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Abstract

Hilbert von Neumann modules and concrete von Neumann modules are the same thing.

Let G and H be Hilbert spaces. For E ⊂ B(G,H) denote by [E] the strongly closed subspace of

B(G,H) generated by E.

Bikram, Mukherjee, Srinivasan, and Sunder [BMSS12] say on Page 50, E is a von Neumann
corner if E = [E] ⊃ EE∗E. It is nondegenerate if span EG = H, span E∗H = G. They say in

[BMSS12, Definition 1.2(1)], a Hilbert von Neumann module over a von Neumann algebra A is

a von Neumann corner E with a normal isomorphism π fromA onto [E∗E].

Let B be a von Neumann algebra acting nondegenerately on the Hilbert space G. Skeide

[Ske06, Definition 2] says, E is a concrete von Neumann B–module if E is strongly closed, if

it is a (right) B–submodule[1] of B(G,H) (that is, E + E ⊂ E and EB ⊂ E), if E∗E ⊂ B and if

span EG = H.

Proposition. Let G and H be Hilbert spaces. For the subset E of B(G,H) denote by B the strong

closure in B(G) of the algebra generated by E∗E. Then the following are equivalent:

1. E is a nondegenerate von Neumann corner.

2. E is a Hilbert von Neumann module over B with π = idB satisfying span EG = H.

3. E is a concrete von Neumann B–module.

Moreover, if E is a Hilbert von Neumann module over A satisfying span EG = H, then E is a

concrete von Neumann π(A)–module.
Proof. This is immediate from the definitions.

Observation. Similar statements, which we omit phrasing here, are true for Hilbert von Neumann
bimodules ([BMSS12, Definition 1.2(3)]) and concrete von Neumann correspondences ([Ske06,

Definition 3]).

MSC 2010: 46L07. Keywords: Von Neumann modules.
[1] In [Ske06] we omitted to repeat that a module is closed under addition.
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Remark. Von Neumann modules have been introduced in Skeide [Ske00, Definition 4.4] as (pre-)

Hilbert modules over von Neumann algebras for which the linking algebra is a von Neumann

algebra (cf. [BMSS12, Proposition 1.1]). Immediately after ([Ske00, Proposition 4.5]), it is shown

that this is equivalent, to that E is a concrete von Neumann module (of course, not calling it a

concrete von Neumann module, as this definition is made not before [Ske06]). The main work

is to transform the abstract (pre-)Hilbert module E over the (concrete!) von Neumann algebra

B ⊂ B(G) into a concrete operator module E ⊂ B(G,H). However, such a procedure is known,

and it is known, too, that the result is unique up to suitable unitary equivalence; see (for instance)

Rieffel [Rie74, Proposition 6.10] or Murphy [Mur97, Section 3]. All the work for deriving results

(for instance, in Skeide [Ske00, Ske01]) is done with concrete von Neumann modules (respectively,

Hilbert von Neumann modules). This includes, in particular, self-duality ([Ske00, Theorem 4.16],

using cyclic decomposition [Ske00, Proposition 3.8], polar decomposition [Ske00, Proposition

2.10], and quasi orthonormal bases [Ske00, Theorem 4.11]; cf. [BMSS12, Proposition 1.9]). And

it includes the tensor product of von Neumann correspondences ([Ske01, Equation (4.2.2) and

Proposition 4.2.24], cf. [BMSS12, Section 3]). Just, a formal definition that frees us from the

“burden” to transform an abstract (pre-)Hilbert module over a (concrete) von Neumann algebra

into a concrete one, has not been given before [Ske06].
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Campobasso, Italy, E-mail: skeide@unimol.it, Homepage: http://web.unimol.it/skeide

2

 http://web.unimol.it/skeide/
mailto:skeide@unimol.it
http://web.unimol.it/skeide

