) to step functions with
values in the total set K1 ∪ K2 3 0 which are total by [29, Theorem 7.4.3]. (See
also Parthasarathy and Sunder [22] and Skeide [27].)

We close this section by showing that the product merits to be called a product
(actually also a coproduct) at least in the category of completely spatial product
systems. In order to avoid problems with unbounded morphisms we consider spa-
tial morphisms of the algebraic subsystems IΓUc

¯
(F ). From [4] (see [29, Theorem

13.2.1]) it follows that such morphisms w¯ : IΓUc
¯

(F 1) → IΓUc
¯

(F 2) are in one-
to-one correspondence with operators a ∈ Ba,bil(F 1, F 2), and that w¯ acts on a
unit as wξ¯(β, ζ) = ξ¯(β, aζ). If a is a contraction, then w¯ is bounded (even
contractive). The converse need not be true.

6.9 Theorem. Let IΓ¯(F `) (` = 1, 2) and IΓ¯(F ) be completely spatial product
systems and let w`¯ : IΓUc

¯
(F ) → IΓUc

¯
(F `) be (possibly unbounded) morphisms.

Then

(1) IΓ¯(F 1 ⊕ F 2) with the projection morphisms p`¯ is the product in the cate-
gory of completely spatial product systems, i.e. there exists a unique (possibly

(m)When the spatial product systems of Hilbert spaces are continuous in the sense of [32], then one
may show that already one completely spatial factor is sufficient to have equality of our product
with the tensor product. In the separable case (i.e. Arveson systems) this can be shown using
results from Liebscher [16]. (Treating the general case would require to repeat a good deal of [32,
Section 7], so we decided not to include a proof here.) Liebschers methods also show that there
exist examples when both spatial factors are not completely spatial where our product is a proper
subsystem of the tensor product. (The two subsystems

`
H1

t ⊗ω1
t

´
t∈R+ and

`
ω2

t ⊗H2
t

´
t∈R+ do not

generate the whole tensor product
`
H1 ⊗̄ H2

´ ⊗̄
.) A proof of this statement will appear in Bhat,

Liebscher and Skeide [7].
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unbounded) morphism

w¯ : IΓUc
¯

(F ) −→ IΓUc
¯

(F 1 ⊕ F 2)

such that p`w¯ = w`¯.
(2) IΓ¯(F 1 ⊕ F 2) with the canonical embeddings j`¯ is the coproduct in the cate-

gory of completely spatial product systems, i.e. there exists a unique (possibly
unbounded) morphism

w∗¯ : IΓUc
¯

(F 1 ⊕ F 2) −→ IΓUc
¯

(F )

such that w∗j`¯ = w`∗¯.

w∗¯ is, indeed, the adjoint of w¯.

Proof. Let a` ∈ Ba,bil(F, F `) be the operators generating the morphisms w`¯. It
follows that the operator a = a1 +a2 ∈ Ba,bil(F, F 1⊕F 2) generates a morphism w¯

which has all the properties desired for the product, and that its adjoint (generated
by a∗) has all the properties desired for the coproduct.

6.10 Remark. Even if a` are contractions, then a = a1+a2 need not be. Neverthe-
less, IΓ¯(F 1⊕F 2) is determined by each of the preceding universal properties up to
isomorphism. This is so, because in the isomorphism (constructed in the usual way
from the univeral property) between two candidates the operator a decomposes as
a1⊕a2 where a` are unitarily equivalent to unitaries in Ba(F `). (This is so, because
the restriction to IΓ¯(F `) must define an isomorphism of IΓ¯(F `).) Therefore, also
a is a unitary.

7. Noises and spatial product systems

E0–semigroups acting as strict unital endomorphisms on Ba(E) for some Hilbert
B–module E give rise to a product system E ¯̄ of Hilbert B–modules. In the case
when E = H is a separable infinite-dimensional Hilbert space the correspondence
between strongly continuous E0–semigroups (up to cocycle conjugacy) and Arve-
son systems (up to isomorphism) is one-to-one. For Hilbert modules one direction
of this result is wrong. (There are E0–semigroups on E1 and E2 having the same
product system but where Ba(E1) and Ba(E2) are nonisomorphic so that cocy-
cle conjugacy has no meaning. Only if we fix the isomorphism class of E, then
two E0–semigroup have the same product system, if and only if they are concycle
conjugate; see [30].(n)) The other direction, constructing an E0–semigroup from a
product system, promisses to remain true (if we do not ask too ingenuously), but

(n)If we fix, instead, the strict isomorphism class of Ba(E), then the product system of two
conjugate and therefore also of cocycle conjugate E0–semigroups are Morita equivalent; see Skeide
[35].
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presently we do not yet have a proof. This difficulty dissappears, however, as soon
as we have a (unital or continuous) unit.

In this section we repeat results concerning E0–semigroups on Hilbert modules
with particular emphasis on the spatial case that corresponds to noises.(o) In the
following section we will apply the results to extend the product of spatial product
systems to a product of noises.(p)

In [30] (see [29, Section 14.1]) we associated with a triple (E, ϑ, ξ) consisting of a
Hilbert B–module, a strict (i.e. ϑt is ∗–strongly continuous on bounded subsets of
Ba(E) for all t ∈ R+) E0–semigroup ϑ on Ba(E) and a unit vector ξ ∈ E a product
system E ¯̄ in the following way. We define a family j =

(
jt

)
t∈R+

of representations
jt of B on E by setting j0(b) = ξbξ∗ and jt = ϑt ◦ j0. Then with pt = jt(1) the
submodule Et = ptE of E becomes a two-sided Hilbert module with left action
b.xt = jt(b)xt. Then one checks that

x¯ yt = ϑt(xξ∗)yt (7.1)

defines a unitary identification E ¯̄ Et = E such that a¯ idEt = ϑ(a). (One easily
verifies that the mapping x ¯ yt 7→ ϑt(xξ∗)yt is isometric. Surjectivity is slightly
harder to verify and uses that ϑt is strict.) Restricting (7.1) to the subspace Es ¯̄ Et

of E ¯̄ Et, we obtain two-sided isomorphisms Es ¯̄ Et = Es+t. By the semigroup
property of ϑ we see that

(E ¯̄ Es) ¯̄ Et = E ¯̄ (Es ¯̄ Et).

Restricting to Er ⊂ E we see that (Er ¯̄ Es) ¯̄ Et = Er ¯̄ (Es ¯̄ Et) so that
E ¯̄ =

(
Et

)
t∈R+

is a product system; see [29, Theorem 14.1.1].

(E, ϑ, ξ) is a weak dilation (i.e. the mappings Tt : b 7→ 〈ξ, jt(b)ξ〉 form a semi-
group T on B, necessarily completely positive and unital), if and only if the pt are
increasing (i.e. pt ≥ p0 for all t ∈ R+). In this case the vectors ξt = ξ are in Et for
all t ∈ R+ and ξ¯ =

(
ξt

)
t∈R+

is a unit for E ¯̄ that satisfies also ξ = ξ ¯ ξt; see

[29, Proposition 14.1.6]. We deonote E∞ =
⋃

t∈R+
Et. The weak dilation (E, ϑ, ξ)

(o)The term noise is justified by the fact that such E0–semigroups come along with filtrations of
subalgebras that are monotone independent in a certain invariant conditional expectation; see
Skeide [33].
(p)We discuss here the construction from Skeide [30] of a product system from an E0–semigroup
on Ba(E) based on the assumption that E has a unit vector ξ. (This construction generalizes
directly the construction of Arveson systems in Bhat [5]. It has nothing to do with Arveson’s
original construction from [2]. In fact, we explain in Skeide [32, 34] that Arveson’s construction
leads to product systems that are anti-isomorphic to that from Bhat’s construction, and we discuss
a generalization of Arveson’s construction that works only for von Neumann modules and leads
to product systems of bimodules over the commutant B′ of B.) Only recently, we have freed the
construction from assuming existence of a unit vector (and that B be unital) in Muhly, Solel and
Skeide [19]. The old approach from [30] has the advantage of very concrete identifications of the
members of the product system as submodules of E. (Additionally, requiring for spatial product
systems existence of intertwining semigroups of isometries in the spirit of Powers, as a consequence,
will lead to unital algebras and loads of unit vectors.)
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is called primary , if E = E∞. In this case, limt→∞ pt = idE strongly. The weak
dilation (E, ϑ, ξ) is a (weak) noise , i.e. T is the trivial semigroup on B, if and
only if ξ¯ is also central. In this case, ϕ0(a) = p0bp0 defines a conditional expecta-
tion ϕ0 : Ba(E) → j0(B) that is invariant for ϑ, i.e. ϕ0 ◦ ϑt = ϕ0 for all t ∈ R+.
Observe that if (E, ϑ, ξ) is primary then the strong limit limt→∞ jt(b) defines a
unital representation on E = E∞ so that E is turned into a Hilbert B–B–module.
In other words, B is identified as a unital subalgebra of Ba(E) which, clearly, is
invariant for ϑ. Since jt(b)ξ = ξb for all t, we find that bξ = ξb. In other words,
ϕ(a) = 〈ξ, aξ〉 defines a vector expectation (in analogy with vector state) onto
B ⊂ Ba(E). (In fact, (E, ξ) may be considered as the GNS-construction of the
conditional expectation ϕ in the sense of [23].) Since j0 ◦ ϕ = ϕ0 and ϕ ◦ ϕ0 = ϕ,
the expectation is invariant for ϑ. In general, we call (E, ϑ, ξ) a unital noise , if
E is a Hilbert B–B–module and ϕ = 〈ξ, •ξ〉 is an invariant vector expectation onto
the subalgebra B of Ba(E).

So far, we have investigated how to construct product systems from
E0–semigroups, and how additional structure like being a dilation or even a noise
gives rise to additional structure of the product system like possessing a unit or even
being spatial. Now we discuss in how far we may reverse the construction. As we
do not yet know, whether every (reasonable) unitless product system comes from
an E0–semigroup, we discuss only the (rather simple) case in presence of a (unital)
unit.

From [8] (see [29, Section 11.4]) we know how to construct from a unital unit ξ¯

in a product system E ¯̄ a Hilbert module E∞ = lim ind Et, where Et is embedded
isometrically into Es+t via xt 7→ ξs ¯ xt. By obvious extension of (2.2) and its
associativity, we find

E∞ = E∞ ¯̄ Et and (E∞ ¯̄ Es) ¯̄ Et = E∞ ¯̄ (Es ¯̄ Et). (7.2)

It follows that ϑt : a 7→ a ¯ idEt ∈ Ba(E∞ ¯̄ Et) = Ba(E∞) defines a strict
E0–semigroup ϑ =

(
ϑt

)
t∈R+

on Ba(E∞). Under the inductive limit the vectors
ξt ∈ Et are all mapped to the same unit vector ξ ∈ E∞. This shows clearly,
that E∞ is not a two-sided module (giving back the correct left action of B
on Et), unless ξ¯ is central. Embedding B via j0(b) = ξbξ∗ into Ba(E∞), we
find that 〈ξ, ϑt ◦ j0(b)ξ〉 = 〈ξt, bξt〉, i.e. (E∞, ϑ, ξ) is a weak dilation of the CP-
semigroup Tt = 〈ξt, bξt〉. The dilation is primary and constructing its product sys-
tem

(
ptE∞

)
t∈R+

gives back the product system we started with. The dilation is
a (weak) noise, if and only if ξ¯ is also central. In this case, as before E∞ may
be turned into a two-sided Hilbert module such that the Et are contained as two-
sided submodules. In particular, with any spatial product system (E ¯̄ , ω¯) we may
associate a strict primary weak noise (E∞, ϑ, ω).
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8. The product of noises

So far we have introduced index and product of spatial product systems. But often
product systems stem from E0–semigroups, and so far we do not have a product of
E0–semigroups in the module case that could play the role of the tensor product
of E0–semigroups in the Hilbert space case. In this section we present a product at
least of those E0–semigroups that are (weak) noises as discussed in the preceding
section. We will see that if the noises are primary, then also the product will be
primary and, therefore, we find also a product of unital noises coming from primary
noises. We close the section with the technical result that our product preserves
continuity in time.

8.1 Theorem. Let (E`, ϑ`, ω`) (` = 1, 2) be two strict weak noises with associated
spatial product systems (E`

¯̄
, ω`¯) and product (

(
E1 } E2

) ¯̄
, ω¯). Then there

exists a strict weak noise (F, ϑ, ω) fulfilling the following properties:

(1) The spatial product system associated with (F, ϑ, ω) is (
(
E1 } E2

) ¯̄
, ω¯).

(2) F contains E` as submodules in such a way that 〈x1, x2〉 = 〈x1, ω〉〈ω, x2〉 for
all x1 ∈ E1, x2 ∈ E2.

(3) F is generated by its submodules E` and the product system
(
E1 } E2

) ¯̄
in

the sense that elements of the form x` ¯ yt (` = 1, 2;x` ∈ E`; t ∈ R+; yt ∈
(E1 } E2)t) are total in F .

Moreover, if (F ′, ϑ′, ω′) is another strict weak noise fulfilling these properties, then
(F ′, ϑ′, ω′) is unitarily equivalent to (F, ϑ, ω), that is there is unitary u ∈ Ba(F, F ′)
intertwining ϑ′ and ϑ and uω = ω′.

8.2 Definition. We call (F, ϑ, ω) the product of (E1, ϑ1, ω1) and (E2, ϑ2, ω2) and
we denote the product by (E1 } E2, ϑ1 } ϑ2, ω).

Proof. [Proof of Theorem 8.1. ] Similar to Section 5 we set Ê` = E` ª ω`B and
Ğ = ωB ⊕ Ê1 ⊕ Ê2 with obvious identifications of E` as submodules. We define
Gt = Ğ ¯̄

(
E1 } E2

)
t
. We observe that F̆t = ωtB ⊕ Ê1

t ⊕ Ê2
t ⊂

(
E1 } E2

)
t

so that
Ğ¯ F̆t ⊂ Ğ¯ (

E1 } E2
)
t
= Gt and as in Equation (5.3) and its successor we show

that Ğ ⊂ Ğ¯ F̆t so that, in the end, Ğ ⊂ Gt. Therefore,

Gt = Ğ ¯̄
(
E1}E2

)
t
⊂ Gs ¯̄

(
E1}E2

)
t

= Ğ ¯̄
(
E1}E2

)
s
¯̄

(
E1}E2

)
t

= Gs+t

and, obviously, the Gt with the canonical embeddings Gt → Gs+t form an inductive
system of Hilbert B–modules with (completed) inductive limit G. Clearly, G with
the product system

(
E1 } E2

) ¯̄
fulfills (7.2) and, therefore, by setting ϑt(a) =

a ¯ id(E1}E2)t
we define a strict E0–semigroup on Ba(G). The vector ω = ω ¯ ωt

is in all Gt and, thus, gives rise to a unit vector ω in G. All three together give rise
to a weak noise that fulfills the stated properties.
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To see uniqueness we define the unitary u simply by sending element x` ¯ yt

from the total subset of F to the corresponding element from the total subset of
F ′. Choosing a rank-one operator a ∈ Ba(F ) we see ϑt(a) and ϑ′t(uau∗) act in the
same way on elements of the form

x` ¯ ysm
¯ . . .¯ ys1 ¯ ztn

¯ . . .¯ zt1

with tn + . . . + t1 = t, x` ∈ E` and ysk
∈ E1

sk
or E2

sk
, ztj

∈ E1
tj

or E2
tj

. A moments
thought shows that these elements still form a total subset. Of course, uω = ω′.

8.3 Corollary. The product is primary, if and only if both factors are. In particu-
lar, our product gives rise to a product of (unital) primary weak noises.

Proof. x`¯ yt generate E1 } E2. But, if (E`, ϑ`, ω`) is primary, then it is sufficient
to consider only x` ∈ E`

s. Therefore, x` ¯ yt ∈ E`
s ¯ (E1 } E2)t ⊂ (E1 } E2)s+t.

This shows that (ϑ1 } ϑ2)(ωω∗) increases to idE1}E2 .

8.4 Definition. The index of a strict weak noise is the index of its associated
spatial product system.

From Property 1 of Theorem 8.1 we obtain immediately:

8.5 Corollary. The index of strict weak noises is additive under product.

Recall that ϑ is strongly continuous if t 7→ ϑt(a)x is continuous for all a ∈
Ba(E), x ∈ E. (In the case of a von Neumann module E we might think of the
σ–weak topology of the von Neumann algebra Ba(E). Here we stay at the level of
Hilbert modules and consider only the strongly continuous case.)

We know from [29, Theorem 11.4.12] that the E0–semigroups constructed from
a unital unit in a type I system, in particular, those constructed from a completely
spatial system, are strongly continuous and, because the product is again completely
spatial, also the product of such noises must be strongly continuous. We generalize
this to arbitrary strongly continuous noises.

8.6 Theorem. Let (E`, ϑ`, ω`) (` = 1, 2) be two strict strongly continuous weak
noises. Then their product is strongly continuous, too.

Proof. The crucial step in the proof [29, Theorem 11.4.12] was the right shift
St : x 7→ x ¯ ωt. (For an arbitrary unit this mapping is ‘very bad’, in the sense
that it is not right linear. Here where we are dealing with central units, St is an
isometry which is even adjointable, because there exists the projection id¯ωtω

∗
t

onto the range; cf. [29, Proposition 1.5.13].)
First, we observe that for each x ∈ E` separately the mapping t 7→ x¯ ω`

t ∈ E`

and, therefore, also the mapping t 7→ x ¯ ωt ∈
(
E1 } E2

)
, is (norm) continuous.

(This follows from x¯ ω`
t = ϑ`

t(xω`∗)ω` and strong continuity of ϑ`.) Applying the
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projection pt we find that xt ∈ E`
t is close to pt(xt ¯ ω`

ε) = (pt−εxt)¯ ω`
ε which in

turn is close to ω` ¯ (pt−εxt) for all sufficiently small ε ≥ 0. Now let

X = x¯ xn
tn
¯ . . .¯ x1

t1 (8.1)

be an element in
(
E1 } E2

)
where x and xi

ti
are from E1 or E2 and E1

ti
or E2

ti
,

respectively, chosen independently. From the preceding considerations it follows that

X ≈ x ¯ (ωε ¯ ptn−εx
n
tn

)¯ . . .¯ (ωε ¯ pt1−εx
1
t1)

≈ (x¯ ωε)¯ (ptn−εx
n
tn
¯ ωε)¯ . . .¯ (pt1−εx

1
t1 ¯ ωε) ≈ X ¯ ωε

for sufficiently small ε. In other words, St is strongly continuous on the total subset
of vectors of the form (8.1) and, therefore, everywhere. From

‖(ϑε(a)− a)x‖ ≤ ‖ϑε(a)(x− Stx)‖+ ‖ϑε(a)Stx− ax‖
≤ ‖a‖ ‖x− Stx‖+ ‖Stax− ax‖ → 0

it follows that ϑ is strongly continuous.

Of course, also the results of this section extend to an arbitrary number of
factors, and the constructions are associative and commutative.

9. The product system of a free flow

The time shift endomorphism on B
(
Γ(L2(R+,K))

)
is also refered to as the CCR-

flow of index dim K. In analogy we refer to the time shift on Ba(IΓ(F )) as the (gen-

eralized) CCR-flow of index F . Also on the full Fock module F(L2(R+, F )) =⊕
n∈N0

L2(R+, F ) ¯̄ n we have a time shift St which induces an E0–semigroup St on
Ba

(F(L2(R+, F ))
)

via the facotrization

F(L2(R+, F )) = F(L2([t,∞), F )) ¯̄
(Bω ⊕ L2([0, t), F ) ¯̄ F(L2(R+, F ))

)

= F(L2(R+, F )) ¯̄
(Bω ⊕ L2([0, t), F ) ¯̄ F(L2(R+, F ))

)
.

Together with the vacuum vector ω, the triple (F(L2(R+, F )), S, ω) is a primary
noise which we call the free flow of free index F .

In this section we show that the associated product system F¯(F ) =(Ft(F )
)
t∈R+

is completely spatial and we determine its index. This is a gener-
alization of Fowler [11] who did that program for Hilbert spaces. Like Fowler we
construct explicitly all units, observe that they are generating and, after guess-
ing from their form the correct index, we define an explicit isomorphism. It seems,
however, that our computations are considerably simpler. On the one hand, our con-
struction of product systems from E0–semigroups works very direct. We just can
read off the correct product system from the above factorization by applying the
simple identifications as described in Section 7. On the other hand, we (are forced
to) work in the time ordered version of Fock module instead of that of symmetric
Fock spaces and it turns out that this simplifies combinatorics considerably. In our
opinion this is a strong indication that also in the analysis of Arveson systems it
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could be more convenient to consider type I Arveson systems as time ordered Fock
spaces rather than symmetric Fock spaces.

For some measurable subset S ⊂ R+ let us denote ES = L2(S, F ). We remarked
already in [29, Example 14.1.4] that by our construction of product systems from
E0–semigroups, Ft(F ) = ptF(ER+) = Bω ⊕ E[0,t) ¯̄ F(ER+). One may check that
the identification
(Bω ⊕ E[0,s) ¯̄ F(ER+)

)
¯̄

(Bω ⊕ E[0,t) ¯̄ F(ER+)
)

∼= St

(Bω ⊕ E[0,s) ¯̄ F(ER+)
)

¯̄
(Bω ⊕ E[0,t) ¯̄ F(ER+)

)

=
(Bω ⊕ E[t,t+s) ¯̄ F(E[t,∞))

)
¯̄

(Bω ⊕ E[0,t) ¯̄ F(ER+)
)

= Bω ⊕ E[0,t) ¯̄ F(ER+) ⊕ E[t,t+s) ¯̄ F(E[t,∞)) ¯̄
(Bω ⊕ E[0,t) ¯̄ F(ER+)

)

= Bω ⊕ E[0,t) ¯̄ F(ER+) ⊕ E[t,t+s) ¯̄ F(ER+) = Bω ⊕ E[0,t+s) ¯̄ F(ER+)

gives the correct product system structure. (“=” means canonical identification as
subspace of F(ER+).) Of course, the restriction to (separable) Hilbert spaces of this
result can be found in [11] (with a different proof).

Our next goal is to find the form of all units. Let ξ¯ be a unit for F¯(F ) and
expand it into ξt =

⊕
n∈N0

ξn
t where ξn

t ∈ E[0,t) ¯̄ E
¯̄ (n−1)
R+

. By the unit property
we have

ξn
s+t =

n∑

k=0

Stξ
k
s ¯ ξn−k

t . (9.1)

In order to “derive” the form of the units, let us start by assuming that the ξn
t ,

indeed, are functions of (tn, . . . , t1) ∈ [0, t) × Rn−1
+ . In other words, (9.1) means

equality everywhere on [0, t)×Rn−1
+ and not just almost everywhere. (Doing so, we

might loose some units. But, since we still will obtain a generating subset of units,
it does not matter.) We will also assume that ξ¯ is an exponential unit, i.e. ξ0

t = ω.
Fixing (tn, . . . , t1) ∈ [0, s+t)×Rn−1

+ , we show that Stξ
k
s¯ξn−k

t (tn, . . . , t1) 6= 0 for
at most one k = 1, . . . , n. (Of course, k depends on (tn, . . . , t1).) To see this choose
a k0 with nonzero contribution to (9.1). Then tn−k0 must be in [0, t). Therefore,
tn−k0 − t < 0 so that certainly the contribution of all terms in (9.1) with k > k0 is
0. From this we conclude that for k 6= k′ the contribution for k or that for k′ must
vanish.

Suppose tn < t. Then only k = 0 can contribute to (9.1). We conclude ξs+t = ξn
t

on [0, t) × Rn−1
+ . It follows that ξn

t (tn, . . . , t1) does not depend on t as long as
t > tn so that there exists a well-defined function ξn : Rn

+ → F ¯̄ n such that
ξn
t (tn, . . . , t1) = II [0,t)(tn)ξn(tn, . . . , t1).

Next suppose that t` ≥ tn ≥ t for all `. Then only k = n can contribute to (9.1).
Inserting ξn for ξn

s+t and ξn
s and, finally, putting t = tn, we find ξn(tn, . . . , t1) =

ξn(0, tn−1−tn, . . . , t1−tn). In other words, there exists a function ζn : Rn−1
+ → F ¯̄ n

such that

ξn
t (tn, . . . , t1) = II [0,t)(tn)ζn(tn−1 − tn, . . . , t1 − tn) (9.2)
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whenever t` ≥ tn for all `.
It is clear that defining ξn

t on tuples t` ≥ tn as in (9.2) for an arbitrary family of
functions ζn (n ∈ N), every part of (9.1) where ξn appears on the right-hand side
is satisfied. For tuples not fulfilling t` ≥ tn, (9.1) becomes a recursion to reduce the
definition of ξn

t to that of ξk
t (k < n). In order to obtain a complete definition of ξt

in terms of all ζn, we must decompose an arbitrary tuple (tn, . . . , t1) ∈ [0, t)×Rn−1
+

into subtuples fulfilling the condition such that (9.2) can be applied. In order to
have well-definedness the decomposition must be unique. The following proposition
settles both problems and justifies the Ansatz in the consecutive theorem.

9.1 Proposition. Let (tn, . . . , t1) ∈ Rn
+ (n ∈ N). Then there exist unique

m, k1, . . . , km ∈ N and s`
k ∈ R+ (1 ≤ ` ≤ m, 1 ≤ k ≤ k`), fulfilling s`

k ≥ s`
k`

(1 ≤ k ≤ k`), s`
k`

> s`−1
k`−1

and

(tn, . . . , t1) = (sm
km

, . . . , sm
1 , . . . , s1

k1
, . . . , s1

1). (9.3)

Obviously, every tuple on the right-hand side with sj
i fulfilling the stated conditions

may appear.

Proof. For n = 1 the statement is clear. We proceed by induction on n. Start with
removing tn from the tuple and, going backwards, continue removing all tk, as long
as tk ≥ tn. If the remaining tuple is empty, then we are done. If the remaining tuple
is nonempty, then its left entry is strictly smaller than tn. Applying the induction
hypothesis to this tuple (whose length is smaller than n), existence follows.

Once existence is established, it follows that the first tuple to be removed from
the left is unique. Hence, uniqueness follows, once more, by induction.

The points of a typical tuple as in (9.3) may be visualized as in the following
diagram. In each subtuple (s`

k`
, . . . , s`

1) the first element s`
k`

must hit the thick line
while the remaining ones must be (not necessarily strictly) above the thick line.

0

sm
km

sm
km

sm
1. . .

sm−1
km−1

sm−1
km−1

sm−1
1. . .

...

. . .

s1
k1

s1
k1

s1
1. . .

9.2 Corollary. Let St be the disjoint union of all [0, t) × Rn−1
+ (n ∈ N) and let

f =
(
fn

)
n∈N be a summable family of integrable functions fn : [0, t) × Rn−1

+ → B.
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(That means f ∈ L1(St,B).) Then

∫

St

f dS :=
∞∑

n=1

∫ t

0

dtn

∫ ∞

0

dtn−1 . . .

∫ ∞

0

dt1 fn(tn, . . . , t1)

=
∞∑

n=1

∑

k1+...+km=n

∫ t

0

dsm
km

∫ ∞

skm

dsm
km−1 . . .

∫ ∞

sm
km

dsm
1

. . .

∫ s2
k2

0

ds1
k1

∫ ∞

sk1

ds1
k1−1 . . .

∫ ∞

s1
k1

ds1
1 fn(sm

km
, . . . , sm

1 , . . . , s1
k1

, . . . , s1
1).

After a resummation and substitutions t` for s`
k`

and s`
k for s`

k − t` (k < k`), we
obtain

∞∑
m=1

∞∑

k1,...,km=1

∫ t

0

dtm

∫ tm

0

dtm−1 . . .

∫ t2

0

dt1

∫ ∞

0

dsm
km−1 . . .

∫ ∞

0

dsm
1 . . .

∫ ∞

0

ds1
k1−1 . . .

∫ ∞

0

ds1
1

fk1+...+km(tm, sm
km−1 + tm, . . . , sm

1 + tm, . . . , t1, s
1
k1−1 + t1, . . . , s

1
1 + t1).

9.3 Theorem. Let ζ =
⊕

n∈N ζn ∈ ⊕
n∈N L2(Rn−1

+ , F ¯̄ n) (= F ¯̄ F(ER+) =
F(ER+) ¯̄ F ). Then

ξn
t (tn, . . . , t1) = ζkm(sm

km−1−sm
km

, . . . , sm
1 −sm

km
)¯. . .¯ζk1(s1

k1−1−s1
k1

, . . . , s1
1−s1

k1
)

defines an exponential unit ξζ¯ with ξζ
t =

⊕
n∈N ξn

t . Moreover, the subset
{
ξζ¯}

of units contains all exponential units of F¯(F ), it is generating (so that F¯(F )
is completely spatial) and ξζ¯ 7→ ξ¯(0, ζ) defines an isomorphism F¯(F ) →
IΓ¯(F ¯̄ F(ER+)). In other words, F¯(F ) is that unique completely spatial product
system with index F ¯̄ F(ER+)

Proof. First, we show that, if all ξζ
t are in Ft(F ), then they define a unit. For that it

is sufficient to show that they fulfill (9.1). Let us first consider only the case m = 1.
This is precisely the case where, depending on whether tn < t or tn ≥ t, only k = 0
or k = n contribute. In both cases equality of left- and right-hand side is immediate.
Taking into account that F¯(F ) is a product system, a short consideration shows
that the general case follows similarly, but requires harder work in order to write it
down. We omit this.

Next, we show that ξζ¯ 7→ ξ¯(0, ζ) is isometric and B–B–linear. This establishes,
in particular, that ξt is an element of Ft(F ). We have to show that given ζ, ζ ′ and
b, we have 〈ξζ

t , bξζ′
t 〉 = 〈ξt(0, ζ), bξ(0, ζ ′)〉.

〈ξζ
t , bξζ′

t 〉 =
∞∑

n=0

∫ t

0

dtn

∫ ∞

0

dtn−1 . . .

∫ ∞

0

dt1 〈ξn
t , bξ′t

n〉(tn, . . . , t1).
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Inserting the concrete form of ξn
t , by Corollary 9.2 we obtain

1 +
∞∑

m=1

∞∑

k1,...,km=1

∫ t

0

dtm

∫ tm

0

dtm−1 . . .

∫ t2

0

dt1

∫ ∞

0

dsm
km−1 . . .

∫ ∞

0

dsm
1 . . .

∫ ∞

0

ds1
k1−1 . . .

∫ ∞

0

ds1
1

〈
ζk1 . . . ,

〈
ζkm , bζ ′km

〉
(sm

km−1, . . . , s
m
1 ) . . . ζ ′k1

〉
(s1

k1−1, . . . , s
1
1)

= 1 +
∞∑

m=1

tm

m!

∞∑

k1,...,km=1

〈ζkm ¯ . . .¯ ζk1 , bζ ′km ¯ . . .¯ ζ ′k1〉

= 1 +
∞∑

m=1

tm

m!
〈ζ¯m, bζ ′¯m〉 = 〈ξt(0, ζ), bξt(0, ζ ′)〉.

Therefore, ξζ¯ 7→ ξ¯(0, ζ) is an isomorphism from the subsystem generated by all
ξζ¯ onto IΓ¯(F ¯̄ F(ER+)).

What remains to show is that {ξζ¯} is generating, for in this case F¯(F ) is
isomorphic to IΓ¯(F ¯̄ F(ER+)) and, in particular, the former cannot have more
exponential units, because the latter does not have more.

Recall the well-known fact (see, e.g., [29, Chapter 7]) that the functions

xn : (tn, . . . , t1) 7−→ II [rn,sn)(tn) . . . II [r1,s1)(t1)yn ¯ . . .¯ y1

(r` < s`, sn < t, y` ∈ F ) with [r`, s`)∩ [r`′ , s`′) = ∅ for ` 6= `′, form a total subset of
L2([0, t) × Rn−1

+ , F ¯̄ n). Such a function is supported by a set of tuples for which
the parameters m, k1, . . . , km ∈ N in (9.3) are fixed. Moreover, it decomposes into
a tensor product of functions with m = 1. Since the tensor product is linear in
its factors, it is sufficient to understand only the case m = 1, k1 = n, i.e. tn ∈
[0, t), tk ≥ tn for all k. We may even assume that [rn, sn) = [0, t). (Otherwise,
factorize into a tensor product with ωt−sn and ωrn .) But in this case we find easily
by differentiating ξλζ

t with respect to λ at λ = 0 for ζ(tn−1, . . . , t1) = xn(tn, . . . , t1)
that xn is contained in what {ξζ¯} generates.

Choosing for F a (separable) Hilbert space K 6= {0}, we recover Fowler’s result
that the index of S is dim(K ⊗̄ F(ER+)) = ∞. In Fowler’s case the “number”
∞ was just sufficient, and although also in [11] the isomorphism was constructed
explicitly (very much like we do here, but somewhat much more complicated), in
the formulation of the main result the concrete structure of the index space was
neglected. In the module case the index is the whole space and we cannot stick to
a simple dimension. The index of a free flow depends, in general, on its free index.
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10. Open problems and outlook

10.1 Quantum stochastic calculus on spatial product systems? Consider
the triples (E, ϑ, ξ) and (E′, ϑ′, ξ′) (not necessarily dilations or noises). If E ∼= E′,
then by [29, Theorem 14.1.5] the triples have isomorphic product systems, if and
only the E0–semigroups ϑ and ϑ′ are cocycle conjugate. By [29, Proposition 14.1.2]
this is independent of the choice of the unit vectors ξ, ξ′ and also the version without
unit vector based on [19] admits such a uniqueness result as long E ∼= E′ are
full. (In the case of infinite-dimensional separable Hilbert spaces, as considered by
Arveson, E and E′ are always isomorphic.) It is not difficult to see that isomorphic
product systems need not imply that E ∼= E′, but examples that can be constructed
easily are not primary. In the case of primary noises it is rather easy to show
that E ∼= E′, if there is a spatial isomorphism of the product systems. (Loosely
speaking, the product systems coincide and there is an automorphism that sends
one reference unit to the other. Once again, we meat the question whether the
automorphism group of a product system acts transitively on the central units.
If the product system is completely spatial, then we know from Remark 6.6 that
this is true. In cases when a weak dilation of a CP-semigroup is constructed with
the help of a quantum stochastic calculus on a symmetric Fock module [6] or a
full Fock module [28] considered as inductive limit over the spatial vacuum unit,
we know that the inductive limit with respect to the unit ξ¯ that generates the
CP-semigroup as Tt = 〈ξt, •ξt〉, a noncentral unit if T is nontrivial, coincides or is
contained in the Fock module. It would be, indeed, a great achievment to show in full
generality that, if the product system E¯ with the unit ξ¯ of a possibly nontrivial
CP-semigroup T is spatial, with reference unit ω¯ say, then the primary weak
dilation of T contructed as inductive limit over the unit ξ¯ is a cocycle perturbation
of the primary noise constructed as inductive limit over the reference unit ω¯.
Presently, we are only dreaming of a calculus on spatial product sytems, permitting
to prove such a result.) One may check for two pairs (E`, ϑ`, ω`) and (E`, ϑ′`, ω′`)
(` = 1, 2) of cocycle conjugate noises that also the product noises (

(
E1 }E2

)
,
(
ϑ1 }

ϑ2
)
, ω) and (

(
E1 }′ E2

)(
ϑ′1 } ϑ′2

)
, ω′) are cocycle conjugate. In particular, the

product systems
(
E1 } E2

) ¯̄
and

(
E1 }′ E2

) ¯̄
constructed from the reference

units ω`¯ and ω′`
¯

, respectively, are isomorphic (but not necessarily as spatial
systems).

10.2 Unital embeddings, unital dilations and free product systems? In
the case of Hilbert spaces the tensor product of two E0–semigroups (H`, ϑ`) is the
E0–semigroup (H1 ⊗̄H2, ϑ1⊗ϑ2). The algebra B(H1 ⊗̄H2) contains the original alge-
bras B(H`) as unital subalgebras B(H1)⊗idH2 and idH1 ⊗B(H2), and the restrictions
of ϑ1 ⊗ ϑ2 to these subalgebras gives back ϑ`. In the case of Hilbert modules we do
not know unital embeddings Ba(E`) → Ba(

(
E1 } E2

)
). Of course, we may embed

Ba(E`) nonunitally with the help of the projection p` onto the submodule E` of(
E1}E2

)
. However, the projections

(
ϑ1}ϑ2

)
t
(p`) are, in general, strictly increasing
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so that
(
ϑ1 } ϑ2

)
t

does not leave invariant the embedded unit p` of Ba(E`). (Only
the compression p`

(
ϑ1 } ϑ2

)
p` ¹ p`Ba(

(
E1 } E2

)
)p` gives back ϑ`. Notice also that

the two nonunital subalgebras Ba(E1) and Ba(E2) are boolean indipendent in the
conditional expectation 〈ω, •ω〉 in the sense of Skeide [28, Section 14].)

A possible solution for a product of noises with unital embeddings is suggested
by a comparison of CCR-flows and free flows as discussed in Section 9. The free
flow with free index F 1⊕F 2 is nothing but the free product S1 ∗S2 of the free flows
S` with index F ` in the vacuum conditional expectation in the sense of Voiculescu
[40] and Speicher [36]. Clearly, there exist unital embeddings of Ba(F(E`

R+
)) into

Ba(F(E1
R+
⊕E2

R+
)) which behave covariantly under the relevant time shifts. Observe

that F(E[0,s))∗F(E[0,t)) = F(E[0,s+t)) where ∗ indicates the free product of Hilbert
B–B–modules with respect to the reference vectors ωs, ωt. In other words, we may
associate a free product system with each free flow and the free product of the
members of the free product systems for S1 and S2 gives us the free product system
of the free product S1∗S2. Free flows are primary noises and similarly as for (tensor)
product systems we may recover the flow by an inductive limit over the members of
its free product system. It can be shown that every spatial product system generates
a universal free product system into which it embeds and that is generated by it
as a free product system. The free product system of the full Fock module can be
interpreted in this sense as the free product system generated by the time ordered
product subsystem. This raises several questions: Is every free product system the
free product system generated by a spatial product system? Is there a general
possibility to decide whether a primary noise stems from a free product system?
(Of course, we know that it stems from a spatial product system.) Most important,
and even for Fock modules not yet answered: Can we understand a weak dilation
with a spatial product system as a projection from a unital dilation to the free flow
associated with the free product system generated by the spatial product system?
(To answer this question it will definitely by important to answer first the question
about cocycle conjugacy of the weak dilation with spatial product system and the
noise associated with that spatial product system as raised in 10.1.) We will leave
such questions to future work.

10.3 An index for nonspatial product systems? What is the index of a
nonspatial system? For Arveson systems the answer is motivated by the analogue of
Theorem 5.6 which asserts that units in the product may be composed from units in
the factors and remains true for arbitrary Arveson systems. Therefore, if one factor
has no units, then also the tensor product has no units. Putting the index of such
systems to ∞ (better: −∞, because in this case the index has somewhat from log 0),
the computation rules for the Arveson index (in the spatial case the dimension of
K for the maximal completely spatial subsystem IΓ⊗(K)) remain valid. Thus, we
could introduce a fomal space “∞” as index of a nonspatial system with the formal
computation rule “∞”⊕F = “∞”. However, as long as we do not have an extension
of the product } to nonspatial subsystems, such a definition is meaningless. A way
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out could be to transform a nonspatial system into a spatial one. For instance, by
the first attempt of defining a product, as described in the beginning of Section 5,
where existing units in the factors are mapped to orthogonal units in the product,
we could construct this product for a nonspatial product system and the trivial
one. This product contains a central unital unit, namely, the unit

(
1
)
t∈R+

of the
trivial product system, and, therefore, is spatial. We may construct the product }
of this extended product system with any other spatial one, and then restrict to
what the original product system generates there. Also this product system should
be nonspatial, because otherwise by Theorem 5.6 there must be a unit also in the
original nonspatial factor. We postpone a detailed analysis of this idea. But, it is
clear that it cannot serve as a general construction, because if we apply it to systems
which are already spatial, then two units from different factors will be orthogonal.
After all, it might appear not to be very reasonable to extend the definition of
index to nonspatial systems. (Already in the case of Arveson systems the index
∞ of type III systems does not mean that there is a maximal completely spatial
subsystem IΓ⊗(K) for some infinite-dimensional Hilbert space and, therefore, the
concrete meaning of the index is obstructed by that definition.)

10.4 An example of Powers naturally leading to our product of spatial
product systems. We close with the remark that recently an interesting in-
terpretation of our product has occured. In the 2002 AMS-Meeting “Advances in
Quantum Dynamics” R. Powers constructed a CP-semigroup on B(H ⊕ H) from
two E0–semigroups ϑi on B(H) with spatial product systems Hi⊗ and reference
units ωi⊗ by setting

Tt

(
a11 a12

a21 a22

)
=

(
a11 ⊗ idH1

t
(idH ⊗ω1

t )a12(idH ⊗ω2
t )∗

(idH ⊗ω2
t )a21(idH ⊗ω1

t )∗ a22 ⊗ idH2
t

)
.

(We make use of the identifications H ⊗H1
t = H = H ⊗H2

t . For instance, aii⊗ idHi
t

is just ϑi
t(aii).) Powers asked for the product system of that CP-semigroup. (The

product system of a CP-semigroup was defined by Bhat [5] as product system of
the minimal dilating E0–semigroup. With the methods from Bhat and Skeide [8]
it is possible to contruct the product system of a CP-semigroup directly without
dilation.) Still during that meeting we were able to show (see Skeide [31]) that the
product system of that CP-semigroup is exactly our product of the spatial product
systems of the two E0–semigroups with respect to the reference units. By Remark
6.8 it may be but it need not be the tensor product (answering Powers’ question
about the product system posed at the meeting). In Bhat, Liebscher and Skeide [7]
we will generalize Powers’ example and the new interpretation in [31] from B(H)
to Ba(E).
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Appendix: Lemma 4.1 and variations

In this appendix we proof the following variation for net limits over Jt Lemma 4.1
for net limits over Jt but only in the case of spatial product systems.(q)

A.5 Lemma. Let ξ`¯ (` = 1, 2) be units in a continuous subset S of units in a
product system E ¯̄ . Then for all κ1,κ2 ∈ C with κ1 + κ2 = 1 the limit

ξt = lim
t∈Jt

(κ1ξ1
tn

+ κ2ξ2
tn

)¯ . . .¯ (κ1ξ1
t1 + κ2ξ2

t1) (A.1)

exists in norm, ξ¯ =
(
ξt

)
t∈R+

is a unit, too, and the set S∪{ξ¯} is still continuous.

Moreover, for all ξ′¯ ∈ S ∪ {ξ¯} we have Lξ′,ξ = κ1Lξ′,ξ1
+ κ2Lξ′,ξ2

.

The limit turns out to be uniform in the norm ‖t‖ = max{tn, . . . , t1} of t ∈ Jt.
This proves, in particular, also Lemma 4.1. Here we will proof only the spatial case,
where all units are known so that we have a concrete candidate for the limit.

Proof. By Theorem 6.3 we may assume that we are speaking about units ξ`¯ =
ξ¯(β`, ζ`) in a time ordered product system. We shall denote yt := κ1ξt(β1, ζ1) +
κ2ξt(β2, ζ2) and yt := ytn¯ . . .¯yt1 . A candidate for the limit is the unit ξ¯(κ1β1+
κ2β2,κ1ζ1 +κ2ζ2) whose elements we denote by zt. If we show convergence to that
limit, then the remaining statements follow. We will show

〈yt, yt〉 −→ 〈zt, zt〉 (A.2)

and

〈ξt(β, ζ), yt〉 −→ 〈ξt(β, ζ), bzt〉 for all (β, ζ), b. (A.3)

(A.2) implies, in particular, that the net yt is eventually bounded. (Actually, the
net is bounded, what we must show first, and all convergences are in the norm of
mappings 〈x, •y〉 in B(B).) As elements like in (3.2) are total, (enventual) bound-
edness of the yt implies 〈x, yt〉 → 〈x, zt〉 for all x ∈ Et. Therefore, like for Hilbert
spaces, it follows

〈zt − yt, zt − yt〉 = 〈zt, zt〉+ 〈yt, yt〉 − 〈zt, yt〉 − 〈yt, zt〉 −→ 0.

(q)Meanwhile, a full proof without reference to time ordered product systems has appeared in
Liebscher and Skeide [18].
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We compute

〈yt, •yt〉 = κ̄1κ1U
(β1,ζ1)(β1,ζ1)
t + κ̄1κ2U

(β1,ζ1)(β2,ζ2)
t

+ κ̄2κ1U
(β2,ζ2)(β1,ζ1)
t + κ̄2κ2U

(β2,ζ2)(β2,ζ2)
t

= (κ̄1κ1 + κ̄1κ2 + κ̄2κ1 + κ̄2κ2) idB

+ t
(
κ̄1κ1L(β1,ζ1)(β1,ζ1) + κ̄1κ2L(β1,ζ1)(β2,ζ2)

+ κ̄2κ1L(β2,ζ2)(β1,ζ1) + κ̄2κ2L(β2,ζ2)(β2,ζ2)
)

+ O(t2)

= idB +tL(κ1β1+κ2β2,κ1ζ1+κ2ζ2),(κ1β1+κ2β2,κ1ζ1+κ2ζ2) + O(t2)

= 〈zt, •zt〉+ O(t2)

with an O(t2) that may be chosen uniformly in t on every compact interval [0, T ].
Let us denote Yt = 〈yt, •yt〉 and Zt = 〈zt, •zt〉. By standard arguments there is
a global constant c > 0 such that both Yt1 ◦ . . . ◦ Ytn and Zt1 ◦ . . . ◦ Ztn can be
estimated by ect for every t ≥ 0 and every t ∈ Jt. We find

〈yt, •yt〉 − 〈zt, •zt〉 = Yt1 ◦ . . . ◦ Ytn − Zt1 ◦ . . . ◦ Ztn

=
n∑

k=1

Yt1 ◦ . . . ◦ Ytk−1 ◦ (Ytk
− Ztk

) ◦ Ztk+1 ◦ . . . ◦ Ztn

whose norm can be estimated by

Mt

n∑

k=1

t2k ≤ Mt ‖t‖
n∑

k=1

tk = Mt ‖t‖ t.

This shows (A.2). By completely analogue but simpler computations we show also
(A.3).
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