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Abstract

Tensor product systems of Hilbert modules and units for them play a crucial
role in the construction of weak Markov flows for CP-semigroup T on a C∗–algebra
B. In fact, with each product system with a unit we associate a CP-semigroup and,
conversely, with a CP-semigroup we associate a product system with a unit. This
correspondence is unique, if we require the unit to generate the product system in
a suitable sense.

The most important product systems are those associated with a time ordered
Fock module, which play a similar role as symmetric Fock spaces in Arveson’s theory
of product systems of Hilbert spaces. We know, for instance, that the product
systems of uniformly continuous semigroups is always contained in a product system
associated with a time ordered Fock module.

In these notes we give a description of all generating units arising from CP-
semigroups on C2, the diagonal subalgebra of the 2 × 2–matrices. In particular,
we show that these units always generate the whole of a suitably chosen time or-
dered product system. Many of the statements remain true also for more general
C∗–algebras. En passant we obtain a simple proof of the result by Parthasarathy
ans Sunder that the exponential vectors to indicator functions are total in the sym-
metric Fock space Γ(L2(R+)).

∗This work has been supported by the Deutsche Forschungsgemeinschaft.
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1 Introduction

Product systems of Hilbert spaces (or short Arveson systems) are introduced in Arveson

[Arv89]. They arise naturally in the study of E0–semigroups (i.e. semigroups of unital

endomorphisms) of B(H) where H is some Hilbert space. An Arveson system can be

thought of as a family
(
Ht

)
t>0

of Hilbert spaces which compose as

Hs ⊗ Ht = Hs+t

in an associative way. With any E0–semigroup on B(H) one can associate an Arveson

system and E0–semigroups are classified by their Arveson systems up to cocycle conjugacy.

(Actually, in [Arv89] all Ht are infinite dimensional and separable and the whole product

system is endowed with a topology fulfilling some condition. Under these conditions

Arveson [Arv90] shows a one-to-one correspondence between Arveson systems and cocycle

conjugacy classes of strongly continuous normal E0–semigroups.)

Let B be an arbitray unital C∗–algebra. In Bhat-Skeide [BS00] tensor product systems

of Hilbert B–B–modules (short product systems) arise in the study of completely positive

(CP-) semigroups on B. (Recall that a Hilbert B–module is a right B–module with a

sesquilinear B–valued inner product, which is positive and right B–linear in its second

variable, and which is complete in the norm ‖x‖ =
√
‖〈x, x〉‖. A Hilbert B–B–module

is a Hilbert B–module with a unital ∗–representation of B by bounded right module

homomorphisms.) More precisely, with any CP-semigroup T on B we associate a family

E¯ =
(
Et

)
t≥0

of Hilbert B–B–modules such that

Es ¯ Et = Es+t

in an associative way (and E0 = B). (Recall that the inner product on a tensor product

of Hilbert modules is defined, by setting 〈x¯y, x′¯y′〉 = 〈y, 〈x, x′〉y′〉.) Also here we have

that unital CP-semigroups on B are classified by their product systems up to a certain

cocycle conjugacy class. Moreover, if the CP-semigroup is an E0–semigroup, then, like

for Arveson systems, the cocycles are unitary. Hence, we do not only recover Arveson’s

classification of E0–semigroups on B(H), but find a generalization to E0–semigroups on

an arbitrary unital C∗–algebra B; see [BS00] for details.

In both theories the most important objects are units . A unit is a family ξ¯ =
(
ξt

)
t≥0

of vectors ξt ∈ Et (or Ht) such that

ξs ¯ ξt = ξs+t

(or ξs ⊗ ξt = ξs+t). Arveson systems are classified by their supply of units. A type I

Arveson system has sufficiently many units in the sense that Ht is spanned by tensor
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products of (possibly different) units to smaller times. An Arveson system which has

units, but is not of type I, is type II. An Arveson system without units is type III. Let

K be a (not necessarily separable) Hilbert space, and denote by Γt the symmetric Fock

space Γ(L2([0, t], K)). Then
(
Γt

)
is a product system via the isomorphism

Γs ⊗ Γt
∼= Γ(L2([t, t + s], K))⊗ Γt

∼= Γs+t.

All type I Arveson systems are of the form
(
Γt

)
for some separable K and the units are

just all rescaled exponential vectors ξt = ectψ(χ[0,t]f) (c ∈ C, f ∈ K). The dimension of

K (or rather K itself) for the type I Arveson subsystem of an arbitrary Arveson system

is called its index; see [Arv89]. Although we know that there exist E0–semigroups whose

associated Arveson system is not of type I (see [Pow87]), until now nobody has seen yet

a concrete example.

It seems natural to try the construction of a symmetric Fock module Γ(L2([0, t], F )),

where F is a Hilbert B–B–module and the one-particle sector L2([0, t], F ) is the norm

closure of the step functions on [0, t] with values in F . However, it turns out that such

a construction is not possible without further conditions on F ; see [Ske98, AS00] for

examples. On the other hand, it is well-known that the symmetric Fock space Γt is

isomorphic to the time ordered Fock space F0
t whose n–particle sector consists of square

integrable functions on [0, t]n with values in the full tensor product K⊗n being zero on

(tn, . . . , t1) ∈ [0, t]n, unless t ≥ tn ≥ . . . ≥ t1 ≥ 0; see [Sch93, Bha98] for details. Here

the analogue construction for Hilbert modules is possible without problems. Moreover,

we know from [BS00] that the time ordered Fock modules F0
t over the one-particle sector

L2([0, t], F ) form a product system via the isomorphism

[Fs ¯Gt](sm, . . . , s1, tn, . . . , t1) = Fs(sm − t, . . . , s1 − t)¯Gt(tn, . . . , t1)

where Fs is in the m–particle sector of F0
s and Gt is in the n–particle sector of F0

t . Also

here we have for each x ∈ L2(R+, F ) an exponential vector ψ(x) defined, by setting the

component in the n–particle sector

ψ(x)n(tn, . . . , t1) = x(tn)¯ . . .¯ x(t1) (tn ≥ . . . ≥ t1 ≥ 0).

Of particular interest are the exponential vectors ψt(ζ) := ψ(χ[0,t]ζ) (ζ ∈ F ). Together

with their time translates they generate already the whole time ordered Fock module.

Observe that under the above isomorphism ψs(ζ)¯ψt(ζ
′) = ψ(χ[t,t+s]ζ +χ[0,t]ζ

′), whereas

ψt(ζ
′)¯ ψs(ζ) = ψ(χ[s,s+t]ζ

′ + χ[0,s]ζ). These vectors, in general, have different lengths.

Like in the theory of Arveson systems, the time ordered Fock module plays a distin-

guished role. In [BS00] it is shown that the product system associated with an arbitrary

unital uniformly continuous CP-semigroup on B is contained as a product subsystem of a
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product system of time ordered Fock modules. Given a unit ξ¯ for a product system E¯,

it follows directly from the definition of the inner product of the tensor product that the

mappings Tt(b) = 〈ξt, bξt〉 define a CP-semigroup on B. The product system E¯ is that

(unique up to isomorphism) associated with the CP-semigroup T , if and only if the unit

is generating, i.e. if the vectors

bnξtn ¯ . . .¯ b1ξt1b0 (tn + . . . + t1 = t)

form a total subset of Et. Depending on the topology, there are different notions of a

generating unit. Here we refer to the B–weak topology wich is determined by the family

‖〈x, •〉‖ of seminorms and, therefore, the module analogue of the weak topology on a

Hilbert space.

In [LS01] it is pointed out that a quite large class of units for the time ordered Fock

module can be described as follows. Let ξ0
t be a semigroup in B and let ζ be an element in

F . Then the elements ξt ∈ F0
t whose component in the 0–particle sector is ξ0

t and whose

component ξn
t in the n–particle sector (n ≥ 1) is

ξn
t (tn, . . . , t1) = ξ0

t−tnζ ¯ ξ0
tn−tn−1

ζ ¯ . . .¯ ξ0
t2−t1

ζξ0
t1

(1.1)

form a unit for
(
F0

t

)
. This class of units includes also CP-semigroups with unbounded gen-

erators, hence, showing that the time ordered Fock modules allows also for the description

of quite a lot CP-semigroups which are only strongly continuous.

The units described by (1.1) contain two important subclasses. The first is where

ζ = 0. These units have only the component ξ0 in the 0–particle sector. In fact, in

order to show that a given unit is generating, it is the crucial step to show that this unit

generates the vacuum unit (which corresponds to ζ = 0 and ξ0
t = id). The second class

of unit is where ζ is arbitrary, but ξ0
t = id. These are precisely the exponential vectors

ψt(ζ).

If there is a unital unit (i.e. 〈ξt, ξt〉 = 1 so that also T is unital), then there are other

related structures arising from a product system. We only mention that for all t ≥ s the

mapping xs 7→ ξt−s¯ xs is an isometric (i.e. inner product preserving) mapping Es → Et.

The family of all these mappings is an inductive system so that we may construct the

inductive limit E over all Et. On the C∗–algebra Ba(E) of all adjointable operators on

E, we have a natural E0–semigroup ϑ and a natural conditional expectation ϕ onto B.

The pair (ϑ, ϕ) is a dilation of T , i.e. ϕ ◦ ϑt = Tt, and the restrictions jt of ϑt to B form a

weak Markov flow in the sense of [BP94], i.e. jt(1)js+t(b)jt(1) = jt ◦ Ts(b). We refer the

reader to [BS00] for details.

In the remainder of these notes we investigate in detail the case B = C2. We give

an explicit form of all units obtain by (1.1). We compute explicitly all unital continuous
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CP-semigroups on C2. Finally, we show that the product systems associated with such

semigroups are always product systems of time ordered Fock modules.

2 CP-semigroups on C2

In this section we study in detail how the unital CP-semigroups on the diagonal subalgebra

of M2 and the associated time ordered Fock modules look like. The diagonal subalgebra

is the unique unital 2–dimensional ∗–algebra. We find it convenient to identify it with the

vector space C2 (equipped with componentwise multiplication and conjugation), rather

than the diagonal matrices. In addtion to the canonical basis e1 =
(
1
0

)
, e2 =

(
0
U

)
we

will also use the basis e+ = 1 =
(

1
U

)
, e− =

(
1−1

)
. In the first basis it is easy to say

when an element of C2 is positive (namely, if and only if both coordinates are positive),

whereas in the second basis unital mappings have a particularly simple (triangular) matrix

representation.

Let us start with an arbitrary Hilbert C2–C2–module F . Choose ζ ∈ F , β ∈ C2 and

consider the unit ξ¯ as defined by (1.1) with the semigroup ξ0
t = etβ. We say ξ¯ is the

unit with parameters ζ, β. In [LS01] it is shown that the CP-semigroup Tt(b) = 〈ξt, bξt〉
has the generator Lξ(b) = 〈ζ, bζ〉 + β∗b + bβ. As usual, the form of this generator is not

determined uniquely by T . On the one hand, as C2 is commutative, only the sum β∗ + β

contributes so that the imaginary part of β is arbitrary. On the other hand, a positive

part in β∗+β can easily be included into the inner product, by adding a direct summand

C2 (i.e. the simplest Hilbert C2–C2–module possible) to ζ. However, we know from [BS00]

that the two product subsystems generated by two such units are isomorphic.

If we have two units ξ¯, ξ′¯ (with parameters ζ, β, ζ ′, β′), then also 〈ξt, bξ
′
t〉 is semigroup

(of course, in general, not a CP-semigroup). Like in [LS01] one shows that this semigroup

has a generator which is of the form Lξ,ξ′(b) = 〈ζ, bζ ′〉+β∗b+ bβ′. It is not difficult to see

that this can be the most general linear operator on C2. It is possible to give the explicit

form of the semigroup etL, in general, because L as an operator on C2 is similar either to

a matrix
(

λ1
0

0
λ2

)
or to a matrix

(
λ
0

1
λ

)
whose exponentials can easily be computed. We do

not work this out, because we are interested rather in the minimal tensor product system

generated by a single unital unit ξ¯ with parameters ζ, β. Here computations are much

more handy.

Since we are interested in what is generated by a certain unit, we assume that F is

generated by ζ. Then F decomposes into the submodules Ceiζej (i, j = 1, 2) some of

which may be {0}. If all four spaces are non-trivial, than Ce1ζe1 ⊕ Ce2ζe2 is isomorphic

to the right Hilbert module C2 with natural left multiplication, whereas Ce1ζe2⊕Ce2ζe1

is isomorphic to the right Hilbert module C2 where, however,
(

z1
z2

)
acts from the left via
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multiplication by
(

z1
z2

)
− :=

(
z2
z1

)
. We denote the former C2–C2–module by C2

+ and the

latter by C2
−. If some of the spaces Ceiζej are trivial, then F is at least contained in

C2
+ ⊕ C2

−.

The discussion about ambiguity in the choice of the parameters shows that we may

include the component ζ+ of ζ in C2
+ into β by adding 1

2
〈ζ+, ζ+〉 to β without changing

the semigroup T . We may, therefore, assume that F = C2
−. Observe that this choice

corresponds to say that the completely positive part 〈ζ, •ζ〉 of L is the smallest possible.

We have C2
−¯C2

− = C2
+ where the canonical isomorphism is b¯b′ 7→ b−b′ and, of course,

C2
+¯E = E = E¯C2

+ for all Hilbert C2–C2–modules E. Therefore, F0
t (C2

−) = F0
t (C)⊗C2

as Hilbert C2–module. However, the left multiplication is that of C2
+ on 2n–particle sectors

and that of C2
− on 2n+1–particle sectors. Although F0

t (C) is isomorphic (even as Arveson

system) to Γt(L
2(R+)), the module structure of F0

t (C2
−) is very much different from that

of the symmetric Fock module Γt(L
2(R+)) ⊗ C2 where the left multiplication is that of

C2
+ on all n–particle sectors; see [Ske98].

Now it is very easy to write down the units for
(
F0

t (C2
−)

)
explicitly.

2.1 Theorem. Let ξ¯ be the unit for
(
F0

t (C2
−)

)
with parameters ζ =

(
ζ1
ζ2

)
, β and set

|ζ| = ζ1ζ2. Then

ξ2n(t2n, . . . , t1) = |ζ|n etβe(t2n− t2n−1 + ... + t2− t1)(β−−β)

ξ2n+1(t2n+1, . . . , t1) = ζ |ζ|n etβ−e(t2n+1− t2n + ... + t1)(β−β−).

Proof. This follows from (1.1) by making use of bζ = ζb− and ζ ¯ ζ = ζ−ζ = |ζ|1.

2.2 Remark. The corresponding unit for
(
F0

t (C2
+)

)
would be given by ξn(tn, . . . , t1) =

ζnetβ. In other words, we obtain just the exponential vectors ψt(ζ) =
(

ψt(ζ1)
ψt(ζ2)

)
rescaled by

etβ. Like a single unit in an Arveson system is never generating, we find also here that

none of the units is generating. Moreover, with units in this time ordered Fock module we

recover only CP-semigroups of the form Tt(b) = betc for some self-adjoint element c ∈ B.

In particular, the only unital CP-semigroup in this class is the trivial one.

Let us return to F0
t (C2

−) and see which unital CP-semigroups are generated by which

unital unit. Recall that ξ¯ is unital, if and only if β +β∗ = −〈ζ, ζ〉 and the the imaginary

part of β does not influence the CP-semigroup.

Let T be a unital mapping. In the basis e+, e− it has the matrix representation

T̂ =

(
1 p

0 q

)
.
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From
(

z1
z2

)
= z1+z2

2

(
1
U

)
+ z1−z2

2

(
1−1

)
we find

T

(
z1

z2

)
=

z1 + z2

2

(
1

U

)
+

z1 − z2

2

[
p

(
1

U

)
+ q

(
1

−1

)]

=
z1

2

(
1 + p + q

U + p− q

)
+

z2

2

(
1− p− q

U − p + q

)
.

Hence, T is positive (which is the same as completely positive, as C2 is commutative),

if and only if
(

p
q

)
is in the square (including borders) in the R2–plane with corner points

(1, 0), (0, 1), (−1, 0), (0,−1).

Now let Tt be a family of mappings on C2 having matrices T̂t =
(
1
0

pt
qt

)
with respect to

the basis e+, e−. In order that T =
(
Tt

)
be a semigroup, pt and qt must solve the functional

equations pt + psqt = ps+t and qsqt = qs+t. Requiring that Tt be continuous implies, as

usual, differentialbility of pt and qt. Using this, we find qt = e−ct and pt = α(1−e−ct) with

complex constants c and α. In order that Tt be positive we find c ≥ 0 and −1 ≤ α ≤ 1.

These conditions are necessary and sufficient. The corresponding CP-semigroup is

Tt

(
z1

z2

)
=

z1 + z2

2

(
1

U

)
+

z1 − z2

2

[
α(1− e−ct)

(
1

U

)
+ e−ct

(
1

−1

)]
.

The generator is

L
(

z1

z2

)
=

z1 − z2

2
c

(
α− 1

α + 1

)
. (2.1)

On the other hand, the generator of the CP-semigroup generated by the unital unit ξ¯ is
(

z1

z2

)
= b 7−→ 〈ζ, bζ〉 − 〈ζ, ζ〉b = 〈ζ, ζ〉(b− − b) = (z1 − z2)

(
− |ζ1|2
|ζ2|2

)
.

Equating this to (2.1), we find c = |ζ1|2 + |ζ2|2 and α = |ζ2|2−|ζ1|2
|ζ1|2+|ζ2|2 .

Of course, c = 0 (i.e. ζ = 0) yields the trivial CP-semigroup independently of α.

Different choices for c > 0 correspond to a time scaling. Here we have to distinguish the

two essentially different cases where |ζ| = 0 (i.e. α = ±1) and where |ζ| 6= 0 (i.e. |α| < 1).

In the case |ζ| = 0 only the components ξ0 and ξ1 of the unit ξ¯ are different from

0. The case α = −1 is analyzed in detail in [BS00] and the case α = 1 follows from

this, because, in general, a sign change of α just corresponds to flip of the components

in C2. Since ζ ¯ ζ = 0 in this case, we find that the time ordered Fock module over the

(one-dimensional) module C2ζC2 = Cζ consists only of its 0– and 1–particle sector and,

indeed, is generated by the unit. The CP-semigroup maybe considered as the unitization

of a contractive CP-semigroup on C. Such a truncated Fock module is related to boolean

independence [Wal73]; see [Ske00] for details.
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Now we come to the case |ζ| 6= 0, whence ζ is invertible. It is our goal to show that also

in this case any unit is generating for
(
F0

t (C2
−)

)
at least in the C2–weak topology. In this

way we show that the product system associated with the corresponding CP-semigroup

is dense in
(
F0

t (C2
−)

)
in this topology.

Our strategy is inspired very much by [Arv89, Section 6]. In [Arv89] the argument is

based on the simple properties of semigroups on C. Here we need some basic properties of

semigroups on C2. As the first part of this section shows, these case is already considerably

more complicated. We remark that many of the following results are true also for more

general C∗–algebras than C2.

Let us repeat the following well-known result on semigroups.

2.3 Lemma. Let T, S be two semigroups on a Banach space B with bounded generators

L,M, respectively, and let 0 ≤ κ ≤ 1. Then for all t ≥ 0 the limit

T̂ St = lim
n→∞

(
T tκ

n
S t(1−κ)

n

)n

exists in norm. Moreover, the mappings T̂ St form a semigroup with bounded generator

κL+ (1− κ)M.

2.4 Corollary. Let ξ¯, ξ′¯ be two units for
(
F0

t (C2
−)

)
with parameters ζ, β, ζ ′, β′, respec-

tively, and let 0 ≤ κ ≤ 1. Then for all t ≥ 0 the limit

ξ̂ξ′t = lim
n→∞

(
ξ tκ

n
¯ ξ′t(1−κ)

n

)¯n

exists C2–weakly in F0
t (C2

−) and coincides with the unit with parameters

κζ + (1− κ)ζ ′ and κβ + (1− κ)β′.

Proof. Clearly, the sequence is bounded. Therefore, it is sufficient to check convergence

on a generating subset of F0
t (C2

−). As generating subset we choose vectors of the form

bkΞ
k
tk
¯. . .¯b1Ξt1b0 (tk+. . .+t1 = t) where Ξ`

t are (possibly different) units. Convergence of

inner products with such elements follows by careful applications of Lemma 2.3. Moreover,

the limits of the inner products coincide with the inner products with the unit having

parameters κζ + (1−κ)ζ ′,κβ + (1−κ)β′. Therefore, the limit exists in F0
t (C2

−) and has

the stated form.

2.5 Lemma. Let ξ¯ be a unit for
(
F0

t (C2
−)

)
with parameters ζ, β and let β′ ∈ B. Then

for all t ≥ 0 the limit

ξ′t = lim
n→∞

(
ξ t

n
e

tβ′
n

)¯n

exists C2–weakly in F0
t (C2

−) and coincides with the unit with parameters ζ, β + β′.
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Proof. Precisely, as in Corollary 2.4.

In particular, we see that the C2–weak closure of what is generated by a unit with

parameters ζ, β contains the unit with β = 0 (i.e. the exponential vectors ψt(ζ)).

Until here the results are true for time ordered Fock modules over arbitrary two-sided

Hilbert modules. Now we refer to the special structure of C2. Define Pt : F0
t (C2

−) →
F0

t (C2
−) by setting Ptx = e1xe1 + e2xe2. Notice that Pt is the projection onto the direct

sum over all 2n–particle sectors.

2.6 Lemma. Let ξ¯ be an arbitrary unit for
(
F0

t (C2
−)

)
. Then

lim
n→∞

(
P t

n
ξ t

n

)¯n
= ξ0

t .

Proof. Let P 01
t denote the projection onto the direct sum of the 0– and the 1–particle

sector. Then as in the symmetric Fock space, we have lim
n→∞

(
P 01

t
n

)¯n
= idF0

t (C2
−) in the

strong topology. Now the result follows from the fact that PtP
01
t is the projection onto

the vaccum.

Applying this to an exponential vector and taking into account also Lemma 2.5 we find

that any unit with parameters ζ, β generates besides the exponential vectors ψt(ζ) also

the vacuum. Taking the vacuum as ξ′¯ in Corollary 2.4, we find that also the exponential

vectors ψt(κζ) is generated by ξ¯. Putting these units piecewise together, we find that

ξ¯ generates all exponential vectors to step functions on [0, t] which take values in the

convex combinations of ζ and 0. If |ζ| 6= 0, then, clearly, these form a total subset of

F0
t (C2

−) for each t. Summarizing, we find our main result.

2.7 Theorem. All units ξ¯ for
(
F0

t (C2
−)

)
with parameters ζ, β (|ζ| 6= 0) are generating.

2.8 Remark. The preceding discussion gives a new simple proof of the result by Par-

thasarathy und Sunder [PS98] that exponential vectors in the symmetric Fock space

Γ(L2(0, 1)) to indicator functions are total. See also Bhat [Bha01].
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