
Units for the Time Ordered Fock Module

Volkmar Liebscher

Institute of Biomathematics and Biometry

GSF-National Research Centre for Environment and Health

85764 Neuherberg/München

E-mail: liebscher@gsf.de

Homepage: http://www.gsf.de/institute/ibb/liebscher/

Michael Skeide∗

Lehrstuhl für Wahrscheinlichkeitstheorie und Statistik

Brandenburgische Technische Universität Cottbus

Postfach 10 13 44, D–03013 Cottbus, Germany

E-mail: skeide@math.tu-cottbus.de

Homepage: http://www.math.tu-cottbus.de/INSTITUT/lswas/ skeide.html

March 2000

Abstract

We give an explicit formula for all continuous units for the product system
associated with an arbitrary time ordered Fock module over a two-sided Hilbert
B–module. Like in the case of the symmetric Fock space, the units may be consid-
ered as exponential vectors to indicator function possibly renormalized by a semi-
group. However, since this semigroup takes values in B, the renormalization must
be done more carefully. It turns out that the generators of the CP-semigroups on B
associated with our units are precisely the Christensen-Evans generators. Finally,
we present an example which shows that the situation changes considerably, when
we drop the continuity condition.

∗MS is supported by Deutsche Forschungsgemeinschaft.
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Let B be a unital C∗–algebra and let
(
Et

)
t∈R+

be a family of Hilbert B–B–modules.

(Recall that a Hilbert B–module is a right B–module with a sesquilinear B–valued inner

product, which is positive and right B–linear in its second variable, and which is complete

in the norm ‖x‖ =
√
‖〈x, x〉‖. A Hilbert B–B–module is a Hilbert B–module with a unital

∗–representation of B by bounded right module homomorphisms.) We say the Et form a

product system, if there are B–B–linear isomorphisms (i.e. unitaries) ust : Es ¯Et → Es+t

such that the associativity condition ur(s+t) ◦ (id¯ust) = u(r+s)t ◦ (urs¯ id) is fulfilled, and

if E0 = B (with the natural identification Et ¯ B = Et = B ¯ Et). Usually, we do not

refer explicitly to the family
(
ust

)
and write

Es ¯ Et = Es+t.

For Hilbert spaces (i.e. Hilbert C–C–modules) the notion of product system (including

some additional technical conditions) has been introduced by Arveson [Arv89] in the study

of E0–semigroups (i.e. semigroups of normal, unital endomorphisms of B(H)). Product

systems of Hilbert modules arose naturally in [BS00] in the study of CP-semigroups (i.e.

semigroups of completely positive mappings) on B.

In both theories the notion of a unit for a product system plays an important role. A

unit is a family ξ¯ =
(
ξt

)
t∈R+

of elements ξt ∈ Et fulfilling

ξs ¯ ξt = ξs+t

and ξ0 = 1. Units are connected with CP-semigroups on B by the observation that

〈ξs+t, bξs+t〉 = 〈ξs ¯ ξt, bξs ¯ ξt〉 = 〈ξt, 〈ξs, bξs〉ξt〉

from which we conclude that Tt(b) = 〈ξt, bξt〉 defines a CP-semigroup. It is one of the

main results in [BS00] that any CP-semigroup may be recovered in this way.

In the case of Arveson systems units are used to define the type of a product system

and its index; see [Arv89]. For instance, type I Arveson systems are those which admit

sufficiently many units in the sense that Et is generated by tensor products of units to

smaller times. Any type I Arveson system is isomorphic to a family
(
Γt

)
of symmetric

Fock spaces Γt = Γ(L2([0, t], K)) where K is some Hilbert space, the index. As any

Arveson system contains a unique maximal type I subsystem (namely, what is generated

by its units), we take as its index the index of this type I subsystem. The units of type I

Arveson systems are precisely the exponential vectors ψ(II [0,t]f) (f ∈ K) times a rescaling

ect (c ∈ C).

For product systems of Hilbert modules it is not yet clear which is the right notion of

type and index. We will not discuss this here. However, it is clear what is the analogue of

the symmetric Fock space. The analogue of the one-particle sector is L2(R+, F ) where F
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is an arbitrary Hilbert B–B–module and L2 means norm completion of step functions with

values in F (with obvious Hilbert B–B–module structure). However, the construction of

a symmetric Fock module over L2(R+, F ) is not possible without restrictions on F . (See

[Ske98, AS00] for examples and discussion of symmetric Fock modules.) It is, however,

well-known that the symmetric Fock space is isomorphic to the time ordered Fock space;

see [Gui72]. The same is true for the symmetric Fock modules considered in [Ske98, AS00].

The time ordered Fock module has the advantage that it may be constructed for arbitrary

F .

1 Definition. Let F be a Hilbert B–B–module. The full Fock module over L2(R+, F ) is

defined as

F(L2(R+, F )) =
∞⊕

n=0

L2(R+, F )¯n

where L2(R+, F )¯0 = B. By ω we denote the vacuum, i.e. the 1 in L2(R+, F )¯0. The

space L2(R+, F )¯n may considered as the completion of the space of step functions on Rn
+

with values in F¯n.

Let ∆n denote the indicator function of the subset {(tn, . . . , t1) : tn ≥ . . . ≥ t1 ≥ 0} of

Rn
+. Then ∆n acts on the n–particle sector as a projection via pointwise multiplication

(and ∆0 acts as identity on the vacuum). Set ∆ =
∞⊕

n=0

∆n. The time ordered Fock module

is the two-sided submodule

IΓ(F ) = ∆F(L2(R+, F ))

of F(L2(R+, F )).

By IΓt we denote those two-sided submodules of IΓ(F ) where the functions in the

n–particle sector are different from 0 only on [0, t]n. Clearly, on L2(R+, F ) we have a

time shift St sending f(s) to f(s − t)II [0,∞)(s − t). This time shift extends via second

quantization to a time shift F(St) on F(L2(R+, F )) which leaves IΓ(F ) invariant.

2 Proposition [BS00]. The time ordered Fock modules IΓt are a product system via

the isomorphisms ust, defined by setting

[ust(Fs ¯Gt)](sm, . . . , s1, tn, . . . , t1) = [F(St)Fs](sm, . . . , s1)¯G(tn, . . . , t1)

= Fs(sm − t, . . . , s1 − t)¯G(tn, . . . , t1),

for s + t ≥ sm ≥ · · · ≥ s1 ≥ t ≥ tn ≥ · · · ≥ t1 ≥ 0. We say IΓ¯(F ) =
(
IΓt

)
t∈R+

is the

product system associated with IΓ(F ).
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3 Theorem. Let ξ0 =
(
ξ0
t

)
t∈R+

be a uniformly continuous semigroup in B and let ζ ∈ F .

Then ξ¯ =
(
ξt

)
t∈R+

where the component ξn
t of ξt ∈ IΓt in the n–particle sector is

ξn
t (tn, . . . , t1) = ξ0

t−tnζ ¯ ξ0
tn−tn−1

ζ ¯ . . .¯ ξ0
t2−t1

ζξ0
t1

(1)

(and, of course, ξ0
t for n = 0), is a unit for IΓ¯(F ). Moreover, both the function t 7→

ξt ∈ IΓ(F ) and the CP-semigroup T with Tt = 〈ξt, •ξt〉 are uniformly continuous. If the

generator of ξ0 is β ∈ B, then the generator of T is

L(b) = 〈ζ, bζ〉+ bβ + β∗b. (2)

Proof. ξ0
t is bounded by et‖β‖ so that

‖ξn
t ‖ ≤ et‖β‖

√
tn ‖ζ‖2n

n!
. (3)

(Recall that the volume of the n–simplex t ≥ tn ≥ . . . ≥ t1 ≥ 0 is tn

n!
.) In other words, the

components ξn
t are summable to a vector ξt ∈ IΓt with norm not bigger than et

(
‖β‖+ ‖ζ‖2

2

)
.

Of course, (ξs ¯ ξt)
k =

k∑
`=0

ξk−`
s ¯ ξ`

t . Evaluating at a concrete tuple (rk, . . . , r1), there

remains (up to measure 0) only one summand, namely, that where r` ≤ t and r`+1 > t.

(If r1 > t, then there is nothing to show.) By (1), this remaining summand equals

ξk
s+t(rk, . . . , r1), so that ξ¯ is, indeed, a unit. From this it follows that ‖ξt+dt − ξt‖ =

‖(ξdt − ω)¯ ξt‖ ≤ ‖ξdt − ω‖ ‖ξt‖ so that t 7→ ξt is continuous, because

‖ξdt − ω‖ ≤
∥∥ξdt − ξ0

dt

∥∥ +
∥∥ξ0

dt − ω
∥∥ ≤ edt

(
‖β‖+ ‖ζ‖2

2

)
− 1 +

∥∥edtβ − 1
∥∥ .

For the generator we have to compute lim
t→0

〈ξt,bξt〉−b
t

. It is easy to see from (3) that the

components ξn for n ≥ 2 do not contribute. We have ξ0
t = 1 + tβ + O(t2). Substituting

this in ξ1
t shows 〈ξt, bξt〉 − b = t(〈ζ, bζ〉 + bβ + β∗b) + O(t2). From this the form of the

generator follows.

4 Remark. Actually, t 7→ ξt is an analytic function.

5 Remark. Christensen and Evans [CE79] have shown that any generator of a unital

normal uniformly continuous CP-semigroup on a von Neumann algebra B has the form

as in (2).

Notice that the operators ut = ξtω
∗ on IΓ(F ) form a (right) cocycle with respect to

the time shift endomorphism semigroup on Ba(IΓ(F )). If the semigroup T is unital (i.e.

if 〈ξt, ξt〉 = 1 or, in other words, if 〈ζ, ζ〉 + β+β∗
2

= 0), then the ut are partial isometries

and the homomorphisms jt : B → Ba(IΓ(F )) defined by setting jt(b) = u∗t but form a weak
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Markov flow in the sense of [BP94] (i.e. jt(1)jt+s(b)jt(1) = jt ◦ Ts(b)). See [BS00], where

all these statements are shown for arbitrary product systems. In [BS00] the weak Markov

flow j has been constructed with the help of a quantum stochastic calculus [Ske00]. In

[GS99] it has been constructed (also with a calculus) for a special subclass of symmetric

Fock modules. Here we see that it is possible to write the flow down directly without

making use of a calculus.

Now we show the converse of Theorem 3.

6 Theorem. Let ξ¯ be a unit for IΓ¯(F ) such that t 7→ ξt ∈ IΓ(F ) is a continuous

function. Then there exist unique ζ ∈ F and β ∈ B such that ξt is of the form defined by

(1).

Proof. (i) ξt is continuous, hence, so is ξ0
t = 〈ω, ξt〉. Moreover, ξ0

sξ
0
t = ξ0

s ¯ ξ0
t = ξ0

s+t so

that ξ0
t = etβ is a uniformly continuous semigroup in B with a unique generator β ∈ B.

(ii) As observed in a special case in [Lie00], any unit is determined by its components

ξ0 and ξ1. This follows from the fact that

P 01
tn−tn−1

¯ . . .¯ P 01
t2−t1

¯ P 01
t1

−→ idIΓt

strongly, as limit over refinement of partitions t = tn ≥ . . . ≥ t1 ≥ t0 = 0, where P 01
t

denotes the projection onto the 0– and 1–particle sector of IΓt. So we are done, if we show

that ξ1 has the desired form.

(iii) For each f ∈ L2(R+) we define a mapping f ∗ ⊗ id : L2(R+, F ) → F of norm ‖f‖,
by setting

(f ∗ ⊗ id)x =

∫
f(s)x(s) ds

on step functions and then extending it to all of L2(R+, F ). (To see this, expand the step

function x in terms of an ONB for L2(R+) which contains the unit vector f
‖f‖ .)

Notice that ((Stf)∗⊗ id)Stx = (f ∗⊗ id)x. Therefore, defining the (continuous) function

λ(t) = (II∗[0,t] ⊗ id)ξ1
t and taking into account ξ1

s+t = ξ0
s ¯ ξ1

t + ξ1
s ¯ ξ0

t = esβξ1
t + Stξ

1
se

tβ we

find

λ(s + t) = esβλ(t) + λ(s)etβ.

Differentiating

eTβ

∫ T+t

T

e−sβλ(s) ds =

∫ t

0

e−sβλ(s + T ) ds = tλ(T ) +

∫ t

0

e−sβλ(s)eTβ ds

with respect to T , we see that λ is (arbitrarily) continuously differentiable.
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(iv) For T ≥ 0 denote by pT ∈ Ba(L2(R+, F )) the projection onto L2([0, T ], F ). Then

2N∑
i=1

II [T i−1

2N ,T i

2N ]
2N

T
(II∗

[T i−1

2N ,T i

2N ]
⊗ id)x −→ pT x

as N → ∞ for all x ∈ L2(R+, F ). (
2N∑
i=1

II [T i−1

2N ,T i

2N ]
2N

T
II∗

[T i−1

2N ,T i

2N ]
is an increasing net of

projections on L2(R+) converging strongly to the projection onto L2([0, T ]).) Applying

this to ξ1
T and taking into account that (II∗[s,t] ⊗ id)ξ1

T = e(T−t)βλ(t− s)esβ for s ≤ t ≤ T ,

we find

ξ1
T = lim

N→∞

2N∑
i=1

II [T i−1

2N ,T i

2N ]
2N

T
(II∗

[T i−1

2N ,T i

2N ]
⊗ id)ξ1

T

= lim
N→∞

2N∑
i=1

II [T i−1

2N ,T i

2N ]
2N

T
eT 2N−i

2N βλ
(

T
2N

)
eT i−1

2N β

= lim
N→∞

2N∑
i=1

II [T i−1

2N ,T i

2N ]e
T 2N−i

2N βλ′(0)eT i−1

2N β.

Putting ζ = λ′(0), the sum converges in L∞–norm, hence, a fortiori in L2–norm of ET ,

to the function t 7→ e(T−t)βζetβ, which is stated for ξ1
T in (1).

7 Remark. Fixing a semigroup ξ0 and an element ζ in F , Equation (1) gives more general

units. For that it is sufficient to observe that ξ0 is bounded by Cect for suitable constants

C, c (so that ξn
t are summable). The following example shows that we may not hope to

generalize Theorem 6 to units which are continuous in a weaker topology only.

8 Example. Let F = B = B
(
Γ−

)
where we set Γ− = Γ(L2(R−)). Then, IΓ(B) =

B ⊗ IΓ(C) = B ⊗ Γ(L2(R+)), because B ¯ B = B and IΓ(C) ∼= Γ(L2(R+)). We consider

elements b⊗ f in IΓ(B) as operators g 7→ bg⊗ f in IΓs(B) := B(Γ−, Γ− ⊗ IΓ(C)). Clearly,

IΓs(B) is the strong closure of IΓ(B). Similarly, let IΓs
t(B) denote the strong closures

B(Γ−, Γ− ⊗ IΓt(C)) of IΓt(B). It is noteworthy that the IΓs
t form a product system even

in the algebraic sense. To see this, observe that for x ∈ IΓs
s(B), y ∈ IΓs

t(B) we have

x ¯ y = (x ⊗ id)y ∈ IΓs
s+t. So let z ∈ IΓs

s+t, and let u be a unitary in IΓs
s(B). Then

(u∗ ⊗ id)z is in IΓs
t(B) such that z = (u⊗ id)(u∗ ⊗ id)z = u¯ ((u∗ ⊗ id)z).

Replacing everywhere the members IΓt(C) of the product system IΓ¯(C) by the mem-

bers Γt of the isomorphic product system
(
Γt

)
(and keeping the notation IΓs

t(B)), we see

that units correspond to cocycles of type (H) as introduced in [Lie00]. An example is the

second quantized mirrored shift ξt = Γ(τt) ∈ B
(
Γ(L2(R−), Γ(L2(R− ∪ [0, t]))

)
= IΓs

t(B),
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where

τtf(s) =





f(s− t) s < 0

f(−s) 0 ≤ s ≤ t.

A calculation shows that for an exponential vector ψ(f) to a continuous function f

ζψ(f) = lim
r↘0

ξ1
r (0)ψ(f) = ψ(f)f(0)

is only a distribution (a nonclosable operator, a boundary condition). Clearly, ζ /∈ B.

9 Remark. For a step function x : R+ → F denote by ψ(x) = ∆
∞∑

n=0

x¯n the exponential

vector to x. One easily verifies that

ψ(x)¯ ψ(y) = ψ(St(x) + y)

for step functions x ∈ L2(R+, F ) and y ∈ L2([0, t], F ). In particular, if x =
n∑

i=1

xiII [ti−1,ti]

(xi ∈ F, 0 = t0 < t1 . . . < tn), then ψ(x) = ψ(xnII [0,tn−tn−1])¯. . .¯ψ(x1II [0,t1−t0]). (Observe

that we cannot guarantee existence of ψ(x) for all x ∈ L2(R+, F ). However, at least, if

t 7→ ‖x(t)‖ makes sense as a square integrable function, then ψ(x) and all inner products

with other exponential vectors of this type exist.)

Choosing in (1) parameters ξ0 = 1 and ζ ∈ F , we find find ξt = ψ(ζII [0,t]). On the

time ordered Fock space the units are precisely these exponential units times a scaling

with the semigroup ect in C. We see that in the time ordered Fock module we have a

similar situation. Here we obtain all (continuous) units by rescaling with the semigroup

ξ0
t . However, due to non-commutativity the rescaling is more complicated. We cannot

just multiply by the semigroup from the right (or from the left). Equation (1) tells us

that we have to distribute the action of the semigroup over the envolved time intervals.

Notice, that like in a type I Arveson system our time ordered Fock module is generated

already by the exponential units.

Addendum: Meanwhile, we know from [Ske01b] that all spatial product systems gen-

erated (in the sense of [BS00]) by their continuous units are time ordered Fock modules.

(A product system is spatial, if it contains a unital central unit ω¯, i.e. the elements of

B commute with all ωt. Clearly, this central unit plays the role of the vacuum in the

Fock module.) It is also clear that the space F is determined by the product system

up to isomorphism and plays the role of Arveson’s index in the scalar case. Finally, in

[BBLS00] we show that product systems of von Neumann modules generated (strongly)

by their continuous units are always spatial. This result is equivalent to [CE79].

For an integrated presentation of all these aspects (without [Ske01b]) we refer the

reader to [Ske01a]. A revision of [Ske01a] (to be published) contains also [Ske01b].
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