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The investigation of products systems of Hilbert modules as introduced by
Bhat and Skeide6 has now reached a state where it seems appropriate to give
a summary of what we know about the structure. After showing how product
systems appear naturally in the theory of dilations of CP-semigroups, it is
one of the goals of these notes to give a list of solved and open problems.

In contrast with Arveson1, who starts his theory of product systems of
Hilbert spaces (Arveson systems, for short) with a concise definition of mea-
surability conditions (which are equivalent to similar continuity conditions),
the theory of product systems of Hilbert modules (in the sense of Definition
3.1 below) developed so far works without such conditions. While the alge-
braic constructions which work in that framework behave nicely with respect
to topological completions or closures at a fixed “time”, we could show conti-
nuity results for time evolutions only in special cases. It is the second goal of
these notes to launch a definition of continuous tensor product system (Defin-
ition 7.1)(0.a) and to show that this definition, although sufficiently general to
contain all reasonable cases, does not have the described defect. In the case
of type I and type II systems we found already a way to formulate continuity
conditions in a less intrinsic way. Theorem 7.5 shows that the new definition
is compatible with these special cases. We are, finally, able to define what we
understand by a (continuous) type III product system, thus completing the
classification scheme from Bhat and Skeide6, Barreto, Bhat, Liebscher and
Skeide3 and Skeide19.

1 Introduction

By dilation many authors understand slightly different things. The denomi-
nator common to all the different definitions may be described by the com-

(0.a)This definition was obtained in joint work with B.V.R. Bhat and V. Liebscher within
a PPP-project supported by DAAD and DST.
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mutative Diagram (1) below. Here B is a unital C∗–algebra with a unital
completely positive (CP-) semigroup T =

(
Tt

)
t∈R+

and A is another unital

C∗–algebra with a semigroup ϑ =
(
ϑt

)
t∈R+

of unital endomorphisms, i.e. an
E0–semigroup. The two are linked together by an embedding (i.e. an injective
homomorphism) i:B → A of B into A and an expectation p:A → B back to B
in such a way that ϕ = i ◦ p is a conditional expectation onto the range i(B) of
i, i.e. p(i(b)ai(b′)) = bp(a)b′ for all b, b′ ∈ B; a ∈ A.(1.a)

B Tt //

i

²²

B

A
ϑt

// A
p

OO

(1)

The idea of dilation is to understand the dynamics T of B as projection
from the dynamics ϑ of A. In statistical physics the algebras B and A may be
considered as algebras of quantum mechanical observables so that B models
the description of a small system embedded into a big one modelled by A. In
the classical example B is the algebra of random variables describing a brown-
ian particle moving on a liquid in thermal equilibrium and A is the algebra
of random variables describing both the molecules of the liquid and the par-
ticle. In both cases we say that the irreversible dynamics of the small system
described by completely positive mappings is dilated to a more reversible one
on the big system described by unital endomorphisms.(1.b)

Already in Bhat and Skeide6 we showed how to construct from a CP-
semigroup T on B, i.e. the upper half of Diagram (1), a product system of
Hilbert B–B–modules(1.c) and, in the unital case, how to complete the diagram
to a dilation. More precisely, we constructed a dilation on a Hilbert module,
i.e. in our case A = Ba(E) is the C∗–algebra of all adjointable operators on a
Hilbert B–module E and E contains a unit vector ξ (i.e. 〈ξ, ξ〉 = 1) such that

(1.a)Of course, it is possible to identify B via i as a subalgebra of A and to consider just
the conditional expectation ϕ. We prefer, however, to keep the freedom to choose different
embeddings i.
(1.b)The most reversible version, in fact, required by many authors, is a dilation to an
automorphism semigroup (in fact, an automorphism group). However, in most cases there
is a natural subalgebra A+ of A, the algebra of future observables, which is left invariant by
the automorphism semigroup. So the restriction to A+ gives rise to a proper E0–semigroup.
In any case, in order to speak of reversibility, the endomorphisms should be injective, but
we do not need this additional requirement and, thus, omit it.
(1.c)The construction of product systems from CP-semigroups, historically the first, is a
special case of the construction starting from so-called CPD-semigroups, which we mention
only briefly in Footnote (4.d).

2



p(a) = 〈ξ, aξ〉. The situation is illustrated in the following diagram.

B Tt //

i

²²

B

Ba(E)
ϑt

// Ba(E)

p=〈ξ,•ξ〉
OO

(2)

A dilation on a Hilbert module is a quadruple (E, ϑ, i, ξ) such that Diagram (2)
commutes for all t. Actually, the dilation constructed in Reference6 is a weak
dilation, i.e. the embedding has the special form i = j0 with j0(b) := ξbξ∗

where ξ∗ is the operator x 7→ 〈ξ, x〉.(1.d) A weak dilation on a Hilbert module
is a triple (E, ϑ, ξ) such that Diagram (3) commutes for all t.(1.e)

B Tt //

j0=ξ•ξ∗
²²

B

Ba(E)
ϑt

// Ba(E)

p=〈ξ,•ξ〉
OO

(3)

In Skeide16 we showed (generalizing Bhat’s4 approach to tensor product
systems of Hilbert spaces in the sense of Arveson1) how to construct a ten-
sor product system of Hilbert B–B–modules from the triple (E, ϑ, ξ), i.e. the
lower half of Diagram (1), at least, when the endomorphisms ϑt are strict (a
condition replacing the normality assumption in the case of Hilbert spaces).
It turns out that those Hilbert modules which have a unit vector form an
important subclass of the class of all Hilbert modules.

It is the goal of these notes to describe the mentioned constructions of
product systems in more detail. Where possible we explain the major ideas
or even provide short proofs. For didactic reasons we reverse the historic
order and start (after repeating in Section 2 some preliminaries about Hilbert

(1.d)In this case, the family j = (jt)t∈R+ with jt = ϑt ◦ j0 defines a weak Markov flow for T

in the sense of Bhat and Parthasarathy5, i.e. jt(1)js+t(b)jt(1) = jt ◦ Ts(b).
(1.e)Apparently, our set-up where A = Ba(E) seems to be a restriction of the more general
Diagram (1). However, in References16,18 we point out that our notion of dilation is suf-
ficiently wide to contain all explicit and most known abstract examples of dilations in the
sense that A is contained in some Ba(E) to which the E0–semigroup ϑ extends. (For the
case of an automorphism white noise the statement follows from Footnote (2.b).) Moreover,
all of these known dilations become weak dilations when i (usually unital) is replaced by
j0 (usually non-unital). For the time being we content ourselves with the knowledge that
considering dilations and weak dilations on Hilbert modules is a fairly general frame and the
study of these by means of their product systems (for instance, via classification) showed
already up to give many new insights.
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modules) in Section 3 with the construction of a product system from a strict
E0–semigroup ϑ on Ba(E). This allows us to motivate related notions like
units and central units for product systems directly from dilation theory. This
way to construct product systems is also more directly related to the way how
Arveson discovered product systems of Hilbert spaces.

Central units are tightly connected with white noises where we call the
triple (E, ϑ, ξ) a white noise, if ϑ leaves invariant p = 〈ξ, •ξ〉, i.e. if p◦ϑt = p for
all t. In other words, (E, ϑ, ξ) is a weak dilation of the trivial semigroup.(1.f)

We will classify product systems admitting central unit as spatial product
systems. Spatiality of product systems of von Neumann modules which have
units is equivalent to the results by Christensen and Evans7 on the form of the
generator of a normal uniformly continuous CP-semigroup on a von Neumann
algebra and, therefore, a deep problem.

In Section 4 we define units and central units. Then we set up our clas-
sification scheme, which is, like that for Arveson systems, based on units.
We repeat simple Examples from Reference3 which show that the refinement
of Arveson’s classification scheme (in that there are two types of units) and
also the distinction into norm and strong topology are really necessary. The
particular importance of spatiality we point out in Section 5. We show that
a generator of a uniformly continuous CP-semigroup is a Christensen-Evans
generator, if the associated GNS-system (see Footnote (4.d)) is spatial (or
can be embedded into a spatial one). This allows to identify in the following
Section 6 spatial type I systems as time ordered Fock modules. It also shows
us that spatial product systems have an index generalizing that of Arveson
systems.

In the final Section 7 we solve the outstanding problem to define contin-
uous product systems. We show that our definition extends our preliminary
definition for type I and type II systems based on the extistence of a con-
tinuous unit. The definition is motivated from properties of product systems
constructed from strictly continuous E0–semigroups and, of course, also such
product systems fulfill our definition. Now we, finally, have a chance to solve
also the reverse problem, namely, to construct an E0–semigroup from a con-
tinuous product system (known for non-type III) in full generality.

(1.f)We know that it is in some sense provocant to call this a white noise as ‘white noise’ is
something which has to do with ‘independence’ and, in fact, our white noises come shipped
with subalgebras A[s,t] ⊂ Ba(E) which are monotone independent (see References14,15)
with amalgamation over B in the conditional expectation p (to be published elsewhere).
However, we do not intend to speak about ‘independence’, and if we subtract ‘independence’
from existing definitions of ‘white noise’ (over B) like, for instance, that in Kümmerer10,
then our definition is, more or less, what remains.
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2 Preliminaries on Hilbert modules and conventions

We repeat the basic definitions and constructions for Hilbert modules. For
a detailed introduction to Hilbert modules (adapted to our needs) we refer
to Skeide18, for a quick reference to Bhat and Skeide6. The book of Lance11

provides a general introduction to Hilbert modules. Throughout these notes
A,B, C, . . . denote unital C∗–algebras.

2.1 A pre-Hilbert B–module is a right B–module E with a sesquilinear inner
product 〈•, •〉: E×E → B which is positive (〈x, x〉 ≥ 0), right linear (〈x, yb〉 =
〈x, y〉b) and definite (〈x, x〉 = 0 ⇒ x = 0). If the inner product fails to be
definite, then the Cauchy-Schwarz inequality

〈x, y〉〈y, x〉 ≤ ‖〈y, y〉‖ 〈x, x〉 (4)

tells us that we may divide out the submodule NE = {x: 〈x, x〉 = 0} of
length-zero elements and obtain a pre-Hilbert module. It tells us also that
‖x‖ =

√
‖〈x, x〉‖ defines a (semi-)norm. A Hilbert B–module is a pre-Hilbert

B–module which is complete in this norm. Every pre-Hilbert B–module E may
be completed and we denote the completion (as with all other normed spaces)
by E. The isomorphisms among (pre-)Hilbert B–modules are the unitary (i.e.
surjective inner product preserving) mappings.(2.a)

A Hilbert A–B–module (or just two-sided Hilbert module) is a Hilbert
B–module with a non-degenerate (∗–)representation of A by elements in the
(C∗–algebra) Ba(E) of adjointable (and, therefore, bounded and right linear)
mappings on E. By Ba,bil(E) we denote the subspace of bilinear or two-sided
mappings. In particular, an isomorphism of two-sided Hilbert modules is a
two-sided unitary.

2.2 The, by far, most important way how Hilbert modules, in particular,
two-sided Hilbert modules appear in dilation theory is the GNS-construction
for a completely positive mapping T :A → B. The GNS-module of T is that
Hilbert A–B–module E generated by a vector ξ (i.e. E = spanAξB) and with
inner product 〈aξb, a′ξb′〉 = b∗T (a∗a′)b′. This module is determined uniquely
by the requirement 〈ξ, aξ〉 = T (a).(2.b)

(2.a)Observe that a unitary u has an adjoint, namely, u∗ = u−1. Therefore, it is right linear
and (by isometry) bounded. Adjointable mappings which have a Hilbert module as domain
or as range are bounded by the closed graph theorem. For pre-Hilbert modules this need
not be so.
(2.b)If i is an embedding and p an expectation as required in a dilation, then we have even
E = Aξ and i(b)ξ = ξb. (This situation is most similar to usual GNS-construction for a
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2.3 The tensor product E ¯ F of a Hilbert A–B–module E and a Hilbert
B–C–module F is the Hilbert A–C–module which is the closed linear span of
elementary tensors x¯ y whose inner product is defined by 〈x¯ y, x′ ¯ y′〉 =〈
y, 〈x, x′〉y′〉. (By ‘⊗’ we always denote the tensor product of vector spaces,

usually, completed in some natural norm.)
If T, S are completely positive mappings A T−→ B S−→ C and if (E, ξ) and

(F, ζ) denote their GNS-constructions, then S ◦ T (a) = 〈ξ ¯ ζ, aξ ¯ ζ〉. In
other words, the submodule spanAξ ¯ ζC of E ¯ F with cyclic vector ξ ¯ ζ is
the GNS-module of S ◦ T .

2.4 If B is a von Neumann algebra acting (non-degenerately) on a Hilbert
space G, then G is a Hilbert B–C–module. For some Hilbert B–module E
we construct the Hilbert space H = E ¯ G. For every x ∈ E we define the
mapping Lx: g 7→ x¯g in B(G,H) whose adjoint is determined by L∗x: y¯g 7→
〈x, y〉g. Moreover, L∗xLy = 〈x, y〉 so that we may identify E (isometrically)
as a subset of B(G,H). We call the mapping η: x 7→ Lx the Stinespring
representation of E. Following Skeide17, we say E is a von Neumann B–module,
if it is strongly closed in B(G, H).

In contrast with general Hilbert modules, von Neumann modules are al-
ways self-dual, i.e. for every bounded right linear mapping Φ:E → B there
exists a (unique) element x ∈ E generating Φ as Φ(y) = x∗y := 〈x, y〉. Like
for Hilbert spaces one shows that bounded right linear operators on (or be-
tween) von Neumann modules are adjointable. Self-duality also guarantees
that for any strongly closed submodule F ⊂ E there is a (unique) projection
p ∈ Ba(E) onto F . Also this is a fact that need not be true for general Hilbert
modules.

If E is a Hilbert A–B–module, then ρ(a)(x ¯ g) = (ax) ¯ g defines a
representation ρ:A → B(H) which we call the Stinespring representation of
A associated with E. (In particular, if A = Ba(E), then ρ identifies Ba(E)
as a subalgebra of B(H), even a von Neuman algebra on H, if E is a von
Neumann module.) We say E is a von Neumann A–B–module (or a two-
sided von Neumann module), if it is a von Neumann B–module and if the

state.) What happens, if there is an automorphism α of A leaving p invariant, i.e. p◦α = p?
Then two short computations show that the mapping u: aξ → α(a)ξ defines a unitary on E
such that α(a)x = uau∗x for all x ∈ E. If the GNS-representation is faithful so that we may
identify A as a subset of Ba(E), then α(a) = uau∗ and the automorphism α extends to a
unitarily implemented automorphism of Ba(E). If the GNS-representation is not faithful,
then the computations show that α repects the kernel of the GNS-representation so that
we may divide out this kernel. Therefore, as soon as we are concerned with a white noise of
automorphisms, we may divide out the kernel of the expectation p and pass to a (unitarily
implemented) white noise on a Hilbert module.
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Stinespring representation of A is normal.
The strong closure E ¯̄ sF of the tensor product of two-sided von Neumann

modules is again a two-sided von Neumann module.
If E is the GNS-module of a normal completely positive mapping T

between von Neumann algebras A and B ⊂ B(G), then the strong closure
E

s ⊂ B(G,H) of E is a von Neumann A–B–module. Moreover, ρ:A → B(H)
is, indeed, the original Stinespring representation of A and the mapping Lξ

for the cyclic vector ξ ∈ E fulfills T (a) = L∗ξρ(a)Lξ.(2.c)

2.5 By far, the most concrete results in dilation theory are obtained for the
von Neumann algebra B = B(G) and the dilations act on the algebra B(H)
where the Hilbert space H usually has the form H = G ⊗ H for some other
Hilbert space H. Why is this so? The answer lies in the simple structure of von
Neumann B(G)–modules and, in particular, of von Neumann B(G)–B(G)–
modules. Since B(G) contains the finite-rank operators, the von Neumann
B(G)–module E ⊂ B(G,H) contains the finite-rank operators of B(G,H)
(or, to be more precise, at least those to elements in the total subset EG
of H) and, because E is strongly closed, we find E = B(G,H). One easily
checks that also Ba(E) = B(H). Therefore, dilations of CP-semigroups on a
von Neumann B(G)–module act on B(H).

Moreover, if E is a two-sided von Neumann B(G)–module, then the rep-
resentation ρ of B(G) on H is normal (and non-degenerate). Therefore,
H = G ⊗ H for a suitable Hilbert space H and ρ = idG ⊗ 1 in that identifi-
cation. This explains clearly why problems which, for general C∗–algebras,
require Hilbert module methods can be solved on G⊗ H in the case B(G).

Can we specify H further? The answer is simple. The elements h of H
are in one-to-one correspondence with those mappings idG⊗h ∈ B(G,G⊗H)
which commute with all elements in B(G).(2.d)

2.6 The strict topology of Ba(E) arises by the observation due to Kasparov9

that Ba(E) is the multiplier algebra of the C∗–subalgebra of compact operators

(2.c)Notice that the Stinespring representations of two completely positive mappings T, S
do not help us in recovering the Stinespring representation of S ◦ T . On the contrary,
the GNS-modules, being functors which send representations of the algebra to the right to
representations of the algebra to the left, compose under tensor product to the functor for
the composed mapping S ◦ T ; cf. Section 2.3.
(2.d)Defining the center of a two-sided B–module E as CB(E) = {x ∈ E: bx = xb (b ∈ B)},
we notice that for central elements x1, x2 the inner product takes values in the center of B.
If B = B(G), then the center of B is trivial so that the inner product of central elements in E
is a scalar multiple of 1. Identifying this scalar with the inner product of the corresponding
(unique) elements of f1, f2 ∈ H such that xi = idG ⊗ fi gives us the isomorphism.
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K(E) which is generated by the rank-one operators xy∗: z 7→ x〈y, z〉. In other
words, Ba(E) is the completion of K(E) in the topology generated by the
two families a 7→ ‖ak‖ and a 7→ ‖ka‖ (k ∈ K(E)) of seminorms. Here we
follow Lance’ convention11 and by the strict topology we mean always the
restriction to bounded subsets of Ba(E). One can show that on the ball the
strict topology coincides with the ∗–strong topology. In the case of Hilbert
spaces the strict topology is the ∗–σ–strong topology. It is well-known that
normal representations of B(H) are also ∗–σ–strong, so for Hilbert modules
the strict topology on the ball is, indeed, an appropriate substitute of the
normal topology.(2.e)

We used already the well-known fact that normal (non-degenerate) repe-
sentations of B(G) on H decompose H as G ⊗ H. Can we do the same for
Hilbert modules? The answer is yes, if the (non-degenerate) representation
ϑ:Ba(E) → Ba(F ) is strict (cf. also Footnote (2.e)), and if E contains a unit
vector ξ.(2.f) Here we restrict to the case F = E, i.e. ϑ is a strict unital
endomorphism of Ba(E).(2.g)

So let E be a unital Hilbert B–module and ϑ a strict unital endomorphism
of Ba(E). Put Eξ = ϑ(ξξ∗)E and define a (unital) left multiplication on this
Hilbert submodule of E by bx = ϑ(ξbξ∗)x. One easily shows that the mapping

u: x¯ y 7−→ ϑ(xξ∗)y

defines an isometry E ¯ Eξ → E. Using an approximate unit for F(E) and
strictness of ϑ one shows that u is surjective, hence, unitary.(2.h) In the
identification E = E ¯ Eξ we find that ϑ(a) ∈ Ba(E) acts as ϑ(a) = a ¯
idEξ

.(2.i)

(2.e)In the sequel, what we need from the strict topology is the fact that a (bounded)
approximate unit for the compact operators, or even the finite-rank operators F(E) :=
spanEE∗, converges to idE . Any other topology which also has this property will also serve
this purpose and may replace the strict topology.
(2.f)This result and others which are valid only under the assumption of a unit vector make
this property so important that we give a name to it, and call E a unital Hilbert module.
(2.g)We discuss in Skeide16 that the result is valid for arbitrary Hilbert modules F , even
over a different C∗–algebra C.
(2.h)In both computations it is an important step to insert a one in the rank-one operator
xy∗ = x1y∗ = xξ∗ξy∗ and to use then the ∗–homomorphism property of ϑ, when applied
to that product of operators xξ∗ and ξy∗.
(2.i)One can show that up to two-sided isomorphism Eξ does not depend on the choice of
ξ. If ϑ, ϑ′ are two strict unital endomorphisms of Ba(E) than Eξ and E′ξ are isomorphic,

if and only if ϑ and ϑ′ are conjugate, i.e. if ϑ′ = uϑu∗ for some unitary u ∈ Ba(E).
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3 From E0–semigroups to product systems of Hilbert modules

Let (E, ϑ, ξ) be a unital Hilbert B–module E 3 ξ and and let ϑ be a strict E0–
semigroup on Ba(E). A simultaneous application of our representation theory
in Section 2.6 to all ϑt provides us with a family E¯ =

(
Et

)
t∈R+

of Hilbert
B–B–modules Et = ptE (pt := ϑt(ξξ∗), left multiplications bxt = ϑt(ξbξ∗)xt)
and unitaries ut:E ¯ Et defined by ut(x ¯ yt) = ϑt(xξ∗)yt. Observe that
E0

∼= B as two-sided module via ξ 7→ 1.
We define the restrictions ust = ut ¹ (Es ¯ Et). These map into Es+t,

because ps+tϑt(xsξ
∗)yt = ϑt(psxsξ

∗)yt = ϑt(xsξ
∗)yt. On the other hand,

they are onto Es+t. (Write z ∈ Es+t ⊂ E = ut(E ¯Et) as z =
∑
i

ut(xi ¯ yi
t).

Since ps+tz = z we have

z = ps+t

∑

i

ut(xi ¯ yi
t) =

∑

i

ϑt(psx
iξ∗)yi

t = ust

(∑

i

psx
i ¯ yi

t

)

∈ ust(Es ¯ Et).) Therefore, ust:Es ¯ Et → Es+t are unitaries. Moreover,
from ust(bxs ¯ yt) = ϑt(ϑs(ξbξ∗)xsξ

∗)yt = bust(xs ¯ yt) we see that the ust

are two-sided. Finally, we easilly verify the associativity conditions

us+t(idE ¯ ust) = ut(us ¯ idEt) (5)
ur(s+t)(idE ¯ ust) = u(r+s)t(urs ¯ idEt). (6)

We observe that u0t: b ¯ xt 7→ bxt and ut0: xt ¯ b 7→ xtb give us back the
canonical indentifications B ¯ Et = Et = Et ¯ B.

Collecting the majority of these results we see that E¯ is a product system
in the sense of the following definition from Bhat and Skeide6.

3.1 Definition. A product system of Hilbert modules is a family E¯ =(
Et

)
t∈R+

of Hilbert B–B–modules Et (E0 = B) with a family ust of uni-

taries in Ba,bil(Es¯Et, Es+t) fulfilling the associativity condition (6) (u0t, ut0

being the canonical identifications).(3.a)

(3.a)This is the definition of product systems of Hilbert modules. It has an obvious version
for von Neumann modules, where all appearing (operator) spaces should be strongly closed.
However, we do not intend to go too much into the technicalities of von Neumann mod-
ules. It was our intention to give a precise definition in Section 2.4, because some of our
classification results hold only for von Neumann modules, and because of the importance
of the case B = B(G) in Section 2.5 when we want to compare with existing results. Let
us mention, however, that, starting from an E0–semigroup ϑ on Ba(E) where E is some
unital von Neumann module, we may construct a product system of von Neumann modules
as before, provided that all ϑt fulfill the weaker condition to be normal mappings.
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Once the mappings ust (and in the case of the preceding product sys-
tem coming from an E0–semigroup the mappings ut) are fixed, we use the
identifications

Es ¯ Et = Es+t (and E ¯ Et = E). (7)

(Obviously, if E¯ is the product system constructed from an E0–semigroup
ϑ, then we recover ϑ in this identification as ϑt(a) = a¯ idEt .)

Several natural questions arise.

3.2 Question. What is the connection with Arveson’s product systems of
Hilbert spaces (Arveson systems for short) which start from normal E0–
semigroups on B(G)? Our construction (including the representation theory
for Ba(E)) is a direct generalization from Bhat’s4 approach to Arveson sys-
tems.(3.b) Arveson requires additional measurability conditions on a product
system which are fulfilled, if we start with an E0–semigroup which is contin-
uous (pointwise on B(G)) in the strong operator topology. Additionally, the
Hilbert spaces of an Arveson system are all isomorphic (infinite-dimensional
separable). We will see in Example 4.7 that we cannot hold this condition.
In Section 7 we propose a suitable definition of continuous tensor product
systems.

3.3 Question. Do we obtain all product systems by the preceding construc-
tion?(3.c) This question is closely related to the correct notion of measura-
bility. It can be answered in the affirmative sense for Arveson systems; see
Reference2. Certainly our answer to the measurability problem should be
judged by checking whether it allows to preserve Arveson’s result that all
Arveson systems arise from E0–semigroups on B(G) also in the case of prod-
uct systems of Hilbert modules. We are not yet able to solve that problem,
however, we show at least that our definition of continuous product system is
not too restrictive.

3.4 Question. How can we classify product systems? Like for Arveson sys-
tems our classification scheme is based on how many units we have; see Section

(3.b)Arveson’s1 approach is based on Footnote (2.d) and relies on the simple structure of
B(G)–modules. It does not generalize to the module case. When we construct as in Example
4.5 the product system E¯ of two-sided von Neumann B(G)–modules for an E0–semigroup
on B(G), then the Hilbert spaces Ht such that Et = B(G, G⊗ Ht) form the corresponding
Arveson system.
(3.c)The second construction of product systems starting from CP- or CPD-semigroups (cf.
Footnote (4.d)) is even less exhaustive as it leads necessarily to type I systems (cf. Footnote
(4.f)).
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4. However, it turns out that we have to distinguish between general units
and central units.(3.d) This leads to a refined classification as compared with
that of Arveson systems. However, we are able to present simple examples
(even of type III systems — a difficult issue for Arveson systems) which show
that our refinement is necessary. Of course, our classification is made in such
a way that most results by Arveson show to remain true also for product
systems of Hilbert modules. In the first place, we are able to preserve the
distinguished role played by the symmetric Fock space which becomes now
the time ordered Fock module.

4 Units in products systems

Arveson systems, so far, are classified by their units (families of vectors in
the members of the Arveson system which factorize into elementary tensors
in a stationary way). The basic example of an Arveson system is the family
Γ⊗(K) =

(
Γt(K)

)
t∈R+

(K some Hilbert space) of boson Fock spaces Γt(K) =
Γ(L2([0, t],K)) which factorize as

Γs(K)⊗ Γt(K) ∼= Γ(L2([t, t + s],K))⊗ Γt(K) ∼= Γs+t(K).

The units have the form ut = ectψ(II [0,t]f) (c ∈ C, f ∈ K) where ψ(x) denotes
the exponential vector to x ∈ L2([0, t],K).

(ecsψ(II [0,s]f))⊗ (ectψ(II [0,t]f)) = ec(s+t)ψ(II [0,s+t]f)

The Arveson system Γ⊗(K) is generated by its units (there is no proper
subsystem containing all the units). Such Arveson systems are said to be type
I and Arveson showed that all type I Arveson systems have the form Γ⊗(K)
for a (unique up to isomorphism, i.e. up to dimension) Hilbert space K. The
dimension of K, called index, is a complete isomorphism invariant of type I
Arveson systems.

An Arveson system is type II, if it has a unit, but is not type I. It contains
a unique maximal type I subsystem and the index of a type II system is
that of its maximal type I subsystem.(4.a) Recent work of Tsirelson20 and
its systematic extension by Liebscher12 show that there is an abundance of
(mutually non-isomorphic) type II systems having the same index. So the
index is certainly not a complete isomorphism invariant for type II systems.

(3.d)Central units for a product system of von Neumann B(G)–modules correspond precisely
to units for the central Arveson subsystem as discussed in Footnote (3.b).
(4.a)Indices behave additive under tensor product of Arveson systems, thus, justifying the
name ‘index’.
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Finally, an Arveson systems is type III, if it has no units. Existence of
type III Arveson systems is known since ever, but also here only recently
Tsirelson21 has constructed an explicit example.

Unlike, for Arveson systems, where the notion of unit is put into evidence
by the importance of the results derived from it, for product systems of Hilbert
modules we have a possibility to motivate this notion. Let us recall that we
are particularly interested in the case when the (strict) E0–semigroup ϑ is a
(weak) dilation of some (unital) CP-semigroup, or even a white noise. We
repeat a result from Skeide16.

4.1 Proposition. For the triple (E, ϑ, ξ) the following conditions are equiv-
alent.

1. The family pt = ϑt(ξξ∗) of projections is increasing, i.e. pt ≥ p0 for all
t ∈ T.

2. The mappings Tt(b) = 〈ξ, ϑt(ξbξ∗)ξ〉 define a unital CP-semigroup T , i.e.
(E, ϑ, ξ) is a weak dilation.

3. Tt(1) = 1 for all t ∈ T.

Under any of these conditions the elements ξt = ξ ∈ Et ⊂ E fulfill

ξs ¯ ξt = ξs+t, (8)

ξ0 = 1 and Tt(b) = 〈ξt, bξt〉. Moreover, T is the trivial semigroup, i.e. (E, ϑ, ξ)
is a (weak) white noise, if and only if all ξt commute with all b ∈ B.

This encourages the following Definition from Bhat and Skeide6.

4.2 Definition. A unit for a product system E¯ is a family ξ¯ =
(
ξt

)
t∈R+

of vectors ξt ∈ Et fulfilling (8) and ξ0 = 1. The unit ξ¯ is unital, if it consists
of unit vectors. It is central, if all ξt commute with all b ∈ B. By U(E¯) we
denote the set of all units

So far, this is a purely algebraic definition. Even the case that a unit is
0 except at t = 0 is allowed. Units in an Arveson system must satisfy certain
measurability conditions. These conditions imply, in particular, that for any
two (non-zero) units u⊗, u′⊗ the mapping t 7→ 〈ut, u

′
t〉, which obviously is a

semigroup in C, is measurable, hence, continuous.(4.b)

(4.b)The covariance function defined on the pairs of all measurable Arveson units as the
derivative of 〈ut, u′t〉 at t = 0 is a conditionally positive definite kernel. From here it is
quite easy to show that an Arveson system generated by its units consists of symmetric
Fock spaces.
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In our frame it turns out that we obtain the most satsifactory results, if
we base our classification on continuous sets of units.(4.c)

Like for Arveson units it turns out that matrix elements of units have a
semigroup property. However, as we learned already in 2.3, instead of looking
just at matrix elements 〈ξt, ξ

′
t〉 we have to switch our interest to (bounded)

mappings b 7→ 〈ξt, bξ
′
t〉 which, clearly, form a semigroup on B. The collection

of all these semigroups fulfills a positivity condition, namely, it is a completely
positive definite (CPD) kernel in the sense of References3,18.(4.d)

4.3 Definition. By U =
(
Ut

)
t∈R+

, where the completely positive definite
kernel Ut:U(E¯)× U(E¯) → B(B) is defined by

Uξ,ξ′
t (b) = 〈ξt, bξ

′
t〉,

we denote the CPD-semigroup associated with E¯.
A set S ⊂ U(E¯) of units is continuous, if the CPD-semigroup U ¹ S is

uniformly continuous, i.e. if the semigroup Uξ,ξ′ is uniformly continuous for
all ξ¯, ξ′¯ ∈ S. In particular, a single unit ξ¯ is continuous, if the set {ξ¯}
is.(4.e)

Now we are ready to set up our classification scheme.

4.4 Definition. A product systems of Hilbert modules E¯ is type I, if there
is a continuous set S of units which generates E¯ (i.e. E¯ is the smallest
subsystem of E¯ containing all units of S). E¯ is type II, if it has a continuous
unit, but is not type I. It is type III if it has no continuous unit.(4.f)

(4.c)We are speaking about norm continuity. It is an open problem to decide, whether
this may be weakened to norm measurability. Also weaker topologies coming from weaker
topologies on B are thinkable. However, Example 4.7, which has only strongly continuous
units, tells us that we may not expect to derive similar results for weaker topologies.
(4.d)We show also that every CPD-semigroup, continuous or not, arises in this way from
matrix elements of units in a product system. The construction of that product system is
very much like a GNS-construction and, therefore, we call it the GNS-system of the CPD-
semigroup. The first construction of a product system from a CP-semigroup in Reference6

appears as a special case of the GNS-construction for CPD-semigroups.
(4.e)One may show that for checking continuity of S it is sufficient that E contains one
continuous unit ξ¯ and that the matrix elements 〈ξt, ξ′t〉 and 〈ξ′t, ξ′t〉 depend continuously

(in B) on t for all ξ′¯ ∈ S; see References3,18.
(4.f)The GNS-system of a CPD-semigroup (cf. Footnote (4.d)) is, by definition, generated
by its units. Therefore, if the CPD-semigroup is uniformly continuous, then the GNS-system
is type I, automatically.
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A product system is spatial, if it has a central unital unit ω¯, and com-
pletely spatial, if it is also type I and the generating subset S can be chosen
to contain ω¯.(4.g)

Clearly, a central unital unit is continuous (〈ωt, •ωt〉 = idB is constant
and, therefore, continuous). So, a spatial product system is clearly non-type
III.(4.h) One main result of Reference3 asserts that non-type III product sys-
tems of von Neumann modules are spatial, automatically. We can determine
completely the form of completely spatial systems and, therefore, also of type
I systems of von Neumann modules: They are all (systems of) time ordered
Fock modules; see Section 6. In Example 4.6 we describe a type I product
system without central unit. This shows us that non-type III product sys-
tems of Hilbert modules need not be spatial and that type I product systems
need not be time ordered Fock modules. On the other hand, one of the main
results of Reference3 asserts that non-type III product systems of von Neu-
mann modules are always spatial. Therefore, type I products systems of von
Neumann modules are always time ordered Fock modules.

Example 4.7 shows us that it is easy to write down product systems even
of von Neumann modules which have not a single continuous unit. Nev-
ertheless, this product system is generated by a single strongly continuous
unit. This shows that classifications based on units which are continuous
in a weaker topology only may be quite different. As a typical feature we
find that, in particular, commutative algebras (in contrast with the extremely
non-commutative B(G)) provide us with interesting counter examples.

4.5 Example3. Let B denote a unital C∗–algebra. Then B is itself a Hilbert
B–module (with inner product 〈b, b′〉 = b∗b′) with unit vector 1 and Ba(B) =
B. Let ϑ be an E0–semigroup on B. Then the associated product system
is Et = B as Hilbert B–module, but with left multiplication b.xt = ϑt(b)xt.
Clearly, E¯ has a unital unit ξ¯ with ξt = 1. This unit is continuous, if and
only ϑ is uniformly continuous.(4.i)

In particular, if ϑt(b) = utbu
∗
t is a (semi-)group of inner automorphisms

(4.g)We are speaking about Hilbert modules. The preceding definition has analogues for
algebraic product systems of pre-Hilbert modules (with types denoted by I, and so on) and
for product systems of von Neumann modules (with types denoted by Is, and so on. The
continuity required for the units is, however, the same in all cases.
(4.h)By Reference3 a continuous unit may be normalized to consist of unit vectors. There-
fore, in the definition of spatial we may replace central unital unit by central continuous
unit.
(4.i)This shows clearly that for checking continuity of a unit it is not sufficient to look only
at matrix elements 〈ξt, ξt〉; cf. Footnote (4.e).
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(for some unitary group u in B), then ut:B → Et, x 7→ utx establishes an
isomorphism from the trivial product system

(B)
t∈R+

to E¯. One can show
that the product system E¯ is isomorphic to the trivial product system, if and
only if the automorphisms ϑt are inner. Therefore, the fact that automorphism
semigroups on B(G) have trivial Arveson systems is entirely due to the fact
that B(G) admits only inner automorphisms. Product systems of non-inner
automorphism semigroups have interesting product systems and should not
be excluded.

4.6 Example3. Let B = K(G) + C1 ⊂ B(G) be the unitization of the com-
pact operators on some infinite-dimensional Hilbert space G. Let eith be a
unitary group on G for some self-adjoint element h ∈ B(G). For the auto-
morphism semigroup ϑt = eith • e−ith we construct the product systems E¯

as in Example 4.5.
Suppose ωt ∈ Et is a central element, i.e. eithbe−ithωt = ωtb or be−ithωt =

e−ithωtb for all b ∈ B. In other words, e−ithωt is in the center of B and,
therefore, a scalar multiple ct1 of 1 so that ωt = cte

ith. If ct 6= 0, then it is
not difficult to see that the requirment eith ∈ B puts very severe restrictions
on h. For a single time t we cannot exclude completely that h /∈ B. However,
if ωt is a whole family of central elements in Et (for instance, a unit) with
ct 6= 0, then differentiating ωt

ct
at t = 0 tells us that h must be in B (as

norm limit of elements in B). Consequently, if h /∈ B, then E¯ has no central
continuous units, although it is generated by the single continuous unit ξt = 1.
In accordance with our result that type I systems of von Neumann modules
are spatial, the problem dissappears, if we pass to the strong closure B(G) of
B.

4.7 Example3. Let B = C0(R) + C1 ⊂ Cb(R) the unitization of the con-
tinuous functions on R vanishing at infinity. On B we define the time shift
automorphism (semi-)group S =

(
St

)
t∈R+

by setting Stf(s) = f(s−t). Clearly,
St is not uniformly continuous.

We construct the product system E¯ as in Example 4.5. Suppose now
that ξ¯ is a unit. Then 〈ξt, fξt〉 = 〈ξt, ξt〉Stf . Suppose ξ¯ was continu-
ous. Then f − Stf = (〈ξ0, fξ0〉 − 〈ξt, fξt〉) + (〈ξt, ξt〉 − 〈ξ0, ξ0〉)Stf implies,
a contradiciton, that St is norm continuous. Therefore, E¯ does not have
continuous units.

This example can be extended in two directions. Firstly, we may restrict
to C0(R−) + C1 so that IIR−St defines a proper E0–semigroup. Secondly, we
may pass to the strong closures L∞(R) and L∞(R−), respectively, providing
us with analogue examples of product systems of von Neumann modules.
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The structure of type I systems is remarkably invariant under the choice
of the generating continuous subset S of units. In type II systems (or spatial
systems) we have to fix a continuous (central) reference unit and in how far
there are other units extending the reference unit to a continuous set of units
may depend on the choice of the reference unit. The question in how far the
continuity (or measurability) structure on the product system depends on the
choice of the unit is an open problem even for Arveson systems. Therefore, if
we speak about type II product systems, we often include the reference unit
into the definition a speak of pairs (E¯, ξ¯). We discuss in Section 7 the
relation to a definition of continuous tensor product system.

5 The CPD-semigroup of spatial product systems

We mentioned that the crucial point in our classification of type I systems is
to establish spatiality (where possible, of course). Let us see why this is so
important. So let ω¯ be a central unit for a product system E¯ and let ξ¯

be any other unit. Then

Uξ,ω
t (b) = 〈ξt, bωt〉 = 〈ξt, ωt〉b = Uξ,ω

t (1)b (9)

and

Uξ,ω
s+t(1) = Uξ,ω

t (Uξ,ω
s (1)) = Uξ,ω

t (1)Uξ,ω
s (1).

In other words, Uξ,ω(1) is a semigroup in B and determines Uξ,ω by (9). In
particular, Uω,ω(1) is a semigroup in CB(B). If ω¯ is continuous, then all
Uω,ω

t (1) are invertible. Henceforth, we may assume without loss of generality
that ω¯ is unital, i.e. Uω,ω = id is the trivial semigroup.

5.1 Lemma. Let ω¯ be a central unital unit and let ξ¯ be another unit for
a product system E¯ such that the CPD-semigroup U ¹ {ω¯, ξ¯} is uniformly
continuous. Let β denote the generator of the semigroup Uω,ξ(1) in B, i.e.
Uω,ξ

t (1) = etβ, and let Lξ denote the generator of the CP-semigroup Uξ,ξ on
B. Then the mapping

b 7−→ Lξ(b)− bβ − β∗b (10)

is completely positive, i.e. Lξ is a CE-generator.(5.a)

(5.a)Christensen and Evans7 established that every generator of a unifomly continuous
normal CP-semigroup on a von Neumann algebra decomposes into a completely positive
part and a part b 7→ bβ + β∗b.
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Proof. Since U is a CPD-semigroup, the semigroup U(2) =
(
U

(2)
t

)
t∈R+

on

M2(B) with U
(2)
t =

(
Uω,ω

t

Uξ,ω
t

Uω,ξ
t

Uξ,ξ
t

)
is competely positive. Its generator is

L(2)

(
b11

b21

b12

b22

)
=

d

dt

∣∣∣∣
t=0

(
Uω,ω

t (b11)
Uξ,ω

t (b21)
Uω,ξ

t (b12)
Uξ,ξ

t (b22)

)
=

(
0

β∗b21

b12β

Lξ(b22)

)
.

As generator of a CP-semigroup L(2) is conditionally completely positive. Let
Ai =

(
0
ai

0
ai

)
and Bi =

(
0
0
−bi

bi

)
. Then AiBi = 0, i.e.

∑
i

AiBi = 0, so that

0 ≤
∑

i,j

B∗
i L(2)(A∗i Aj)Bj =

∑

i,j

B∗
i

(
0

β∗a∗i aj

a∗i ajβ

Lξ(a∗i aj)

)
Bj

=
∑

i,j

(
0
0

0
b∗i (Lξ(a∗i aj)− a∗i ajβ − β∗a∗i aj)bj

)
.

This means that (10) is completely positive.

It is not difficult to prove the multi index version for CPD-semigroups;
see References3,18.

5.2 Theorem. Let E¯ be a product system with a subset S ⊂ U(E¯) of
units and a central (unital) unit ω¯ such that U ¹ S ∪ {ω¯} is a uniformly
continuous CPD-semigroup and denote by L = d

dt

∣∣
t=0

Ut ¹ S the generator of
U ¹ S. Then there exists a mapping S → B, ξ¯ 7→ βξ such that the kernel

Lξ,ξ′
0 (b) = Lξ,ξ′(b)− bβξ′ − β∗ξ b

is completely positive definite. In other words, doing the Kolmogorov decompo-
sition for L0 we find a Hilbert B–B–module F and a mapping S → F, ξ¯ 7→ ζξ

such that

Lξ,ξ′(b) = 〈ζξ, bζξ′〉+ bβξ′ + β∗ξ b. (11)

We say L has CE-form.

6 The time ordered Fock module and its CPD-semigroup

Let F be a Hilbert B–B–module F . Then L2(R+, F ) is defined as norm
completion of the space of F–valued step functions with inner product 〈x, y〉 =
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∫ 〈x(t), y(t)〉 dt. Higher tensor powers fulfill L2(R+, F )¯n = L2(Rn
+, F¯n).

The time ordered Fock module is defined as

IΓ(F ) =
∞⊕

n=0

∆nL2(R+, F )¯n

where ∆n is the indicator function of the set {tn > . . . > t1 > 0} ⊂ Rn
+ which

acts as projection in the obvious way.
By Reference6 the family IΓ¯(F ) =

(
IΓt(F )

)
t∈R+

of restrictions IΓt(F ) of
IΓ(F ) to the interval [0, t] forms a product system via the identification

[Xs ¯ Yt] = [StXs]¯ [Yt]

where [X] means the function obtained by pointwise “evaluation” of the ele-
ment X ∈ IΓ(F ). Liebscher and Skeide13 show that the set of continuous units
(with the vacuum unit ω¯ =

(
ωt

)
, ωt = 1 ∈ L2(R+, F )¯0 = B as reference

unit) consists of the units ξ¯(β, ζ) =
(
ξt

)
t∈R+

with ξt =
∞⊕

n=0
ξn
t defined by

ξ0
t = etβ and

ξn
t (tn, . . . , t1) = ξ0

t−tn
ζ ¯ . . .¯ ξ0

t2−t1ζξt1

where the parametrization by pairs (β, ζ) ∈ B×F is one-to-one. The generator
of the associated CPD-semigroup is

L(β,ζ),(β′,ζ′)(b) = 〈ζ, bζ ′〉+ bβ′ + β∗b.

In other words, it is a CE-generator.

6.1 Corollary. Let E¯ be a completely spatial product system with a generat-
ing set S ⊂ U(E¯) of continuous units. By Theorem 5.2 the CPD-semigroup
U ¹ S has the CE-generator (11) so that the the mapping

ξ¯ 7−→ ξ¯(βξ, ζξ)

determines an isometric embedding E¯ → IΓ¯(F ).

A result from Skeide19 asserts that F can be chosen minimal and that in
this case the embedding is onto, i.e. an isomorphism. In other words, com-
pletely spatial product systems are time ordered Fock modules. The module
F is a complete isomorphism invariant.

A further result from Reference19 asserts that every spatial product sys-
tem contains a unique maximal completely spatial subsystem.

6.2 Definition. The index of a spatial product system is the module F such
that the maximal completely spatial subsystem is isomorphic to IΓ¯(F ).
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Reference19 provides also a product of product systems under which the
index behaves additive (direct sum), thus, justifying the name ‘index’. In the
case of Arveson systems this product gives us back the tensor product, if at
least one factor is type I. In general, it gives only a subsystem of the tensor
product.

We mentioned already the result from Reference3 which states that non-
type III systems of von Neumann modules are spatial. Thus, type I systems
of von Neumann modules are completely spatial and, therefore, isomorphic to
(strong closures of) time ordered Fock modules. It is not possible to explain
the proof of this result in a few words. We mention that it requires a complete
understanding of the endomorphisms of a time ordered product system. The
result shows then to be equivalent to the result by Christensen and Evans7.

7 Continuous product systems

So far, we know completely the structure of completely spatial systems (i.e.
also of type I systems of von Neumann modules) and we have simple examples
of other types which show that the refinement of our classification scheme, as
compared with that of Arveson, is necessary. Applying a technique from
Liebscher12, which associates with each Arveson system one-to-one a type II
Arveson system, we should be able to produce also lots of type II systems of
Hilbert modules.

A result missing so far, is that any Arveson system comes from an E0–
semigroup. σ–Weakly continuous normal E0–semigroups on B(G) for an in-
finite-dimensional separable Hilbert space G are classified one-to-one up to
cocycle conjugacy by product systems. We see that this result depends on
both sides on technical conditions: On the semigroup side σ–weak continuity
and on the product system side measurability conditions.

In this section we start from strictly continuous E0–semigroups and simply
look which restrictions this implies for the structure of the associated product
system. If we want to give a definition of continuous product system in such
a way that every such product system comes from a strictly continuous strict
E0–semigroup on Ba(E) for some unital Hilbert B–module E, then we are
certainly not comitting an error requiring these conditions. Looking, in how
far the conditions may be weakened (for instance, measurability instead of
continuity) is a different problem. We will also not show that our conditions
will be sufficient to assure that every such product system comes from an
E0–semigroup(7.a). These questions we leave for future work.

(7.a)Although we, certainly, believe that this should be the case.
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So let ϑ be a strict and strictly continuous E0–semigroup on a Hilbert
B–module E with unit vector ξ and associated product system E¯. A first
observation is that every member Et of the product system is contained as
a right submodule in E. Arveson requires that all members of an Arveson
system (for t > 0) are isomorphic (infinite-dimensional and separable). This is
true also for the members of a time ordered system which are isomorphic (for
t > 0) as Hilbert bimodules. However, Example 4.7 shows that it need not
be so. (All members of this product system are isomorphic as right modules
but not two different of them are isomorphic as bimodules.) Consequently, we
will require that all members of a product system may be embedded as right
Hilbert modules into a fixed one.

Let us fix x ∈ E and consider the family
(
xt

)
t∈R+

with xt = ptx. Since ϑ

is strictly continuous, the function t 7→ xt ∈ E is norm continuous. Moreover,
E¯ is generated by such sections. (Each yt ∈ Et can be written as ptx
for a suitable x ∈ E.) Furthermore, if

(
xt

)
t∈R+

,
(
yt

)
t∈R+

(xt, yt ∈ Et) are
continuous families in E, then the function (s, t) 7→ xs¯ yt is also continuous.
(We have

xs+δ ¯ yt+ε − xs ¯ yt = ϑt+ε(xs+δξ
∗)yt+ε − ϑt(xsξ

∗)yt

= ϑt+ε(xs+δξ
∗)(yt+ε − yt)

+ ϑt+ε((xs+δ − xs)ξ∗)yt

+ (ϑt+ε(xsξ
∗)− ϑt(xsξ

∗))yt

which is small, if (δ, ε) is small in R2.)
We obtain the following definition by passing from the concrete identifica-

tion Et ⊂ E to a more arbitrary one it:Et → E, and expressing the preceding
properties in terms of it.

7.1 Definition. Let E¯ be a product system of Hilbert B–B–modules with
a family i =

(
it

)
t∈R+

of isometric embeddings it: Et → E into a unital Hilbert
B–module. Denote by

CSi(E¯) =
{

x =
(
xt

)
t∈R+

: xt ∈ Et, t 7→ itxt is continuous
}

the set of continuous sections of E¯ (with respect to i). We say E¯ is contin-
uous (with respect to i), if the following conditions are satisfied.

1. For every yt ∈ Et we can find a continuous section x ∈ CSi(E¯) such
that yt = xt.
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2. For every pair x, y ∈ CSi(E¯) of continuous sections the function

(s, t) 7−→ is+t(xs ¯ yt)

is continuous.

We say two embeddings i and i′ have the same continuous structure, if
CSi(E¯) = CSi′(E¯).

7.2 Example. By construction, every product system coming from a strictly
continuous strict E0–semigroup ϑ on some unital Hilbert B–module is a con-
tinuous product system. In particular, if ϑ is an E0–semigroup on B, then the
product system as constructed in Example 4.5 is continuous, provided that ϑ
is strictly continuous (as, for instance, in Example 4.6).

However, since Ba(B) = B is unital so that the strict topology coincides
with the norm topology, the E0–semigroup ϑ = S on B = C0(R) + C1 as in
Example 4.7 is not strictly continuous. Nevertheless, the associated product
system is continuous. (The continuous sections are just the continuous func-
tions x: t 7→ xt ∈ B where B = Bt as right module. Since functions in C0(R) are
uniformly continuous, the semigroup S is C0–continuous, i.e. t 7→ St(b) is con-
tinuous for all b ∈ B. Therefore, also the functions (s, t) 7→ xs ¯ yt = St(xs)yt

are continuous for all continuous sections x, y.) Evidently, this remains true
for every product system associated with a C0–continuous E0–semigroup on
a unital C∗–algebra B.

By Definition 7.1 the mappings t 7→ 〈xt, yt〉 are continuous for all x, y ∈
CSi(E¯). By Property (1) for every b ∈ B there exists a continuous section
x such that x0 = b. By Property (2) for every y ∈ CSi(E¯) the mapping
t 7→ (0, t) 7→ x0 ¯ yt = byt is continuous. It follows that also the section(
byt

)
t∈R+

is in CSi(E¯). In other words, in a continuous product system the
mappings t 7→ 〈xt, •yt〉 are C0–continuous for all x, y ∈ CSi(E¯).

A natural question is, whether the units among the continuous sections
are continuous in the sense of Definition 4.3. Let us recall the result from
References3,18 which asserts that a set of units is continuous, if at least one
unit ξ¯ of them is continuous, and if the matrix elements 〈ξt, ξ

′
t〉 and 〈ξ′t, ξ′t〉

for all other units ξ′¯ depend continuously on t.(7.b) The latter condition is
clearly fulfilled for an arbitrary set of units which are continuous sections. It
turns out that the same remains true for continuous sections, but, before we
prove that we give a concise definition.

(7.b)As soon as we have a central ω¯ unit among the continuous sections we are on the save
side, because 〈ωt, ωt〉 is then continuous so that the CP-semigroup b 7→ 〈ωt, bωt〉 = 〈ωt, ωt〉b
is uniformly continuous.
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7.3 Definition. A continuous product system is uniformly continuous, if for
all its continuous sections x, y ∈ CSi(E¯) the mapping t 7→ 〈xt, •yt〉 is uni-
formly continuous (i.e. continuous as mapping R+ → B(B)).

Before we show in full generality that a continuous product system with
a continuous unit among the continuous sections is uniformly continuous, we
consider a special case (which is a slight generalization of the mentioned result
from References3,18).

7.4 Proposition. Let E¯ be the continuous product system coming from a
strictly continuous strict dilation (E, ϑ, ξ) and let ξ¯ =

(
ξt

)
be the unit ξt =

ξ ∈ Et ⊂ E. Then E¯ is uniformly continuous, if and only if ξ¯ is continuous,
i.e. if and only if the dilated unital CP-semigroup Tt = 〈ξt, •ξt〉 is uniformly
continuous.

Proof. ξt embedded into E is constant, so ξ¯ ∈ CSi(E¯). If ξ¯ is not
continuous, then ξ¯ is a continuous section whose matrix elements Tt are not
uniformly continuous, so neither is E¯.

To show the converse, let ξ¯ be continuous and let x, y ∈ CSi(E¯).
Observe that ξ = ξ ¯ ξt in the factorization E = E ¯Et. We find

〈xt+ε, byt+ε〉 − 〈xt, byt〉 = 〈xt+ε, byt+ε〉 − 〈ξε ¯ xt, ξε ¯ byt〉

= 〈xt+ε−ξε¯xt, byt+ε〉+〈ξε¯xt, b(yt+ε−ξε¯yt)〉+〈ξε¯xt, (bξε−ξεb)¯byt〉.
The norm of xt+ε − ξε ¯ xt is small for ε sufficiently small, because ξ¯ and
x are continuous sections, and similarly for yt+ε − ξε ¯ yt. Consequently, the
norm of the mapping which maps b to the first plus the second summand
is small. The norm of the mapping which maps b to the third summand is
small, because ‖bξε − ξεb‖2 = Tε(b∗b)−Tε(b∗)b− b∗Tε(b)+ b∗b is ‖b‖2 times a
small number. This is uniform left continuity. To see uniform right continuity
replace t by t− ε.

It remains, to show that an arbitrary continuous product system with
a continuous unit ξ¯ can be obtained, including its continuous structure,
from a strictly continuous strict dilation. In a certain sense, we have to
reverse the construction of a product system E¯ from an E0–semigroup on
a Hilbert module E. Fortunately, we have availabe the contructuction from
Bhat and Skeide6, which we describe briefly. Suppose the product system
has a unital unit ξ¯. Then the mappings γ(s+t)t: xt 7→ ξs ¯ xt provide us
with an inductive system of isometric embeddings Et → Es+t giving rise to
an inductive limit E∞ which is a right Hilbert module. Under the canonical
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embeddings Et → E∞ all ξt are mapped to the same unit vector ξ ∈ E∞.
We verify E∞ ¯ Et = E∞ and the associativity condition in Equation (7).
Therefore, (E∞, ϑ, ξ) with ϑt(a) = a¯ idEt

is a strict dilation. Obviously, the
product system of (E∞, ϑ, ξ) is E¯ and the unit

(
ξ
)
t∈R+

gives us back the
unit we started with. If the pair (E¯, ξ¯) comes from a dilation, then (E, ξ)
and (E∞, ξ) are canonically isomorphic, if and only if lim

t→∞
ptE = E. Such

dilations are called primary.(7.c) Clearly, the subspace lim
t→∞

ptE is canonically
isomorphic to E∞.

If ξ¯ is a continuous unit, but not necessarily unital, then we know from
Reference3 how to normalize ξ¯ to a continuous unital unit within E¯. More-
over, if ξ¯ is among the continuous sections, then so is its normalization. (The
normalization suggested in Reference3 is unique, but even if there are several
possibilities to obtain a unital unit in the subsystem generated by ξ¯, then
the results below show that the continuous structure does not depend on the
choice.) Henceforth, we assume that ξ¯ is unital.

Denote by k =
(
kt

)
t∈R+

the family of canonical embeddings kt: Et → E∞.
This provides us with a set CSk(E¯) of continuous sections as in Definition
7.1.

7.5 Theorem. Let ξ¯ be a continuous (unital) unit in a continuous product
system E¯. If ξ¯ is in CSi(E¯), then the E0–semigroup ϑ constructed on
Ba(E∞) is strictly continuous and CSk(E¯) = CSi(E¯). In particular, the
continuous structure CSk(E¯) of E¯ does not depend on ξ¯.

Conversely, if ξ¯ /∈ CSi(E¯), then, of course, CSk(E¯) 6= CSi(E¯).

Proof. By the preceding discussion we may suppose that ξ¯ is unital. As
the case ξ¯ /∈ CSi(E¯) is clear, we suppose that ξ¯ ∈ CSi(E¯).

First, we show that ϑ is strictly continuous. The following proof is an
imitation of that in Reference6 for type I systems, except that now we have
to consider continuous sections which are not necessarily units. For a fixed
y ∈ E∞ the mapping t 7→ S

r
ty := y ¯ ξt is continuous. (Indeed, as S

r
t is

bounded by ‖ξt‖ = 1, it is sufficient to show the statement on the total subset
of E∞ consisting of elements of the form y = ksys for some s ∈ R+, ys ∈ Es.
By definition there exists x ∈ CSi(E¯) such that ys = xs. Then (for ε ≥ 0;
ε ≤ 0 is analogous)

‖ksys ¯ ξt+ε − ksys ¯ ξt‖ = ‖ys ¯ ξε ¯ ξt − ξε ¯ ys ¯ ξt‖
(7.c)If E and E∞ are isomorphic, but not necessarily canonical, then we know from
Reference16 that the E0–semigroups on E and E∞ are cocycle conjugate.
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≤ ‖ys ¯ ξε − ξε ¯ ys‖

≤ ‖is+ε(xs ¯ ξε)− is(xs ¯ ξ0)‖+ ‖is(ξ0 ¯ xs)− iε+s(ξε ¯ xs)‖
is small for ε sufficiently small.) It follows that

‖ϑt(a)y − ay‖ ≤ ‖ϑt(a)(y − y ¯ ξt)‖+ ‖ay ¯ ξt − ay‖
is small for t sufficiently small. This implies, in particular, that CSk(E¯) is
the continuous structure derived from an E0–semigroup and, therefore, the
product of sections in CSk(E¯) is continuous in the sense of Definition 7.1(2).

Let x ∈ CSi(E¯). We find

‖kt+εxt+ε − ktxt‖ = ‖xt+ε − ξε ¯ xt‖ = ‖it+ε(ξ0 ¯ xt+ε)− it+ε(ξε ¯ xt)‖
which is small for ε sufficiently small so that x ∈ CSk(E¯).

Conversely, let x ∈ CSk(E¯). For fixed t ∈ R+ we may choose y ∈
CSi(E¯) such that yt = xt for that t. Let ε ≥ 0. Left continuity we see from

‖it+εxt+ε − itxt‖ ≤ ‖it+ε(xt+ε − ξε ¯ xt)‖+ ‖it+ε(ξε ¯ yt)− ityt‖
which is small for ε sufficiently small. For right continuity we observe that for
small ε we have xt ≈ ξε¯xt−ε, because ξ¯, x ∈ CSk(E¯), and yt ≈ ξε¯yt−ε,
because ξ¯, y ∈ CSi(E¯). Therefore,

xt−ε ≈ (ξ∗ε ¯ idEt−ε)xt = (ξ∗ε ¯ idEt−ε)yt ≈ yt−ε

and also

‖it−εxt−ε − itxt‖ ≤ ‖it−ε(xt−ε − yt−ε)‖+ ‖it−εyt−ε − ityt‖
is small.

7.6 Definition. A continuous product system E¯ is type I(II)(III), if there is
a generating continuous subset S ⊂ CSi(E¯) of units (if there is a continuous
unit ξ¯ ∈ CSi(E¯)) (if there is no continuous unit in CSi(E¯)).

The following is a simple corollary of Theorem 7.5 and Proposition 7.4

7.7 Theorem. Non-type III continuous product systems are uniformly con-
tinuous.

If E¯ is a non-type III product system, then, unless specified otherwise
explicitly, we assume that it comes shipped with its natural continuous struc-
ture CSk(E¯). If E¯ is continuous with respect to this structure, then type
and continuous type coincide. (If specified differently, i.e. if the continuous
unit making the product system non-type III, the types need not coincide.)
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7.8 Example. The product system in Example 4.7 is continuous type III,
although its unit is among the continuous sections. It is an interesting problem
to find examples for a continuous product system of Hilbert modules without
units in CSi(E¯). So far, we have to content ourselves with Tsirelson’s Hilbert
space example. Apparently, for Hilbert modules there are different levels of
type III.

Definition 7.1 excludes some interesting product systems of von Neumann
modules (or even of Hilbert modules, when B is a von Neumann algebra or
otherwise too big). For instance, the product system of the time shift S on
the strong closure B = L∞(R+) of Example 4.7 has not a single non-zero
continuous section. (S is only normal, but not C0–continuous.)

Of course, a product system arising from such a natural semigroup like
the time shift should belong to the objects of interest, so we have to find a
definition which suits better for von Neumann modules. A first possibility is
to replace everywhere in Definition 7.1 ‘continuous’ with ‘strongly continuous’.
A second possibility is based on the following observation.

7.9 Proposition. Let E¯ be a product system of Hilbert B–B–modules with
a family i =

(
it

)
t∈R+

of embeddings it: Et → E into a unital Hilbert B–module
and define CSi(E¯) as in Definition 7.1. Suppose CSi(E¯) fulfills Condition
(2) and the weaker condition

1’. For every t ∈ R+ the subspace CSt = {xt (x ∈ CSi(E¯))} is dense in
Et.

Then E¯ is a continuous product system.

Proof. Fix t ∈ R+. We have to show that the subspace CSt is all of Et. We
recall a well-known result from Banach space theory. If W is a dense subspace
of a Banach space V , then for every v ∈ V there exists a sequence

(
wn

)
n∈N

in W such that the series
∞∑

n=1
wn converges absolutely to v. So, for xt ∈ Et

choose a sequence
(
xn

)
n∈N in CSi(E¯) such that the series

∞∑
n=1

xn
t converges

absolutely to xt. We may assume (possibly after multiplying each section xn

by a suitable continuous numerical function) that ‖xn
s ‖ ≤ ‖xn

t ‖ for all s, n. It
follows that the series over the sections xn converges uniformly over s ∈ R+

to a continuous section x with the correct value xt.

If we replace in Definition 7.1 Condition (1) by Condition (1’), then we
obtain a definition suitable for von Neumann modules, if we replace further
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in Condition (1’) ‘dense’ by ‘strongly dense’. In both possible definitions our
example L∞(R) would be continuous. Here we do not intend to decide between
the possible definitions. A decission should be based on further investigation
of examples and, in particular, of counter examples.

We close with a remark on continuity of units in product systems of von
Neumann modules. By a recent result of Elliott8 C0–convergence to idB of
a sequence of normal completely positive mappings on a von Neumann al-
gebra implies uniform convergence. It is routine extension of this result to
conclude that every normal C0–continuous CP-semigroup is uniformly con-
tinuous. Therefore, in a continuous (in the sense of Definition 7.1) product
system of von Neumann modules the set U(E¯) ∩ CSi(E¯) is a continuous
set of units.
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10. B. Kümmerer. Markov dilations on W ∗–algebras. J. Funct. Anal.,
63:139–177, 1985.

11. E.C. Lance. Hilbert C∗–modules. Cambridge University Press, 1995.
12. V. Liebscher. Random sets and invariants for (type II) continuous tensor

product systems of Hilbert spaces. Preprint, 2001.
13. V. Liebscher and M. Skeide. Units for the time ordered Fock module.

Infinite Dimensional Analysis, Quantum Probability & Related Topics,
4:545–551, 2001.

14. Y.G. Lu and S. Ruggeri. A new example of interacting free Fock space.
Preprint, Rome, 1998.

15. N. Muraki. Monotonic independence, monotonic central limit theorem
and monotonic law of small numbers. Preprint, Takizawa, 2000. To
appear in Infinite Dimensional Analysis, Quantum Probability & Related
Topics.

16. M. Skeide. Dilations, product systems and weak dilations. Preprint,
Cottbus, 2000. To appear in Math. Notes.

17. M. Skeide. Generalized matrix C∗–algebras and representations of
Hilbert modules. Mathematical Proceedings of the Royal Irish Academy,
100A:11–38, 2000.

18. M. Skeide. Hilbert modules and applications in quantum probability. Ha-
bilitationsschrift, Cottbus, 2001. Available at
http://www.math.tu-cottbus.de/INSTITUT/lswas/ skeide.html.

19. M. Skeide. The index of white noises and their product systems. Preprint,
Rome, 2001.

20. B. Tsirelson. From random sets to continuous tensor products: answers
to three questions of W. Arveson. Preprint, ArXiv:math.FA/0001070,
2000.

21. B. Tsirelson. From slightly coloured noises to unitless product systems.
Preprint, ArXiv:math.FA/0006165, 2000.

27


