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Abstract

We show that a product subsystem of a time ordered system (that is, a product system of

time ordered Fock modules), though type I, need not be isomorphic to a time ordered prod-

uct system. In that way, we answer an open problem in the classification of CP-semigroups

by product systems. We define spatial strongly continuous CP-semigroups on a unital

C∗–algebra and characterize them as those that have a Christensen-Evans generator.

1 Introduction

Bhat and Skeide [BS00] associate with every CP-semigroup T =
(
Tt

)
t∈R+

on a unital C∗–algebra

B a product system E� =
(
Et

)
t∈R+

of correspondences Et over B and a unit ξ� =
(
ξt
)

t∈R+
for that

product system, such that:

1. Tt = 〈ξt, •ξt〉, and

2. E� is generated by ξ�.

(Recall that product system means that Es�Et = Es+t in an associative way, and that unit means

that the elements ξt ∈ Et compose accordingly as ξs � ξt = ξs+t. Regarding t = 0 we require

that E0 = B and ξ0 = 1.) We refer to E� as the GNS-system of T and to the pair (E�, ξ�) as its

GNS-construction.

Following Skeide [Ske06], we call a product system spatial, if contains a unit ω� that is

central (that is, bωt = ωtb for all b ∈ B, t ∈ R+) and unital (that is, 〈ωt, ωt〉 = 1 for all t ∈ R+).
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Suppose E� is a spatial product system with another unit ξ� such that the CP-semigroup T on

B defined by setting Tt := 〈ξt, •ξt〉 and the semigroup 〈ωt, ξt〉 of elements in B are uniformly

continuous. Then Barreto, Bhat, Liebscher and Skeide [BBLS04, Lemma 5.1.1] asserts that the

generator L := limt→0
Tt−idB

t of T has Christensen-Evans form, that is,

L(b) = L0(b) + bβ + β∗b

for a CP-map L0 on B and an element β in B. Conversely, if a CP-semigroup has Christensen-

Evans generator, then [BBLS04, Corollary5.1.3] asserts that its GNS-system is a subsystem

of a product system of time ordered Fock modules (see Section 2), which is spatial. For the

CP-semigroup T the “good” property of having a Christensen-Evans generator is, therefore, not

so much equivalent to whether the GNS-system is spatial, but rather, whether it embeds into

a spatial one. This property is so important that we would like to propose it as the definition

of spatial CP-semigroup. However, we wish to give this definition in terms intrinsic to the

CP-semigroup (Definition 3.2) and, then, show that it is equivalent to the preceding property

(Theorem 3.4).

A natural question in this context is whether these two properties, spatial GNS-system or

embedding of the GNS-system into a spatial one, coincide. For product systems of von Neu-

mann correspondences the main result of [BBLS04] asserts that a product system that contains

the unit of a uniformly continuous CP-semigroup is spatial, automatically. (This is shown,

establishing equivalence with the results by Christensen-Evans [CE79] about the form of the

generators of CP-semigroups on von Neumann algebras, in fact, the Christensen-Evans form.)

In Section 2 we will show by an explicit counter example that for C∗–correspondences the

properties need not coincide. However, the scope of Section 2 is somewhat more ambitious:

It is well-known that a product system of Hilbert spaces in the sense of Arveson [Arv89]

(Arveson system, for short) is isomorphic to a product systems of symmetric Fock spaces, if

it is generated by its units, that is, if it is type I. Moreover, an arbitrary subsystem of a type I

Arveson system is type I and, therefore, also Fock. In [BBLS04] the same is shown for von

Neumann (or W∗–) correspondences if the set of generating units is continuous. The state-

ment fails already for von Neumann modules, if the generating units fulfill weaker conditions.

(The product system of the Brownian semigroup or the Ornstein-Uhlenbeck semigroup, is non-

Fock, though generated by a single strongly continuous unit; see Fagnola, Liebscher and Skeide

[Ske05, FLS08].) [BBLS04, Example 4.2.4] is a simple example for a type I product system

of Hilbert modules that is non-Fock. However, it also is not a subsystem of a product system

of Fock modules. (It is the product system of a uniformly continuous noninner automorphism

group whose generator has not Christensen-Evans form.)

In Section 2 we will construct a subsystem of a product system of Fock modules that is

generated by a single continuous unit but, nevertheless, is not isomorphic to another product
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system of Fock modules. We will show this, by establishing that the subsystem does not contain

central unit vectors, so that is it not spatial. Such a product system cannot be Fock, because Fock

implies spatial.

In Section 3 we show that the intrinsic definition of strongly continuous spatial CP-semi-

groups (given for CP-semigroups on B(H) by Arveson [Arv97] and elaborated further in Arve-

son [Arv99] and Bhat [Bha01]) and the spatial embedding property for its product system are

equivalent.

We would like to mention that our definition of spatial CP-semigroup is far more general

than that of Powers [Pow04] in terms of intertwining semigroups.

2 The counter example

Let F be a correspondence over a unital C∗–algebra B (that is, F is a right Hilbert B–module

with a nondegenerate left action of B). Denote by � the internal tensor product over B. The

full Fock module over L2(R+, F), the completion of the space of (right continuous) F–valued

step functions, is defined as

F (L2(R+, F)) :=
∞⊕

n=0

L2(R+, F)�n

where L2(R+, F)�0 = B. By ω := 1 ∈ L2(R+, F)�0 we denote the vacuum. The space

L2(R+, F)�n may be considered as the completion of the space of step functions on Rn
+ with

values in F�n.

Let ∆n denote the indicator function of the subset {(tn, . . . , t1) : tn > . . . > t1 ≥ 0} of Rn
+.

Then ∆n acts on the n–particle sector as a projection via pointwise multiplication (and ∆0 acts

as identity on the vacuum). Set ∆ =
∞⊕

n=0
∆n. The time ordered Fock module is the subcorre-

spondence

IΓ(F) = ∆F (L2(R+, F))

of F (L2(R+, F)). By IΓt(F) we denote the subcorrespondence of those functions that are zero if

the maximum time argument is tn ≥ t ∈ R+. Setting

[ust(Fm
s �Gn

t )](sm, . . . , s1, tn, . . . , t1) := Fm
s (sm − t, . . . , s1 − t) �Gn

t (tn, . . . , t1),

we define bilinear unitaries ust : IΓs(F) � IΓt(F) → IΓs+t(F) that turn the family IΓ�(F) =(
IΓt(F)

)
t∈R+

into a product system Hilbert modules in the sense of Bhat and Skeide [BS00],

that is, the multiplication FsGt := ust(Fs � Gt) is associative and for s = 0 or t = 0 reduces to

the left or right action of B.

It is easy to check that for every element ζ in F, the elements ξt that in each n–particle sector

assume the constant value ζ�n, form a unit ξ� =
(
ξt
)

t∈R+
, that is, ξ0 = 1 and ξsξt = ξs+t. This unit
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is also continuous. (See Liebscher and Skeide [LS01] for the precise form of all continuous

units.) For ζ = 0 we obtain the vacuum unit ω� =
(
ωt

)
t∈R+

with ωt = 1. The vacuum unit

is central, that is, bωt = ωtb for all t ∈ R+, b ∈ B. And it consists of unit vectors, that is,

〈ωt, ωt〉 = 1 for all t ∈ R+. Therefore, if we find a subsystem that does not contain any central

unit vector, then this subsystem cannot be Fock.

Let B = C0[0,∞) + C1 denote the unital C∗–algebra of all continuous functions on R+ that

have a limit at infinity. Define the Hilbert B–module F := B. We turn F into a correspondence

over B by defining the left action

b.x := S1(b)x,

where S1 is the left shift by 1, which acts as [S1(b)](t) = b(t + 1). Denote by ξ� the unit

corresponding to the parameter ζ := 1 ∈ F.

2.1 Theorem. The product subsystem of IΓ�(F) generated by the continuous unit ξ� has no

central unit vectors. In particular, it is not isomorphic to a time ordered system.

P. F�n is B as Hilbert right module but with left action b.x = Sn(b)x. No element of F�n

(n ≥ 1) can commute with all elements ofB. Therefore, for each t ≥ 0 the set of central elements

of IΓt(F) is the vacuum or 0–particle sector B. Commutative C∗–algebras do not possess proper

isometries. So, the only unit vectors in B are unitaries. By multiplying (from the right) with the

adjoint, we may assume that such a unit vector is 1.

The product subsystem of IΓ�(F) generated by ξ� is E� =
(
Et

)
t≥0 with

Et = span
{
bnξtn � . . . � b1ξt1b0 : n ∈ N, ti > 0, t1 + . . . + tn = t, bi ∈ B

}
.

for t > 0. Denote by P0 and P1 the projection onto the vacuum component and onto the one-

particle component, respectively. We are done if we show that if an element in xt ∈ Et has

vacuum component P0xt = 1, then the one-particle component P1xt ∈ L2([0, t), F) is nonzero,

too.

Any xt ∈ Et can be approximated by expressions of the form

Xt =

m∑

i=1

b(i)
n(i)ξt(i)n(i)

� . . . � b(i)
1 ξt(i)1

b(i)
0 .

For ε > 0 suppose that ‖xt − Xt‖ ≤ ε. Therefore, also ‖P0xt − P0Xt‖ ≤ ε and ‖P1xt − P1Xt‖ ≤ ε.

Further, suppose that P0xt = 1, that is, suppose that
∥∥∥∥1 −

m∑

i=1

b(i)
n(i) . . . b

(i)
1 b(i)

0

∥∥∥∥ ≤ ε.

The one-particle component of an expression like bnξtn � . . . � b1ξt1b0 is the same as the one-

particle component of

bn(1 ⊕ II[0,tn)1) � . . . � b1(1 ⊕ II[0,t1)1)b0,
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where IIA denotes the indicator function of the set A. The one-particle component of this

expression is

II[t1+...tn−1,t1+...tn)S1(bn)bn−1 . . . b1b0 + . . . + II[t1+t2,t1)S1(bn . . . b2)b1b0 + II[t1,0)S1(bn . . . b1)b0.

From lims→∞[S1(b)c](s) = lims→∞ b(s + 1)c(s) = lims→∞ b(s)c(s) = lims→∞[bc](s) and the fact

that Xt contains only finitely many summands it follows that

lim
s→∞
〈P1Xt, P1Xt〉(s) = lim

s→∞
t
∣∣∣∣

m∑

i=1

b(i)
n(i) . . . b

(i)
1 b(i)

0

∣∣∣∣
2
(s) = lim

s→∞
t〈P0Xt, P0Xt〉(s).

The function 〈P0Xt, P0Xt〉 of s is uniformly close to 1. So, ‖P1Xt‖2 ≥ lims→∞〈P1Xt, P1Xt〉(s)

and, therefore for also ‖P1xt‖ is bigger than a number arbitrarily close to t , 0.

3 Spatial CP-semigroups

Recall that a CP-map T dominates another S , if the difference T − S is a CP-map, too. A

CP-semigroup T dominates another S , if Tt dominates S t for all t ∈ R+. A CP-semigroup S

on a unital C∗–algebra B is elementary, if it has the form S t(b) = c∗t bct for some semigroup

c =
(
ct
)

t∈R+
of elements ct in B.

A semigroup c∗ such that T dominates the elementary CP-semigroup b 7→ c∗t bct is what

Arveson [Arv97] called a unit for T in the case B = B(H). Without continuity conditions,

every CP-semigroup dominates an elementary CP-semigroup, namely, the 0–semigroup which

is idB for t = 0 and 0 otherwise. Depending on the context, there are several topologies around

in which a CP-semigroup can be continuous with respect to time t ∈ R+. The uniform (or norm)

topology, the strong and weak topologies of operators on the Banach space B, and pointwise

versions of all the operator topologies when B ⊂ B(H) is a concrete operator algebra, for

instance, if B is a von Neumann algebra.

In Arveson’s definition, a unit for a CP-semigroup on B(H) is required pointwise contin-

uous in the strong operator topology of B(H). The usual topology used for CP-semigroups

on a C∗–algebra is the strong topology of operators on the Banach space B. It is well-known

that a weakly continuous semigroup is also strongly continuous; see, for instance, Bratteli and

Robinson [BR87, Corollary 3.1.8]. For semigroups c =
(
ct
)

t∈R+
in B, in absence of a strong

topology on B or a predual B∗, the only obvious topology apart from the norm topology is the

weak topology. However, if t 7→ ct is weakly continuous, then also the semigroup b 7→ bct

of operators on B is weakly, hence, strongly continuous. However, strong continuity for that

semigroup means that, in particular for b = 1, the map t 7→ ct is norm continuous.

3.1 Remark. This is not a contradiction to the existence weakly continuous unitary groups on
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a Hilbert space H. Here weakly continuous refers to the weak operator topology of B(H) that

is much weaker than the weak topology of B(H).

3.2 Definition. A strongly continuous CP-semigroup is spatial, if it admits a continuous unit.

To prove the following theorem, we need to recall a few definitions and facts from [BBLS04,

Ske03]. A kernel on a set S with values in the set B(A,B) of bounded mappings from A to B
is just a map K : S × S → B(A,B). The kernel K is completely positive definite (or CPD), if

∑

i, j

b∗iK
si,s j(a∗i a j)b j ≥ 0

for all choices of finitely many si ∈ S , ai ∈ A, bi ∈ B. If A = B, we say K is a kernel on B. A

CPD-semigroup on B is a family T =
(
Tt

)
t∈R+

of CPD-kernels on B, such that for all s, s′ ∈ S

the maps Ts,s′
t form semigroups on B. The CPD-semigroup is continuous in a certain topology,

if every semigroup Ts,s′
t is continuous in that topology. By [BBLS04, Theorem 4.3.5] for every

CPD-semigroup on a unital C∗–algebra B there is a product system E� and a family
(
ξs�)

s∈S of

units for E�, such that

Ts,s′
t = 〈ξs

t , •ξs′
t 〉

for all s, s′ ∈ S . The subsystem of E� generated by all these units is unique in an obvious way,

and we refer to it as the GNS-system of T. If T is strongly continuous, then the GNS-system of

T is continuous in the sense of Skeide [Ske03]. We do not repeat the complete definition, but

recall only what is relevant to us. Roughly speaking, a continuous product system has enough

continuous sections
(
xt
)

t∈R+
,
(
yt
)

t∈R+
for which the map t 7→ 〈xt, •yt〉 is strongly continuous (and

which behave “nicely” under tensor product). The fact that E� is generated by the units of a

strongly continuous CPD-semigroup is enough to assure continuity of E�. (This follows by

putting together [Ske03, Theorem 7.5] and its improvement Skeide [Ske07, Theorem 3.3].)

3.3 Definition. A continuous product system is spatial, if among its continuous sections there

is a unital central unit.

3.4 Theorem. A strongly continuous CP-semigroup is spatial, if and only if its GNS-system can

be embedded into a continuous spatial product system.

P. “⇐=.” Let T be a strongly continuous CP-semigroup. Suppose E� is a continuous

product system that contains a unit ξ� such that Tt = 〈ξt, •ξt〉 and a continuous central unital

unit ω�. Then ct := 〈ωt, ξt〉 is a semigroup of elements in B; see [BBLS04, Section 5.1].

As t 7→ 〈ωt, •ξt〉 is strongly continuous, t 7→ ct is uniformly continuous. Define the bilinear

projection qt := idt −ωtω
∗
t ∈ Ba,bil(Et). By

Tt(b) − c∗t bct = 〈ξt, bξt〉 − 〈ξt, ωt〉b〈ωt, ξt〉 = 〈ξt, qtbξt〉 = 〈(qtξt), b(qtξt)〉,
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we see that Tt − c∗t • ct is completely positive for all t ∈ R+.

“=⇒.” Let c =
(
ct
)

t∈R+
be a unit for the strongly continuous CP-semigroup T . Then the

strongly continuous semigroup Tt of kernels on {0, 1} with values in B(B) defined by setting

T0,0

t T0,1
t

T1,0
t T1,1

t

 :=


idB c∗t •
•ct Tt

 :=


0 0

0 Tt − c∗t • ct

 +


idB c∗t •
•ct c∗t • ct



is completely positive definite. (Indeed, c is a unit for T , so the first summand is CPD, and

the second is a simple example of what would be called an elementary CPD-semigroup and,

obviously, CPD.) The GNS-system of T is, then, a spatial continuous product system with unital

central unit ξ0� containing the GNS-system of Tt as the subsystem generated by the unit ξ1�.

3.5 Remark. Theorem 2.1 tells us that we may not replace Definition 3.3 with the property that

T has a spatial product system. Theorem 3.4 tells us that we may replace Definition 3.3 with

the property that the product system of T imbeds into a spatial product system. The clarification

of these facts was the main scope of these notes.

By Skeide [Ske03, Theorem 7.7], a continuous product system that has a uniformly contin-
uous unit ξ� (that is, the CP-semigroup 〈ξt, •ξt〉 is uniformly continuous), is uniformly continu-
ous (that is, for all continuous sections

(
xt
)

t∈R+
,
(
yt
)

t∈R+
of E� the map t 7→ 〈xt, •yt〉 is uniformly

continuous). In particular, all continuous units are uniformly continuous.

3.6 Corollary. Every spatial strongly continuous CP-semigroup is uniformly continuous. The

other way round, every strongly continuous CP-semigroup that is not uniformly continuous, is

nonspatial, too.

P. The central unital unit ω� induces the trivial CP-semigroup which is uniformly contin-

uous.

The opposite statement need not be true. In fact, the generator of [BBLS04, Example 4.2.4]

has not Christensen-Evans form. By the following sharp version of the corollary, this means it

is a counter example.

3.7 Corollary. A strongly continuous CP-semigroup is spatial, if and only it has a Christensen-

Evans generator.

P. This summarizes some of the discussions in the introduction, Corollary 3.6, and Theo-

rem 3.4. If the semigroup is spatial, then by Corollary 3.6 it is uniformly continuous. There-

fore, by [BBLS04, Lemma 5.1.1] it has Christensen-Evans generator. On the other hand, by

[BBLS04, Corollary 5.1.3], the product system of a CP-semigroup with Christensen-Evans gen-

erator embeds into a time ordered product system, so that, by Theorem 3.4, it is spatial.
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3.8 Remark. Following Definition 3.2, both Corollaries are intrinsic statements about strongly

continuous CP-semigroups. However, we think it would not be easily possible to prove these

statements without reference to product systems. These results continue a whole series of in-

trinsic statements about CP- or CPD-semigroups that have comparably simple proofs in terms

of their GNS-system; see also Liebscher and Skeide [LS08, Remark 3.6].

3.9 Remark. In Corollary 3.6 we have seen that spatial strongly continuous CP-semigroups on

a unital C∗–algebra B are uniformly continuous. This is so due to the fact that that there is no

semigroup c =
(
ct
)

t∈R+
in B continous in any of the natural topologies of B, that would not be

uniformly continuous. For a von Neumann algebra B, from the beginning, it is not reasonable

to consider CP-semigroups that are strongly continuous. A result due to Elliott [Ell00] asserts

that such a semigroup would be uniformly continuous. But in weaker topologies where also

units c∗ need no longer be uniformly continuous, there will be much richer classes of spatial

CP-semigroups. Actually, practically all known explicit examples of CP-semigroup on B(H)

are spatial in this sense, when continuity is with respect to the strong operator topology. We do

not state the obvious modification of Definition 3.2 to the strongly (operator) continuous case,

because a theory of strongly continuous product systems of von Neumann correspondences

([Ske08]) is still under development.
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